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Research and action on climate change (RACC) represent a complex global challenge that requires a sys-
tematic and multi-dimensional approach. Although progress has been made, persistent limitations in 
data processing, modeling, and scenario evaluation continue to hinder further advances. Artificial 
Intelligence (AI) is emerging as a powerful tool to address these challenges by integrating diverse data 
sources, enhancing predictive modeling, and supporting evidence-based decision-making. Its capacity 
to manage large datasets and facilitate knowledge sharing has already made meaningful contributions 
to climate research and action. This paper introduces the RACC theoretical framework, developed through 
a systematic integration of the research paradigms of the three IPCC Working Groups (WGI, WGII, and 
WGIII). The RACC framework provides a comprehensive structure encompassing four key stages: data 
collection, scenario simulation, pathway planning, and action implementation. It also proposes a stan-
dardized approach for embedding AI across the climate governance cycle, including areas such as climate 
modeling, scenario development, policy design, and action execution. Additionally, the paper identifies 
major challenges in applying AI to climate issues, including ethical concerns, environmental costs, and 
uncertainties in complex systems. By analyzing AI-supported pathways for mitigation and adaptation, 
the study reveals significant gaps between current practices and long-term objectives—especially regard-
ing content, intelligence levels, and governance structures. Finally, it proposes strategic priorities to help 
realize AI’s full potential in advancing global climate action. 
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, 

including those for text and data mining, AI training, and similar technologies. 
1. Introduction 

Climate change is one of the most critical global challenges, 
posing serious threats to natural ecosystems and sustainable 
socio-economic development. The effects of global warming are 
becoming increasingly evident, with the Earth’s average surface 
temperature having risen by approximately 1.1 °C since the pre-
industrial era. This warming has been accompanied by rising sea 
levels, shrinking glaciers and ice caps, and more frequent and 
intense extreme weather events [1]. These changes have profound 
and far-reaching impacts on biodiversity, food security, water 
resources, and human health, highlighting the urgency of address-
ing climate change [2]. 

The global community recognizes the need for immediate and 
coordinated efforts to mitigate and adapt to climate change. How-
ever, effectively tackling this crisis requires more than high-level 
agreements—it demands advanced tools and methods to uncover 
the underlying mechanisms of climate change, project future sce-
narios, design effective response strategies, and turn planning into 
concrete actions. This comprehensive and systematic process—in-
cluding scientific research, policymaking, and implementation—is 
hindered by key challenges such as limited data availability, fore-
cast uncertainty, and the complexity of decision-making.
ing, and 
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Artificial Intelligence (AI) refers to the ability of computer sys-
tems to perform tasks that typically require human intelligence, 
enabled by technologies such as Machine Learning (ML), which 
extracts patterns from data; Deep Learning (DL), which identifies 
complex and hidden relationships; Natural Language Processing 
(NLP), which interprets and generates text; and Computer Vision 
(CV), which analyzes images and videos [3]. These capabilities 
position AI as an emerging and powerful tool in climate change 
research. 

A notable example is Google’s ‘‘Flood Hub” early warning sys-
tem, which uses CV for accurate flood mapping and ML with 
LSTM-based dynamic models to deliver reliable flood forecasts up 
to five days in advance [4]. In carbon monitoring, AI is driving sig-
nificant advances: DL applied to drone and satellite data enables 
tree-level carbon stock estimation [5], while the integration of 
GONGGA’s atmospheric inversion with two AI-enhanced dynamic 
global vegetation models greatly improves the accuracy of carbon 
sink predictions, allowing for near real-time global carbon budget 
tracking [6]. These developments mark a shift from static assess-
ments to dynamic, intelligent monitoring—offering new technical 
support for climate governance and advancing global climate 
action [7]. 

