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1 Introduction

This paper considers the nonsmooth nonconvex least squares problem

min
x∈Rn

1

2
‖r(x)‖2, (1.1)

where r : Rn → R
m is a locally Lipschitz continuous function but not necessarily differentiable and ‖ · ‖

is the Euclidean norm. This problem has many important applications in engineering and economics,

which includes constrained smooth nonlinear equations and nonsmooth equations as special cases.

Denote the objective function of (1.1) by f , i.e., f(x) = 1
2‖r(x)‖2. In general, f : Rn → R+ is nonconvex

and nonsmooth. In the presence of nonsmoothness and noncovexity, most optimization methods only

guarantee convergence to a Clarke stationary point of the objective function f [7, 8, 15, 21, 29].

The trust region method [16, 25, 28] is a classic and widely used numerical method for optimization

problems and filter techniques are proposed in [20, 22] as a globalization strategy. In this paper, we

propose a smoothing trust region filter (STRF) algorithm to find a global minimizer of (1.1) when r is

nonsmooth and there is x∗ such that r(x∗) = 0. This algorithm combines trust region methods [16, 25],

filter techniques [20, 22] and smoothing approximations [5, 8, 10]. Using a smoothing function r̃ of r, we

can define a smoothing function f̃ of f and construct a good quadratic approximation of f in a certain

region at each iteration. In the proposed STRF algorithm, the trust region method [16,25] is used to find

a low value of smoothing function f̃ , while the filter technique [20, 22] is used to build a filter by using
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the original nonsmooth function r. A new point is generated based on the new value of the smoothing

function and the new filter at the current step. To guarantee the convergence of the STRF algorithm to

a Clarke stationary point or a global minimizer, a new scheme is introduced to update the smoothing

parameter by using both the nonsmooth function f and the gradient of the smoothing function ∇f̃ .

Note that the proposed STRF is different from the smoothing trust region method in [10] and the filter

method in [22]. The smoothing trust region method [10] can reduce the objective values and guarantee

convergence to a Clarke stationary point, but has no convergence results to a global minimizer. The filter

method [20,22] is a technique for finding a global minimizer of a twice continuously differentiable function

under certain conditions, but application to a nonsmooth nonconvex minimization problem has not been

investigated. The proposed STRF algorithm is a novel combination of these optimization techniques for

nonsmooth and nonconvex least squares problems.

To verify the efficiency of the proposal STRF algorithm for finding global minimizers of least squares

problems, we compare the STRF algorithm with several codes in Matlab on the following two challenging

problems.

Spherical tǫ-designs. A set XN of N points on the unit sphere is called a spherical t-design if

the average value of any polynomial of degree at most t over XN is equal to the average value of the

polynomial over the sphere. A spherical t-design provides an equal positive weight integration rule which

is the exact integral for any polynomial of degree at most t. Spherical t-designs have many important

applications in geophysics and bioengineering, and provide many challenging problems in computational

mathematics [2, 3, 9, 12, 27]. It is shown in [12] that finding a spherical t-design can be reformulated

as a system of polynomial equations. In this paper, we define a spherical tǫ-design which provides an

integration rule with a set Xǫ
N of N points on the unit sphere and positive weights satisfying

(1− ǫ)2 6
minweight

maxweight
6 1.

The integration rule also gives the exact integral for any polynomial of degree at most t. When ǫ = 0,

the spherical tǫ-design reduces to the spherical t-design. Due to the flexibility of choice for the weights,

the number of points in the integration rule can be less for making the exact integral for any polynomial

of degree at most t. We show that finding a spherical tǫ-design can be reformulated as a system of

polynomial equations with box constraints. Using the projection operator, the system can be written as

a nonsmooth nonconvex least squares problem (1.1) with zero residual.

Differential variational inequalities (DVI). The DVI is a powerful mathematical paradigm for

the increasing number of engineering and economics problems that involve dynamics and equilibrium

problems [1,11,13,14,23,26]. The time-stepping method is widely used for solving the DVI, at each step

of which, a standard variational inequality problem (VIP) has to be solved efficiently. It is known that a

standard VIP can be reformulated as a system of nonsmooth equations [17, 18], and thus a nonsmooth

nonconvex least-squares problem (1.1) with zero residual. We use a time-stepping method with the

STRF algorithm to solve several DVI. Moreover, we use the least-norm time-stepping method with the

STRF algorithm to solve a nonlinear complementarity system where the complementarity problem has a

unbounded solution set and a least-norm solution was required for the stability of the system. Preliminary

numerical experiments show that the STRF algorithm with regularization is robust in finding a global

and stable minimizer of (1.1) at each time in the dynamic system.

This paper is organized as follows. In Section 2, we introduce the STRF algorithm and show that the

STRF algorithm converges to a Clarke stationary point or a global minimizer of the objective function

in (1.1) under certain conditions. In Section 3, we present numerical results of the STRF algorithm

for finding spherical tǫ-designs which is equivalent to finding zeros of a system of polynomial equations

with high degrees on the sphere, and solving differential variational inequalities. Comparing with several

algorithms and codes including fmincon, lsqnonlin, fsolve in Matlab, the STRF is more efficient for

solving nonsmooth nonconvex least squares problems. Finally, Section 4 concludes the paper.

Throughout the paper, ‖ · ‖ represents the Euclidean norm, R+ = {α ∈ R | α > 0} and R++ = {α ∈
R | α > 0}.
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2 A smoothing trust region filter (STRF) algorithm

We use the ideas in [22] to construct the filter, which partition r(x) into p sets {ri(x)}i∈Ij , j = 1, . . . , p,

with {1, . . . ,m} = I1 ∪· · ·∪ Ip. For readability and simplicity, we explain how to construct the filter with

a disjoint partition. Let

r(x) =









rI1(x)
...

rIp(x)









, θj(x) = ‖rIj (x)‖, j = 1, . . . , p, θ(x) =









θ1(x)
...

