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) I. InTrRODUCTION

Nonlinear effect in liquid crystals is an important subject!®?! which has been widely
investigated (see Ref. [1] and references therein). ~Generally speaking, nonlinear effects
in liquid erystals may be divided into three classes™: (i) The material of liquid erystal
itself is nonlinear (i.e. the dissipation function is higher than a second order polyno-
mial; see Refs. [1] and [3]). (ii) Nonlinear optical properties. (iii) The effects due
to higher order terms left over after the linearization of the relevant equations. In
this paper we are concerned with nonlinearities of class (i).

In simple liquid, nonlinear terms in the stress tensor can lead to obsgervable effects.
For example, due to the action of the nonlinear terms shear flow may give rise to
normal stresses, as is shown in the case with the Weissenberg effect], As for
liquid erystals, Moritz and Franklin have discussed the mnonlinear terms in the stress
tensor for incompressible nematics’™. However, their work is unsatisfactory (see See.
II1 below).

Recently, dissipation functions have been introduced by Lam to treat the irrever-
gible thermodynamics of molecular liquids and molecular solids with internal strue-
tures’®’, In addition to the capability of systematic derivation of the conservation laws
of momentum, energy and angular momentum, this method includes in a matural way
the important consequences of angular momentum conservation and the Onsager recipro-
cal relations. When applied to liquid erystals, the theory of dissipation funections in
the linear regime agrees with that of Ericksen-Leslie™!,

'
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Ml aad o d

Although there are still some ambiguities in the theoretical application of the On-
sager reciprocal relations!” for liquid crystals™ and many other materials, there exist
quite a number of experimental verifications already. In the nonlinear regime, the
existence of dissipation functions (related to the generalization of the Onsager reciprocal
relations) has been established at least in the case of reaction kinetics of chemical
processes’”), Therefore, the use of dissipation functions in deseribing nonlinear' liquid
crystals and an investigation of the resulting consequences are not unjustified. (For
discussions of some basic questions on dissipation functions in the nonlinear regime, see

Ref. [10]).

II. THeORY

_ For isothermal processes, the dissipation function of nematic liquid erystals is given
by D = D(d,, N;), where d;; is the gymmetric tensor of velocity gradient and N, is
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the veetor related to the velocity of the director (see Ref. [1] for detailed definitions).
In nematies, the material is invariant under rotation about the director m and there is
a reflection symmetry with respect to a plane containing n. Consequently, there are
only ten basic invariants that can be formed from d; and N; up to the third order
(see Ref. [11], Table IV):
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where “8” is the direction of n, and o, § = 1 2 are the two directions perpendicular
to n. The convention of summing over repeated subscripts in the same term is adopted.
In (1), N, should be understood as N, and ds, = n,d;,, ete., where 1 = z,y, 2. Ob-
viously, d,, may be replaced by d,;.

Because of the constraints nm; = 1 and d;; = 0 due to incompressibi]ity, d;; and
N, in (1) are identically zero. We are left with only eight terms. From these eight
basic invariants we may construct a third order polynomial for D such that

D = D® + D, ©))

where D ig the second order part with five terms given by Eq. (5.1) of Ref. [1]

(the a,—as terms), DY is the third order part which is the linear sum of the
following eight terms: :
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It is easy to show that (using the identity d,ds,d,. = 0), tl;rough a'lineér transforma-
tion, the eight invariants in (3) are equivalent to the following set:

pD® = ¢,(d4[551)° + edids,dyi + e3[6§1dusded,
' + euli§ 1di,dyedig + es[3ik1dyN ,d,s
+ esl81Nydy,dys + €71351d3 NN
+ eNdsN;, RO

where e¢,—e; are constants, [ij---] = nm;---. Note that D satisfies the Symmetry
requirement D®(n) = D(’)( —n). Using the relatlonsm

oy = o) + gl
olf = % (d0D/od; + 6D/dd;), )
g: == - pap/aN:".

we find o} = ¢} + o>, ¢i = g’m+ g:¥, where oi{® and g¢;'® are the linear parts
given by the a,—a; terms in Eqs. (5.5) and (5.3) of Ref. [1] The bilinear parts
are obtained by (4) and (5) as follows: . -
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9i = — ey, [kp]N; — esdy,dii[kpj]
- 6;diidip[p] — 245Ny, ' (6)

'(3)

o' = e, [ jparsldqd,. + (g + &) Uipg1Nidyg

»

+ (-;—5 — e,) [jpa]N.dpg + 2e;[pqld,d,, + —2—5 Lipgrld;,d,,
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+ (-ezi + 84> ligldj,d,, + (_%g - 88) [i1d,N,

+ ( - g + e.) [5g)di,dyq + €3[371dyalyy + 07037 1NN
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In (6) and (7) there are only eight independent coefficients. The mutual connection
between the coefficients in ¢/ and o%® is the consequence of the angular momentum

- conservation™, while the connection between the different coefficients in 0':-;3) results
from the assumption of the generalized Onsager reciprocal relations (through the assu-
med existence of a dissipation funetion). In our theory these interrelations are hidden
in (4) and are derived directly through the dissipation fumection.

JI1. DaiscussioNn

Comparing with Ref, [5] (called MF below) we obtained not only the expression
for o; but also the nonlinear part of ¢; in (6). In Eq. (11) of MF, there are only
fifteen terms in o7; and the last three terms in (7) of ours are missing. In faet,
[251d,,d,, does appear in Eq. (7) of MF (the 7, term) but is absent in the final re-
sult in Eq. (11) of MF. It appears there is an error in the calculations in between.
On the other hand, the two terms [¢j]NxNy and [¢jp]Nidi, are completely absent in
MF. These are the shortcomings and unsatisfactory aspeets of MF. Obviously, one of the
advantages of the dissipation function method is that once the invariants are written
down, the stress tensor and other quantities can be derived directly and immediately.
As a result, no terms will be left out even in relatively complicated cases.

¢

Comparing Eq. (7) with Eq. (11) of MF, we obtain seven independent relations among
the fifteen dissipation coefficients &,—&;5 of MF; viz.: "

E,+ & =28, Es+&E=0, &y=25§,,
Ea+ Eu=28,, &En— E4=728, .
£ + Eis=2&, &z— &= 2&y;. (8)

The nonlinear terms discussed in this paper should be observable in the relaxation
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and propagation of sound in liquid crystals. The identities in (8) can be verified
experimentally.

We thank Shen Juelian (yE7%EEE) and other colleagues for helpful discussions.
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