This paper reviews current applications of AI across the 
research and action process on climate change (RACC) and identi-
fies key challenges facing the field. It examines how AI technolo-
gies are being integrated into climate science, assessing both their 
potential benefits and possible drawbacks, including ethical 
concerns and the environmental footprint of large-scale AI 
deployments. Looking ahead, the paper outlines emerging AI 
applications in areas such as scientific discovery, climate impact 
assessments, and the development of adaptation and mitigation 
strategies. By analyzing trends at the intersection of AI and cli-
mate science, this study aims to contribute to innovative 
approaches that support more effective and timely responses to 
the climate crisis. 
2. Framework for responding to climate change 

2.1. General process 

The Intergovernmental Panel on Climate Change (IPCC) plays a 
central role in synthesizing and presenting the latest scientific 
knowledge on climate change at the global level [8]. Fig. 1 illus-
trates the structure and content of IPCC reports and the underlying 
logic that connects them. Working Group I (WGI) focuses on the 
physical science basis of climate change, providing the scientific 
foundation for Working Group II (WGII), which addresses impacts, 
adaptation, and vulnerability, and for Working Group III (WGIII), 
which focuses on mitigation. For example, estimating the remain-
ing carbon budget depends on understanding climate sensitivity 
[9], while projecting future climate impacts requires advanced 
models that simulate the Earth system [10]. 

The IPCC’s scenario analysis framework integrates the work of 
all three groups by combining physical science, impact assess-
ments, and mitigation strategies into coordinated evaluations of 
climate risks and response options [1,10]. In this process, emissions 
scenarios are developed under different socio-economic drivers 
using Integrated Assessment Models (IAMs) (WGIII), then input 
into climate models to generate projections of future climate 
change (WGI). These projections are subsequently applied in 
impact assessment models to evaluate risks, vulnerability, and 
adaptation needs (WGII) [1,8]. Through this interconnected pro-
cess, the IPCC provides a comprehensive view of climate change 
and identifies actionable pathways for global mitigation and 
adaptation. 
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Over the past two decades, we have been actively involved in 
core research across all three IPCC Working Groups. Building on 
this experience, we developed the RACC framework (Fig. 2) by sys-
tematically integrating the research paradigms of WGI, WGII, and 
WGIII. The RACC framework makes two main contributions: 

(1) Harmonization of IPCC research frameworks: By creating a 
unified structure that links climate observation, adaptation, and 
mitigation research and actions, RACC identifies critical challenges 
in climate change research from a process-oriented perspective. 

(2) Standardized AI-climate research interface: RACC maps the 
application of AI technologies across four critical stages—data col-
lection, modeling and forecasting, pathway assessment, and action 
implementation—supporting the standardization of this emerging 
interdisciplinary field. 

The RACC framework comprises four main phases: 
(1) Data collection and status analysis: This phase involves 

compiling historical climate data, emissions inventories, and 
socio-economic indicators to analyze the current state of the cli-
mate system and its driving forces. 

(2) Scenario analysis and modeling forecasts: Here, various cli-
mate scenarios are generated and evaluated using predictive mod-
els to project climate futures under different mitigation and 
adaptation strategies, providing a scientific basis for policy 
development. 

(3) Pathway assessment and planning: Based on modeled sce-
narios, this phase assesses potential response strategies, evaluates 
their feasibility, and develops action plans aligned with specific cli-
mate goals. 

(4) Action implementation and monitoring: This final phase 
focuses on executing selected strategies and continuously moni-
toring progress, allowing for timely adjustments based on emis-
sions reductions or adaptation outcomes. 

2.2. Challenges and opportunities 

The RACC framework offers a structured approach for guiding 
research and actions related to climate change. However, the com-
plexity of climate systems and decision-making processes presents 
significant barriers [11]. This study identifies four key challenges 
within the RACC framework (Fig. 2): 

(1) Scarcity of data resources: Data quality and availability are 
foundational to climate research. Meteorological data often suffer 
from sparse station networks and incomplete historical records, 
while socio-economic data are hindered by inconsistent statistical 
practices and low spatial–temporal resolution. These limitations 
reduce the accuracy of climate risk assessments and weaken the 
policy basis for emissions accounting and adaptation planning [12]. 

(2) Uncertainties in future projections: These arise from three 
main sources: [13]. 

(i) Model limitations: Climate models rely on simplified param-
eterizations that introduce systematic biases [14]. 