θp(x)









,

where rIj : Rn → R
mj and

∑p
j=1 mj = m.

Obviously, a vector x is a solution of (1.1) with f(x) = 0 if and only if θ(x) = 0.

At the k-th iteration, the filter F is a subset of {θ(x0), θ(x1), . . . , θ(xk)}. A new trial point x+
k is

acceptable for the filter F if and only if for any θ(xℓ) ∈ F there is j ∈ {1, . . . , p} such that

θj(x
+
k ) < θj(xℓ)− γmin{‖θ(x+

k )‖, ‖θ(xℓ)‖}, (2.1)

where γ ∈ (0, 1/
√
p) is a positive constant.

We remove θ(xℓ) from the filter F if

∃ θ(xj) ∈ F , such that θ(xℓ)− γ‖θ(xℓ)‖e > θ(xj), (2.2)

where e = (1, . . . , 1)T.

We say that a vector x dominates a vector y whenever θ(x) < θ(y). The inequality in (2.2) implies that

xj dominates xℓ. From the construction of the filter, if xℓ is removed from the filter at the k-th iteration,

xℓ will not be added back to the filter after the k-th iteration.

To overcome the nonsmoothness of r, we use a smoothing function r̃(·, µ) of r.
Definition 2.1. Let r : Rn → R

m be a locally Lipschitz continuous function. We call r̃ : Rn×R++ →
R

m a smoothing function of r, if for any fixed µ ∈ R++, r̃(·, µ) is continuously differentiable in R
n and

for any fixed x̂ ∈ R
n,

lim
x→x̂,µ↓0

r̃(x, µ) = r(x̂).

Using a smoothing function r̃, we can define a smoothing function f̃ of f by

f̃(x, µ) =
1

2
‖r̃(x, µ)‖2.

By Definition 2.1, for any fixed µ > 0, f̃(·, µ) is continuously differentiable in R
n and for any fixed

x̂ ∈ R
n,

lim
x→x̂,µ↓0

f̃(x, µ) = f(x̂).

In this paper, we assume that the smoothing function r̃ satisfies the following condition:

|r̃i(x, µ) − ri(x)| 6 κ(µ), i = 1, . . . ,m, (2.3)

where κ : R++ → R+ satisfies κ(µ1) 6 κ(µ2) for µ1 6 µ2, and κ(µ) → 0 as µ → 0. Many smoothing

functions satisfy condition (2.3) (see [8]). In Section 3, we give examples of the smoothing function r̃

satisfying (2.3).

Using the smoothing function r̃, we can define the gradient of the objective function f̃ as follows:

g(x, µ) = ∇xf̃(x, µ) = J(x, µ)T r̃(x, µ), where J(x, µ) = ∇xr̃(x, µ).

The smoothing trust region method computes a trial point x+
k = xk+dk for some step dk by a quadratic

approximation function

qk(d) = f̃(xk, µk) + g(xk, µk)
Td+

1

2
dTBkd (2.4)
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of f̃(x, µ) in a trust region {xk + d | ‖d‖ 6 ∆k}, where ∆k is the radius of the trust region and Bk =

J(xk, µk)
TJ(xk, µk) +

√
µkI.

Since Bk is a symmetric positive definite matrix, qk is strongly convex and dk in Step 1 is uniquely

defined. The term
√
µkI in Bk plays a regularization role and ensures the nonsingularity of Bk, which

yields the strong convexity of qk. Using the smoothing function r̃, we can easily compute the matrix Bk

and the function qk, and find the unique solution dk in Step 1 of the STRF algorithm. Hence, the STRF

algorithm is well-defined. When both smoothing and regularization techniques are used in an algorithm,

it is recommended to let the smoothing parameter go to zero faster than the regularization parameter

for good numerical performance [11].

Smoothing trust region filter (STRF) algorithm.

Step 0. Initialization. Given constants 0 < ∆̄ < ∞, 0 < η1 < η2 < 1, 0 < γ1 < 1 < γ2, 0 < σ < 1,

0 < γ < 1/
√
p, 0 < β < ∞, an initial vector x0 ∈ R

n, the radius of a trust region ∆0 ∈ (0, ∆̄), the

smoothing parameter µ0 > 0, and filter F = {θ(x0)}.
Step 1. Define a trial point. Compute dk = argmin‖d‖6∆k

qk(d) and set x+
k = xk + dk.

Step 2. Evaluate the reduction at the trial step. If dk = 0, set xk+1 = xk, ∆k+1 = ∆k, and go to

Step 5. Otherwise, compute

ρk =
f̃(xk, µk)− f̃(x+

k , µk)

qk(0)− qk(dk)
.

Step 3. Update the trust-region radius. Set

∆k+1 =















min{γ2∆k, ∆̄}, if ρk > η2, ‖dk‖ = ∆k,

γ1∆k, if ρk 6 η1,

∆k, otherwise.

Step 4. Test to accept the trial step.

• x+
k is acceptable for the current filter by (2.1): Set xk+1 = x+

k and add θ(x+
k ) to the filter if ρk < η1.

Update F by (2.2).

• x+
k is not acceptable for the current filter: If ρk > η1, set xk+1 = x+

k . Otherwise, set xk+1 = xk.

Step 5. Update the smoothing parameter. If min{f(xk), ‖∇xf̃(xk, µk)‖} 6 βµk, set µk+1 = σµk.

Otherwise, set µk+1 = µk. Go to Step 1.

The STRF algorithm is constructed based on the idea of the trust region filter algorithm in [22].

However, the two algorithms have essential differences. The algorithm in [22] is applied to smooth

function r and has a decrease of the objective function f(xk+1) < f(xk) when xk+1 = x+
k and θ(x+

k ) is

not included in the filter. This is a key property for the convergence of the algorithm in [22]. However,

the STRF algorithm is applied to nonsmooth function r and has a decrease of the smoothing function

f̃(xk+1, µk) < f̃(xk, µk) when xk+1 = x+
k and θ(x+

k ) is not included in the filter. A decrease of the

objective function is not guaranteed. To prove the convergence of {f(xk)} generated by the STRF

algorithm, an innovative proof is needed.

Now we investigate the convergence of the STRF algorithm. We first consider the case that infinitely

many values are added to the filter in the STRF algorithm.

Theorem 2.2. Assume that r̃ satisfies (2.3). If infinitely many values of θ(xk) are added to the filter

by the STRF algorithm, then

lim
k→∞

‖θ(xk)‖ = lim
k→∞

f(xk) = 0.

Proof. Let θk = θ(xk), θ
+
k = θ(x+

k ) and θj,k = θj(xk), j = 1, . . . , p.

Let {ki} index the subsequence of iterations at which θki
= θ+ki−1 is added to the filter. Assume on

contradiction that there exists a subsequence {kν} ⊆ {ki} such that ‖θkν
‖ > ǫ for some ǫ > 0. By

Step 4 and the construction of a filter (2.1) and (2.2), {θkν
} is bounded. Hence, there exists a further
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subsequence {kτ} ⊆ {kν} such that

lim
τ→∞

θkτ
= θ̄. (2.5)

Since {kτ} ⊆ {kν} ⊆ {ki} and ‖θkν
‖ > ǫ for all ν, we know that for all τ , min{‖θkτ−1‖, ‖θkτ

‖} > ǫ and

θkτ
is acceptable for the filter. Hence for each τ , there exists a j ∈ {1, . . . , p} such that

θj,kτ
− θj,kτ−1 < −γmin{‖θkτ−1‖, ‖θkτ

‖} 6 −γǫ. (2.6)

However, by (2.5), we get θj,kτ
− θj,kτ−1 → 0, as τ → ∞. This is a contradiction. Hence, we obtain

lim
i→∞

‖θki
‖ = 0, (2.7)

which implies

lim
i→∞

f(xki
) = 0. (2.8)

Now, we prove the convergence of the whole sequence {‖θk‖} to zero. From f(xk) =
1
2‖θk‖2, it is to

prove that the sequence {f(xk)} converges to zero.

We consider any ℓ 6∈ {ki} and let ki(ℓ) be the last iteration before ℓ such that θki(ℓ)
was added to the

filter. By the definition of {ki(ℓ)} and (2.7), we have

lim
ℓ→∞

f(xki(ℓ)
) = 0. (2.9)

Moreover, we have µki(ℓ)
→ 0 as ℓ → ∞ by Step 5 of the STRF algorithm. Hence, using µk+1 6 µk, we

obtain µk → 0 as k → ∞.

From the condition on the smoothing function (2.3), we derive

|f̃(xki(ℓ)
, µki(ℓ)

)− f(xki(ℓ)
)| = 1

2
|‖r̃(xki(ℓ)

, µki(ℓ)
)‖2 − ‖r(xki(ℓ)

)‖2|

=
1

2

∣

∣

∣

∣

m
∑

j=1

(r̃2j (xki(ℓ)
, µki(ℓ)

)− r2j (xki(ℓ)
))

∣

∣

∣

∣

6
1

2

m
∑

j=1

|r̃j(xki(ℓ)
, µki(ℓ)

)− rj(xki(ℓ)
)| · |r̃j(xki(ℓ)

, µki(ℓ)
) + rj(xki(ℓ)

)|

6
1

2

m
∑

j=1

κ(µki(ℓ)
)|r̃j(xki(ℓ)

, µki(ℓ)
) + rj(xki(ℓ)

)|

6
1

2

m
∑

j=1

κ(µki(ℓ)
)(κ(µki(ℓ)

) + 2|rj(xki(ℓ)
)|)

6
m

2
κ2(µki(ℓ)

) + κ(µki(ℓ)
)‖r(xki(ℓ)

)‖1

6
m

2
κ2(µki(ℓ)

) + κ(µki(ℓ)
)
√
m‖r(xki(ℓ)

)‖2

6
m

2
κ2(µki(ℓ)

) + κ(µki(ℓ)
)
√

2mf(xki(ℓ)
). (2.10)

Hence from (2.9) and µk → 0, we obtain

lim
ℓ→∞

f̃(xki(ℓ)
, µki(ℓ)

) = 0. (2.11)

By Steps 2 and 4 of the STRF algorithm, if θ(xki(ℓ)+1) is not included in the filter, then we have

f̃(xki(ℓ)
, µki(ℓ)

)− f̃(xki(ℓ)+1, µki(ℓ)
) > 0,

which, together with (2.11), implies

lim
ℓ→∞

f̃(xki(ℓ)+1, µki(ℓ)
) = 0. (2.12)
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Using the similar argument in (2.10), we can show

|f̃(xki(ℓ)+1, µki(ℓ)
)− f(xki(ℓ)+1)| 6

m

2
κ2(µki(ℓ)

) + κ(µki(ℓ)
)
√

2mf̃(xki(ℓ)+1, µki(ℓ)
), (2.13)

which, together with (2.12) and

lim
ℓ→∞

|f̃(xki(ℓ)+1, µki(ℓ)
)− f(xki(ℓ)+1)| 6 lim

ℓ→∞

(

m

2
κ2(µki(ℓ)

) + κ(µki(ℓ)
)
√

2mf̃(xki(ℓ)+1, µki(ℓ)
)

)

= 0,

we obtain

lim
ℓ→∞

f(xki(ℓ)+1) = 0. (2.14)

Since ℓ 6∈ {ki} is arbitrarily chosen, from (2.8), (2.9) and (2.14), we can get

lim
i→∞

f(xki+1) = 0.

Letting ℓ 6∈ {ki} ∪ {ki + 1}, using the same argument above, we can show

lim
i→∞

f(xki+2) = 0.

Hence, repeating the argument, we can derive

lim
k→∞

f(xk) = 0 and lim
k→∞

‖θ(xk)‖ = 0. (2.15)

We complete the proof.