(ii) Downscaling deficiencies: Translating global model outputs to 
regional scales can amplify errors due to methodological imperfec-
tions [15,16]. 

Scenario uncertainties: Non-climatic factors such as future socio-
economic developments are difficult to quantify, leading to large 
variability in emissions scenarios [8]. These compounded uncer-
tainties affect the reliability of future climate projections. 

(3) Complexities in assessment and decision-making: Climate 
pathway evaluations must consider not only costs and benefits 
but also broader socio-economic and environmental dimensions 
[17]. Yet key indicators—such as technological change and policy 
implementation costs—are difficult to quantify. Moreover, Inte-
grated Assessment Models (IAMs) are computationally demanding, 
and their outputs are sensitive to initial assumptions. Traditional 
optimization methods often struggle to balance multiple objectives
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Fig. 1. Scope and framework of climate change research based on IPCC reports: key components of mitigation, adaptation, and the physical science basis. 

Fig. 2. Framework and challenges of research and action on climate change (RACC): key steps in mitigation, adaptation, and decision-making, highlighting current gaps and 
opportunities for improvement. 
under complex constraints, limiting their usefulness for policy 
evaluation. 

(4) Challenges in implementation and monitoring: Practical cli-
mate action often faces vague mandates, unclear responsibilities, 
and weak incentives, undermining coordination and effectiveness 
[18]. After implementation, limited real-time monitoring and inad-
equate data prevent timely evaluations and adaptive management. 
Poor data sharing and transparency across regions and sectors fur-
ther exacerbate these problems. Information asymmetries and 
accumulated errors in monitoring also impair strategy refinement. 

At its core, the challenge for RACC lies in the data constraints of 
climate governance. Inadequate or low-quality data hinder model 
accuracy and predictive power, leading to biased assessments of 
mitigation and adaptation options, and ultimately delaying effec-
tive action. Addressing these challenges will require next-
generation technological systems that can enhance the scientific 
foundation of climate research and governance. 
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3. Application of AI in RACC 

AI, first introduced in 1956, is a field of science and technology 
focused on enabling computers to simulate and perform tasks typ-
ically associated with human intelligence [19]. By the mid-1980s, 
AI technologies were already being applied in basic climate 
research, helping to analyze complex systems and predict environ-
mental patterns. In the current era—characterized by rapid 
advances in parallel computing, big data, and ML—the potential 
for AI in climate research and governance has expanded 
significantly. 

Pioneering studies have explored the diverse connections 
between AI and climate change. AI is now seen as a key tool for 
reducing emissions in major sectors such as construction, trans-
portation, energy, and manufacturing [3], as well as for improving 
climate adaptation strategies [20]. Reviews of AI applications in 
climate-related research highlight its capacity to support better
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understanding and more effective responses to climate challenges 
[21]. However, most of these studies focus on specific domains, and 
a comprehensive review of AI’s role across the full climate change 
research process remains lacking. 

Drawing on the RACC framework and AI’s diverse capabilities, 
this study aims to categorize and synthesize current research on 
AI applications in climate action (Fig. 3). We examine how AI is 
integrated into various stages of the RACC framework—data 
collection and analysis, scenario modeling, pathway assessment, 
and progress monitoring—highlighting its role in improving the 
accuracy, efficiency, and scalability of climate research and 
response. 

3.1. Accelerating data collection and basic science research 

Traditional climate research has long been constrained by lim-
ited data availability and uneven data quality. AI, with its advanced 
data processing capabilities, can automatically extract valuable 
insights from large, heterogeneous datasets. This ability has driven 
transformative developments in many areas of climate science. 

AI’s strength in geosciences spans three major areas: 
(1) Structured data processing: AI enables efficient classifica-

tion and feature extraction from observational records, satellite 
imagery, and reanalysis datasets. This improves the accuracy of cli-
mate monitoring and early warning systems [22,23], and supports 
ongoing tracking and management of greenhouse gas emissions 
[24]. For example, computer vision techniques can analyze satellite 
images in real-time to monitor glacial retreat [25] or detect urban 
emission hotspots, thereby integrating pollution and carbon man-
agement [26]. 

(2) Unstructured data mining: Natural language processing 
(NLP) enables AI to extract climate-relevant information from 
reports, policy documents, and even social media [27]. This inte-
gration of diverse information sources supports the development 
of more comprehensive climate impact assessments [28,29]. 

(3) Improving data quality: ML and DL methods offer innova-
tive solutions for filling spatial and temporal gaps in datasets. They 
can interpolate variables such as temperature and precipitation 
[30], and DL-based image restoration has been shown to outper-
form traditional kriging or PCA-based methods in reconstructing 
missing climate data [31]. 

In addition to efficient data handling, AI contributes to scientific 
understanding by uncovering complex interactions within climate 
systems [22]. For instance, a new AI-powered multiscale model for 
drought prediction not only achieves high accuracy but also reveals 
nonlinear links between sea surface temperature anomalies and 
regional droughts [32]. Another study developed a Koopman neu-
ral operator (KNO), which recasts nonlinear partial differential 
equations (PDEs) as linear problems, improving both accuracy 
and computational efficiency [33]. 
Fig. 3. Applications of AI in climate change research: AI’s role in enhancing cl
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Despite these strengths, AI’s effectiveness in data collection and 
analysis still depends on the quality of traditional observational 
infrastructure. In regions with sparse observations—such as remote 
or low-income areas—AI models may face significant limitations. 

3.2. Improving model performance and scenario prediction 

Uncertainty in future climate projections stems from model 
limitations, coarse spatial resolutions, and uncertain scenario 
assumptions. AI offers promising ways to reduce these uncertain-
ties through better parameterization, improved downscaling, and 
enhanced scenario simulations. 

Climate models are limited by incomplete knowledge of multi-
scale interactions in the climate system. As a result, models rely on 
simplified parameterizations, which reduce simulation reliability 
[14]. AI provides an alternative: instead of relying on predefined 
physical assumptions, it learns multivariate nonlinear relation-
ships from observational and high-resolution simulated data [34– 
36]. This approach has significantly improved the parameterization 
of key processes such as microphysics, convection, and radiative 
transfer [37–39]. 

For downscaling, ML and DL methods use nonlinear mapping to 
transform coarse model outputs into finer-scale projections 
[40,41], improving predictions of temperature and precipitation 
[42,43]. Inspired by image super-resolution (SR) in computer 
vision, AI-based SR methods have also enhanced downscaled cli-
mate projections [44–46]. 

AI-based climate prediction models are a growing field. For 
short- and medium-term forecasting, AI improves accuracy for 
extreme weather events [47], while also supporting sub-seasonal 
to inter-decadal predictions [23,48]. For emission scenarios, AI 
can both analyze drivers (e.g., economic, environmental, urban 
trends) [49–51] and directly model emissions within specific sec-
tors, offering more targeted and reliable scenario planning [52,53]. 

While AI improves model performance, it must be guided by 
strong physical and socioeconomic foundations. AI-driven climate 
models should be constrained by conservation laws and climate 
process knowledge. Similarly, scenario forecasting must account 
for economic and policy dynamics to avoid misleading 
extrapolations. 

3.3. Upgrading assessment methods and decision planning 

Effective climate strategies depend on sound assessments of mit-
igation and adaptation pathways. AI supports this process by 
improving data acquisition, optimizing integrated assessment mod-
els (IAMs), and enhancing multi-objective decision-making [54]. 

AI facilitates accurate emissions estimates [26], real-time 
energy tracking [55], and identification of climate-vulnerable 
infrastructure [56], helping governments assess costs and benefits
imate data collection, modeling, decision-making, and action monitoring. 
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of potential climate strategies. NLP also helps extract climate 
action data from policy texts and news [57,58], supporting evalua-
tion of instruments such as carbon pricing. 

IAMs, which involve complex systems and large parameter 
spaces, benefit from AI in several ways. AI can improve spatial res-
olution compatibility across IAM modules using downscaling 
methods already tested in agriculture, wind speed, and land tem-
perature studies [59–61]. For computational efficiency, a deep-
learning emulator of GCAM (a leading IAM) can simulate scenarios 
100 times faster while maintaining over 95% accuracy, dramati-
cally reducing simulation costs [62]. AI also improves sensitivity 
analysis and uncertainty quantification, making IAMs more trans-
parent and robust [63]. 