Now, we study the convergence of the STRF algorithm without assuming that infinitely many values

of θ(xk) are added to the filter.

We say that f has bounded level sets, if for any α > 0, the level set {x | f(x) 6 α} is bounded.

If f has bounded level sets and Condition (2.3) holds, then the smoothing function f̃ has bounded

level sets for any fixed µ > 0. In fact, using the argument in (2.10) and (2.13) with condition (2.3) and

µ 6 µ0, for any α > 0, the following holds,

{x | f̃(x, µ) 6 α} ⊆
{

x | f(x) 6 α+
m

2
κ2(µ) + κ(µ)

√
2mα

}

⊆
{

x | f(x) 6 α+
m

2
κ2(µ0) + κ(µ0)

√
2mα

}

. (2.16)

Lemma 2.3. Suppose that f has bounded level sets and ∇f̃(·, µ) is Lipschitz continuous for any fixed

µ > 0, then the sequence {µk} generated by the STRF algorithm satisfies

lim
k→∞

µk = 0. (2.17)

Proof. Let K contain all iterations at which µk+1 = σµk, namely,

K = {k | min{f(xk), ‖∇xf̃(xk, µk)‖} 6 βµk}. (2.18)

If K is an infinite set, then limk→∞ µk = 0. Moreover, from Theorem 2.2, if infinitely many values

of θk are added to the filter, then limk→∞ µk = 0. Hence, in the following, we will prove that K is an

infinite set in the case when only finitely many values of θk are added to the filter.

Assume by contradiction that K is finite and only finitely values of θk are added to the filter. Then

there exists a nonnegative integer k̂, such that for all nonnegative integers j, θ(x+

k̂+j
) are not added to

the filter and µ
k̂+j

= µ
k̂
. This means

f̃(x
k̂+j

, µ
k̂
)− f̃(x

k̂+j+1, µk̂
) > 0, for j > 0 (2.19)
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and

min{f(x
k̂+j

), ‖∇xf̃(xk̂+j
, µ

k̂
)‖} > βµ

k̂
, for j > 0. (2.20)

By (2.16) and the assumption that f has bounded level sets, we know that f̃(·, µ
k̂
) has bounded level

sets. Hence, in such case, the STRF algorithm reduces to [25, Algorithm 4.1] for solving the smooth

optimization problem with the objective f̃(·, µ
k̂
). From the assumption of Lemma 2.3, ∇f̃(·, µ

k̂
) is

Lipschitz continuous, and thus Bk is bounded. Note that dk is the exact solution of the minimization

problem in Step 1 of the STRF algorithm. All conditions of [25, Theorem 4.6] hold. Similar to the proof

of [25, Theorem 4.6], we can show

lim
j→∞

‖∇xf̃(xk̂+j
, µ

k̂
)‖ = 0. (2.21)

This contradicts (2.20). Hence (2.17) holds.

Since r is locally Lipschitz continuous, f is locally Lipschitz continuous and almost everywhere differ-

entiable. The Clarke subdifferential of f at x ∈ R
n can be defined by

∂f(x) = co{v | ∇f(z) → v, f is differentiable at z, z → x},

where “co” denotes the convex hull. A vector x is called a Clarke stationary point of f if 0 ∈ ∂f(x).

To show that any accumulation point of {xk} generated by the STRF algorithm is a Clarke stationary

point of f , we need functions ri, i = 1, . . . ,m to be regular and their smoothing functions r̃i to satisfy

the gradient consistency.

Definition 2.4 (See [15]). A function h : Rn → R is said to be regular at x ∈ R
n if for all v ∈ R

n, the

directional derivative exists and

h(x; v) = lim
t↓0

h(x+ tv)− h(x)

t
= lim sup

y→x,t↓0

h(y + tv)− h(y)

t
.

If h is regular at all x ∈ R
n, h is said to be regular.

Definition 2.5 (See [8]). A smoothing function h̃ of h : R
n → R is said to satisfy the gradient

consistency if

co{v | ∇xh̃(xk, µk) → v, for xk → x, µk ↓ 0} = ∂h(x), ∀x ∈ R
n.

Theorem 2.6. Assume that r̃i satisfies (2.3) and the gradient consistency, for i = 1, . . . ,m, f has

bounded level sets and ∇f̃(·, µ) is Lipschitz continuous for any fixed µ > 0. Then the sequences {xk} and

{µk} generated by the STRF algorithm satisfy

lim inf
k→∞

‖∇xf̃(xk, µk)‖ = 0. (2.22)

In addition, if ri is regular for i = 1, . . . ,m, then any accumulation point of {xk} is a Clarke stationary

point of f .

Proof. We consider two cases.

Case I. lim infk→∞ f(xk) = 0.

In this case, we have

lim inf
k→∞

‖r(xk)‖2 = lim inf
k→∞

m
∑

j=1

r2j (xk) = 0.

From (2.3) and Lemma 2.3, we get µk → 0, and

0 6 lim inf
k→∞

|r̃j(xk, µk)| 6 lim inf
k→∞

(|rj(xk)|+ κ(µk)) = 0, for j = 1, . . . ,m.

Since ri is Lipschitz continuous, the Clarke subdifferential ∂ri is bounded. Hence from the gradient

consistency of ri, we can get ‖∇xr̃i(xk, µk)‖ is bounded and

lim inf
k→∞

‖∇xf̃(xk, µk)‖ = lim inf
k→∞

‖∇xr̃(xk, µk)
Tr̃(xk, µk)‖ = 0.
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Case II. lim infk→∞ f(xk) > 0.

In this case, there exist k̄ and ǫ > 0, such that for k > k̄, f(xk) > ǫ. By Lemma 2.3, µk → 0. Thus

from min{f(xk), ‖∇xf̃(xk, µk)‖} 6 βµk, we have

lim inf
k→∞

‖∇xf̃(xk, µk)‖ = 0.

Hence we complete the proof for (2.22).

If ri is regular, then by [4, Proposition 2.1], r̃2i is a smoothing function of r2i and satisfies the gradient

consistency. Since f(x) = 1
2

∑m
i=1 r

2
i (x) is a convex composite function of r2i (x), f̃(x, µ) =

1
2

∑m
i=1 r̃

2
i (x, µ)

is a smoothing function of f and satisfies the gradient consistency, which means

co{v | ∇f(xk) → v, f is differentiable at xk, xk → x}

= co{v | ∇xf̃(xk, µk) → v, xk → x, µk ↓ 0}.

Hence, from (2.22), any accumulation point of {xk} is a Clarke stationary point of f .

Example 1. To explain the smoothing approximation and gradient consistency, we consider the

following example. Let

r(x) = Mx+max(0, x) + q, where M =

(

1 1

1 1

)

and q =

(

1

−1

)

.

At x̄ = (0, 0)T, r(x) and f(x) are not differentiable. Since r1 and r2 are convex, by [15, Proposition 2.3.6],

they are regular. By [15, Corollary 3], the Clarke gradient of f(x) at x̄ is

∂f(x̄) =
1

2
(∂r21(x) + ∂r22(x))

= co{v | ∇r1(x)r1(x) +∇r2(x)r2(x) → v, x1 6= 0, x2 6= 0, x → x̄}

=

{(

α1 1

1 α2

)(

1

−1

)

, α1, α2 ∈ [1, 2]

}

.

Since 0 ∈ ∂f(x̄), x̄ is a stationary point.

We use the smoothing function

ϕ(t, µ) =











max(0, t), if |t| > µ

2
,

t2

2µ
+

t

2
+

µ

8
, otherwise

for max(0, t), and

r̃(x) = Mx+Φ(x, µ) + q

for r(x), where Φ(x, µ) = (ϕ(x1, µ), ϕ(x2, µ))
T. It is easy to see that 0 6 ϕ′(t, µ) 6 1. In particular,

ϕ′(−µ
2 , µ) = 0 and ϕ′(µ2 , µ) = 1. Hence, we find that f satisfies the gradient consistency, i.e.,

co{v | ∇xf̃(x, µ) = ∇r̃(x, µ)Tr̃(x, µ) → v, x → x̄, µ ↓ 0} = ∂f(x̄).

Moreover, we have

|r̃i(x, µ) − ri(x)| = |ϕ(xi, µ)−max(0, xi)| 6
µ

8
, i = 1, 2.

Hence the smoothing function r̃ satisfies (2.3).

More examples and results on the smoothing approximation, regularity and gradient consistency can

be found in [5, 6, 8].



Chen X J et al. Sci China Math May 2016 Vol. 59 No. 5 1007

3 Numerical results

In this section, we report numerical results of the STRF algorithm for solving nonsmooth nonconvex least

squares problems (1.1) with zero residual arising from spherical tǫ-designs and differential variational

inequalities which are described in Section 1. Both problems have many stationary points at which

the residual is not zero. We show that all conditions used in last section for convergence of the STRF

algorithm hold for these two problems. Numerical results show that the STRF algorithm is efficient and

robust for finding global minimizers of the problems.

We implemented the STRF algorithm in MATLAB 2012b on a Lenovo Thinkcenter PC equipped with

Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows 7. The values of parameters in the STRF

algorithm are chosen as follows: ∆0 = 10−1, ∆ = 1012, η1 = 0.2, η2 = 0.8, γ1 = 0.8, γ2 = 1.25, σ = 0.95,

µ0 = 0.5, γ = 0.01, β = 10. We terminate the STRF algorithm when min{f(xk), ‖∇f̃(xk, µk)‖} 6 10−10.

Example 2. Spherical tǫ-design.

Let Pt be the linear space of restriction of polynomials of degree 6 t in 3 variables to the unit sphere

S
2 = {x ∈ R

3 |x2
1 + x2

2 + x2
3 = 1}.

A spherical tǫ-design with 0 6 ǫ < 1 on S
2 is a set of points Xǫ

N := {x1, . . . ,xN} ⊂ S
2 such that the

cubature rule with weights w = (w1, . . . , wN )T satisfying

4π

N
(1− ǫ) 6 wi 6

4π

N
(1 − ǫ)−1, i = 1, . . . , N, (3.1)

is exact for all spherical polynomials of degree at most t, i.e.,

N
∑

i=1

wip(xi) =

∫

S2

p(x)dω(x), ∀ p ∈ Pt. (3.2)

When ǫ = 0, the spherical tǫ-design reduces to the spherical t-design that is an equally weighted (wi =
4π
N
)

cubature rule [12, 27]. Finding spherical t-designs provides many open and challenging problems which

attract considerable attention from pure and applied mathematicians.

Now we reformulate the problem finding a spherical tǫ-design, that is to find Xǫ
N and w such that

(3.1)–(3.2) hold, as a nonlinear least squares problem (1.1).

Let {Yℓ,k, k = 1, . . . , 2ℓ + 1, ℓ = 0, . . . , t} be a set of L2-orthonormal basis functions of Pt, where Yℓ,k

is a spherical harmonic of degree ℓ. The dimension of Pt is dt = (t + 1)2. Define Y (XN ) ∈ R
N×dt with

elements

Yi,ℓ2+k(XN ) = Yℓ,k(xi), i = 1, . . . , N, k = 1, . . . , 2ℓ+ 1, ℓ = 0, . . . , t.

Let a = 4π(1−ǫ)
N

e and b = 4π(1−ǫ)−1

N
e, where e = (1, . . . , 1)T ∈ R

N .

Proposition 3.1. The set Xǫ
N := {x1, . . . ,xN} ⊂ S

2 is a spherical tǫ-design if and only if

Y (Xǫ
N )Tw −

√
4πe0 = 0 and w −mid(a, w, b) = 0, (3.3)

where e0 = (1, 0, . . . , 0)T ∈ R
(t+1)2 and

(mid(a, w, b))i = mid(ai, wi, bi) =















ai, wi < ai,

wi, ai 6 wi 6 bi,

bi, wi > bi,

i = 1, . . . , N.

Proof. It is easy to see that w − mid(a, w, b) = 0 if and only if a 6 w 6 b. Hence, we only need to

prove the equivalence between (3.2) and the first equality in (3.3).

Assume (3.2) holds. Since Y0,1(x) is a spherical harmonic of degree 0,
∫

S2
Y0,1(x)

2dω(x) = 1 and
∫

S2
dω(x) = 4π, we have Y0,1(x) ≡ 1/

√
4π and

N
∑

i=1

wiY0,1(xi) =

∫

S2

Y0,1(x)dω(x) = Y0,1(x)

∫

S2

dω(x) =
√
4π.



1008 Chen X J et al. Sci China Math May 2016 Vol. 59 No. 5

Moreover, from that {Yℓ,k, k = 1, . . . , 2ℓ+1, ℓ = 0, . . . , t} is a set of L2-orthonormal basis functions of Pt,

we obtain
N
∑

i=1

wiYℓ,k(xi) =

∫

S2

Yℓ,k(x)dω(x) =
√
4π

∫

S2

Yℓ,k(x)Y0,1(x)dω(x) = 0

for k = 1, . . . , 2ℓ+ 1, and 1 6 ℓ 6 t. This implies the first equality in (3.3).

Now we assume that the first equality in (3.3) holds. Then we obtain that

N
∑

i=1

wiY0,1(xi) =
√
4π =

∫

S2

Y0,1(x)dω(x),

and
N
∑

i=1

wiYℓ,k(xi) = 0 =

∫

S2

Yℓ,k(x)dω(x), for ℓ = 1, . . . , t, k = 1, . . . , 2ℓ+ 1.

Moreover, for any p ∈ Pt, there exists a unique group of numbers pℓ,k satisfying

p =
t
∑

ℓ=0

2l+1
∑

k=1

pℓ,kYℓ,k.

Hence, (3.2) is derived as the following:

∫

S2

p(x)dω(x) =

t
∑

ℓ=0

2ℓ+1
∑

k=1

pℓ,k

∫

S2

Yℓ,k(x)dω(x)

=
t
∑

ℓ=0

2ℓ+1
∑

k=1

pℓ,k

N
∑

i=1

wiYℓ,k(xi)

=

N
∑

i=1

wi

t
∑

ℓ=0

2ℓ+1
∑

k=1

pℓ,kYℓ,k(xi) =

N
∑

i=1

wip(xi).

We represent the points xi ∈ S
2 using spherical coordinates with angles θi, ϕi. Since (3.3) is rotationally

invariant with respect to Xǫ
N , we fix x1 at the north pole and x2 on the zero meridian as [12],

x1 =









0

0

1









, x2 =









sin(θ2)

0

cos(θ2)









, xi =









sin(θi) cos(ϕi)

sin(θi) sin(ϕi)

cos(θi)









, i = 3, . . . , N.

Let xθ = (θ2, . . . , θN)T, xϕ = (ϕ3, . . . , ϕN )T, x = (xT
θ , x

T
ϕ , w

T)T ∈ R
3N−3 and

r(x) =

(

rI1 (x)

rI2 (w)

)

=

(

Y
T(xθ, xϕ)w −

√
4πe0

w −mid(a, w, b)

)

. (3.4)

A solution of r(x) = 0 defines a spherical tǫ-design. To use the STRF algorithm, we need a smoothing

function r̃ of r and the Jacobian of r̃. Since rI1 : R3N−3 → R
(t+1)2 is continuously differentiable, we only

define a smoothing function of rI2 : RN → R
N as follows:

(r̃I2 (w, µ))i =











































wi − ai, wi < ai − µ,

wi −
1

4µ
(wi − ai)

2 − 1

2
(wi − ai)−

µ

4
− ai, ai − µ < wi < ai + µ,

0, ai + µ 6 wi 6 bi − µ,

wi +
1

4µ
(wi − bi)

2 − 1

2
(wi − bi) +

µ

4
− bi, bi − µ < wi < bi + µ,

wi − bi, wi > bi + µ.
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It is easy to verify that

|r̃i(x, µ)− ri(x)| 6
µ

4
, i = 1, . . . , N.

Hence the smoothing function r̃ satisfies condition (2.3). Moreover, the function rI2 is Lipschitz continuous

and regular, which implies the smoothing function r̃I2 satisfies the gradient consistency. Since ‖rI2‖2
is continuously differentiable and has bounded level sets, the objective function f(x) = 1

2‖r(x)‖2 is

continuously differentiable and has bounded level sets. Hence all conditions on r and f in the last section

hold. It is worth noting that r is not differentiable, we cannot have a simple and explicit derivative of f .

Using the smoothing function r̃, we have

∇f̃(x, µ) = ∇xr̃(x, µ)
Tr̃(x).

Thus we can easily construct the quadratic function (2.4) and compute the minimizer dk.

The function f is nonconvex with many stationary points. It is hard to find a global minimizer of f

by using most existing methods. We use this example to test the STRF algorithm and compare it with

the smoothing trust region (STR) algorithm [10] and fmincon, lsqnonlin, fsolve codes in Matlab. To

guarantee the fairness of the comparison, we use same paramete in the STR algorithm and the STRF

algorithm, and same initial points for all algorithms and codes.

First we generate N points distributed evenly on the whole sphere. The points are generated by

“The recursive zonal equal area (EQ) sphere partitioning toolbox” proposed by Leopardi, which could

be downloaded from http://sourceforge.net/projects/eqsp/. Next, we add a small random perturbation

on the points to create more initial point sets with the same cardinalities. All the perturbation obeys a

uniform distribution with expectation as 0.1. We choose initial weights w0
i = 4π

N
, i = 1, . . . , N.

In Table 1, we show numerical results for finding spherical t0.1-designs with different t and N points

on the sphere. The final value of the objective function f(x) and the CPU time (CPUtime) are reported

in the table. Compared with other methods, the STRF algorithm can find a good numerical global

minimizer efficiently.

Note that there is no theoretical result which proves the existence of a spherical t-design with N 6

(t + 1)2 points for arbitrary t. In [9], using a computational algorithm based on interval arithmetic,

Chen et al. proved the existence of a spherical t-design with N = (t + 1)2 points on the unit sphere

S
2 ⊂ R

3 for t = 1, 2, . . . , 100. In [27], Sloan and Womersley conjectured the existence of a spherical

t-design with N = ⌈(t+1)2/2⌉+1 points on the unit sphere S2 ⊂ R
3 for some small t, where ⌈·⌉ denotes

rounding up to the nearest integer. We believe that with the flexibility of choice for the weights, the

number of points for a spherical tǫ-design can be less than (t + 1)2/2. To see the minimum number

of points for a spherical tǫ-design, we solve the least squares problem with r(x) defined in (3.4) for

⌈(t+1)2/3⌉+1 6 N 6 ⌈(t+2)2/2⌉+1 with different ǫ and t. Figure 1 shows the minimal values N such

that f(xk) 6 10−10 with t = 21, 25 and ǫ = 10−α, α = 0.5 + i × 0.1, i = 0, 1, . . . , 11. From Figure 1, we

see that the bigger value of ǫ we choose, the smaller number of points for a spherical tǫ-design we need.

Table 1 Values of r(x) (CPU time) for spherical tǫ-design with ǫ = 0.1

t, N fmincon lsqnonlin fsolve STR STRF

4, 12 1.41e−07 (1.390) 1.91e−05 (0.281) 3.28e−15 (0.185) 2.64e−03 (1.940) 7.78e−11 (0.038)

9, 45 8.54e−07 (10.100) 2.00e−04 (2.290) 3.96e−06 (1.890) 6.81e−03 (6.260) 9.39e−11 (0.350)

12, 80 1.16e−06 (52.500) 3.19e−04 (13.800) 3.95e−06 (15.800) 1.01e−02 (12.100) 7.12e−11 (0.888)

14, 105 1.61e−06 (107.000) 4.99e−03 (66.100) 3.68e−06 (46.800) 1.06e−03 (22.300) 9.68e−11 (2.070)

19, 190 7.66e−06 (492.000) 1.1e−02 (189.000) 2.78e−07 (207.000) 3.06e−04 (70.500) 9.79e−11 (12.100)

21, 235 1.91e−06 (856.000) 1.18e−04 (193.000) 3.98e−08 (310.000) 1.89e−03 (115.000) 9.35e−11 (98.000)

24, 305 2.30e−05 (2064.000) 6.13e−04 (382.000) 8.66e−07 (689.000) 1.56e−03 (220.000) 9.05e−11 (36.000)
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Figure 1 Possible minimal number N of points for spherical tǫ-designs

Example 3. Differential variational inequalities (DVI).

Given a ∈ R
ℓ ∪ {−∞}ℓ and b ∈ R

ℓ ∪ {+∞}ℓ, A ∈ R
ν×ν , B ∈ R

ν×ℓ, c(t) ∈ R
ν and a continuously

differentiable function F : Rℓ × R
ν → R

ℓ, we consider the following DVI:














ẋ(t) = Ax(t) +By(t) + c(t), t ∈ [0, T ],

y(t) ∈ SOL(x(t)), t ∈ [0, T ],

x(0) = x0 ∈ R
ν ,

(3.5)

where SOL(x(t)) is the solution set of the variational inequality, which contains y(t) ∈ [a, b] such that

(v − y(t))TF (y(t), x(t)) > 0, for all v ∈ [a, b].

It is easy to verify that y(t) ∈SOL(x(t)) if and only if

r(y(t)) = y(t)−mid(a, y(t)− F (y(t), x(t)), b) = 0. (3.6)

For a fixed t and x(t), f(y(t)) = 1
2‖r(y(t))‖2 is a nonsmooth nonconvex function. We can use the

smoothing function of the “mid” function in Example 2 to define a smoothing function r̃(y(t), µ) of

r(y(t)), and a smoothing function f̃(y(t), µ) of f(y(t)).

The time-stepping method [26] with the STRF algorithm for solving the DVI begins with the division

of the time interval [0, T ] into Nh subintervals

0 = th,0 < th,1 < · · · < th,Nh
= T,

where th,i+1 − th,i = h = T/Nh, i = 0, . . . , Nh − 1. Starting from a given vector xh,0 = x0 ∈ R
ν , we

compute yh,0 ∈ SOL(xh,0) by the STRF algorithm and two finite families of vectors

{xh,1, xh,2, . . . , xh,Nh} ⊂ R
ν and {yh,1, yh,2, . . . , yh,Nh} ⊂ R

ℓ

by the recursion: for i = 0, 1, . . . , Nh − 1,

xh,i+1 = xh,i + h{A(θxh,i + (1− θ)xh,i+1) +Byh,i+1 + c(th,i+1)},
yh,i+1 ∈ SOL(xh,i+1),

(3.7)

where θ ∈ [0, 1] is a scalar.

When SOL(xh,i+1) contains multiple solutions, especially it is unbounded, choosing a least norm

solution is necessary for the convergence [14, 23]. The following is a least norm time-stepping method,

xh,i+1 = xh,i + h{A(θxh,i + (1− θ)xh,i+1) +Byh,i+1 + c(th,i+1)},
yh,i+1 = argmin{‖y‖ | y ∈ SOL(xh,i+1)}.

(3.8)
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Using the residual function (3.6), the minimization problem in (3.8) can be equivalently written as

yh,i+1 = argmin{‖y‖ | r(y) = 0}.

This is a mathematical programming with equilibrium constraints [24]. The usual mathematical pro-

gramming constraint qualification such as Mangasarian-Fromovitz constraint qualification does not hold

at any feasible solution [24]. To find a stable solution yh,i+1, we use the STRF method to solve

min
y

‖r(y)‖2 + λk‖y‖2 (3.9)

for some positive numbers λk > 0 and λk is gradually reduced to zero.

In the numerical experiments, we consider a nonlinear complementarity system, which is a special case

of the DVI with [a, b] = R
n
+, and F (x(t), y(t)) = G(y(t)) + q(x(t)). The solution set of the nonlinear

complementarity subproblem, denoted as SOL(x(t)), contains y(t) ∈ R
ℓ such that

y(t) > 0, F (x(t), y(t)) = G(y(t)) + q(x(t)) > 0 and yT(t)F (x(t), y(t)) = 0,

where G(·) : R
ℓ → R

ℓ is a nonlinear continuously differentiable function. It is easy to verify that

y(t) ∈ SOL(x(t)) if and only if

r(y(t)) = y(t)−max(0, y(t)− F (x(t))) = 0. (3.10)

Taking ai = 0 and bi = {+∞} in the smoothing function of the “mid” function in Example 2, we can

define a smoothing function r̃(y(t), µ) of r(y(t)) as follows:

r̃i(y(t)) =







ri(y(t)), |y(t)− F (x(t))| > µ,

yi(t)−
1

4µ
(yi(t)− Fi(x(t)))

2 − 1

2
(yi(t)− Fi(x(t))) −

µ

4
, otherwise.

In the numerical experiments, we set T = 2, ℓ = 7, θ = 0, A = ( 2 −2
1 −1 ), B = 1

10ℓ (
eT

eT
), c(t) =

(8 sin(20πt), 8 cos(20πt))T, G(y(t)) = ΛTH(y(t)) and q(x(t)) = ΛT(Qx(t) − 5e) with

Λ =



































0 −1 0 0 0 0 1

0 0 0 1 0 1 −1

1 1 0 1 −1 0 1

0 0 −1 0 0 1 0

0 −1 0 −1 1 −1 −1

1 0 −1 0 0 0 0

1 0 0 −1 0 0 0

1 0 −1 1 0 −1 0



































, Hi(y(t)) = 1 + 0.1

(

(Λy(t))i
5

)3

,

for i = 1, . . . , 8, and Q = (e, e). Such function F can be found from a multi-commodity formulation for

the traffic assignment based on Wardrop equilibrium [19].

The solution set SOL(x(t)) of this problem is unbounded, for any t ∈ [0, T ]. To see it, suppose that

y∗t ∈ SOL(x(t)). Note that rank(Λ) = 6 and Λy0 = 0 with y0 = (1, 2, 1, 1, 6, 1, 2)T > 0. Thus for any

δ > 0, we have y∗t + δy0 > y∗t > 0,

F (x(t), y∗t + δy0) = ΛTH(y∗t + δy0) + q(x(t)) = ΛTH(y∗t ) + q(x(t)) = F (x(t), y∗t ) > 0,

and

(y∗t + δy0)
TF (x(t), y∗t + δy0) = (y∗t )

TF (x(t), y∗t ) + δyT0 F (x(t), y∗t )

= δyT0 F (x(t), y∗t ) = δyT0 Λ
TH(y∗t ) + δyT0 Λ

T(Qx(t)− 5e) = 0.
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Hence y∗t + δy0 is a solution for any δ > 0, and ‖y∗t + δy0‖ > δ → ∞ as δ → ∞.

To find a stable solution y(t) of the DVI (3.5), we solve the regularized problem (3.9) at each step of

the STRF algorithm with λk = 0.5k.

Let x(0) = (1, 1)T and we select different time step sizes as h = 1/20, 1/100, 1/500. For each time

step th,i+1, i = 0, . . . , Nh − 1, we solve the least squares problem for y(th,i+1) by solving (3.5) with

r(y) = min{y , G(y) + ΛTQ(I − hA)−1(xh,i + hBy + hc(th,i+1))− 5ΛTe}

using the STRF algorithm with the initial vector yh,i.

Figure 2 shows the numerical results of solving (3.5) by using time-stepping method with the STRF

algorithm as the inner solver for the nonlinear complementarity subproblem with the three different time

step sizes. Figures 2(a) and 2(b) are the shapes of x(t) obtained with different time steps h. Figure 2(c)

shows the changes of ‖y(t)‖ with different time steps h. We also use the Matlab solvers “fsolve”, “fminunc”

and “lsqnonlin” to solve (3.5) with h = 1/500 and report the residuals ‖r(y)‖ in Figure 2(d). For the

convenience of plotting the figure, we let the residuals equal to 10−10 when the value of the residual is

smaller than 10−10. Seen from Figures 2(c) and 2(d), ‖y(t)‖ stays bounded in each time step, and the

residuals obtained by the STRF algorithm can reach down to 10−10 for i = −1, . . . , Nh − 1, which means

that it succeeds in finding global minimizers of (3.5) at all time steps. In contrast, Figure 2(d) also shows

that we can not get r(y) small enough at all the steps by using the three Matlab solvers as the inner

solver of the time-stepping method. Compared with those solvers, the STRF algorithm is more suitable

and efficient to solve the DVI as an inner solver.
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Figure 2 Solve the DVI by using the time-stepping method with the STRF algorithm
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4 Conclusions

In this paper, we proposed the STRF algorithm for solving nonsmooth nonconvex least squares problems,

and proved that the STRF algorithm converges to a Clarke stationary point or a global minimizer of the

objective function under certain conditions. Moreover, we showed that the STRF algorithm is efficient

in finding spherical tǫ-designs and solutions of differential variational inequalities. How to improve the

conditions for finding a global minimizer by the STRF algorithm is worth studying in the future.
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