For selecting optimal pathways, AI enhances existing algo-
rithms (e.g., particle swarm optimization, genetic algorithms) used 
by policymakers to balance objectives such as emission reduction, 
cost, and infrastructure protection [64,65]. These techniques have 
been successfully applied in energy management [66], infrastruc-
ture planning [67], and industrial processes [68]. Recent studies 
even combine AI with agent-based search to solve complex opti-
mization problems more efficiently [69]. 

Despite these advancements, challenges remain. Climate plan-
ning depends on large volumes of socioeconomic data, often frag-
mented across sectors and institutions. This fragmentation, along 
with concerns over privacy, limits AI’s full potential in unified 
decision-making. 

3.4. Optimizing implementation and monitoring 

Successful climate action depends on adaptive implementation 
and real-time monitoring. AI can analyze regional development 
stages, resources, and climate policies to support more equitable 
and efficient resource allocation [70]. Dynamic models informed 
by real-time data allow for coordinated planning between govern-
ments and sectors [71,72]. 

This allows governments and sectors to collaborate more effec-
tively, ensuring that resources are distributed based on actual 
needs and climate goals. By optimizing resource allocation, AI 
can improve resource utilization efficiency, reduce coordination 
barriers between sectors, leading to more unified and cohesive cli-
mate strategies. 

AI also helps promote climate action. It can guide technology 
deployment (e.g., renewables) [74], support innovation in low-
carbon solutions [73], and enhance public engagement through 
tools like personal carbon footprint calculators [75] and personal-
ized learning systems [76]. 

However, fragmented data across countries and sectors remains 
a serious barrier. In areas with poor infrastructure, AI systems 
underperform, resulting in biased assessments and weak gover-
nance strategies. To address this, AI can support the development 
of cross-border and cross-sector data-sharing platforms. When 
combined with blockchain, such platforms ensure transparent, 
secure, and tamper-proof climate monitoring [77,78]. 

After actions are taken, AI tools can validate policy effectiveness 
using ML [79], analyze public sentiment with NLP [80], and moni-
tor environmental outcomes using satellite imagery [81–84]. These 
tools allow for evidence-based adjustments and continual refine-
ment of strategies. 
4. Challenges and risks associated with AI 

While AI has proven to be a powerful tool for improving data 
collection, scenario analysis, modeling, and pathway assessment 
in climate change research, it also introduces several significant 
challenges and risks (Fig. 4) that could limit or offset its benefits 
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Model interpretability. Trust in AI depends on model trans-
parency. Many AI models, especially deep learning systems,
are often described as ‘‘black boxes” due to their opaque
decision-making processes. This lack of interpretability can
limit scientific acceptance and slow policy uptake. Strategies
to address this include integrating physical constraints into AI
frameworks and providing clearer explanations of model out-
puts, thereby ensuring scientifically valid and comprehensible
results [47].

To address this, both supply-side and demand-side solutions
are needed to reduce AI’s carbon footprint. On the supply side,
energy-efficient chips, green data centers, and optimized algo-
rithms can significantly cut emissions during training and develop-
ment phases [91,92]. On the demand side, strategies like edge
computing, dynamic inference optimization, and model sharing
can help reduce operational energy consumption [93]. However,
the practical adoption of these measures still faces technical, finan-
cial, and institutional barriers.

for climate action. These challenges include technical and ethical 
concerns, the high energy use and carbon footprint of AI systems, 
and uncertainties surrounding their real-world application. 

(1) Technical and ethical risks. 

AI applications in climate change bring both ethical dilemmas 
and technical limitations: 

Data gaps and climate justice. Many developing countries and 
remote regions lack adequate monitoring infrastructure and sta-
tistical systems, leading to large data gaps. This scarcity limits 
the effectiveness of AI-driven climate models and contributes 
to unfair outcomes in climate governance due to algorithmic 
bias. In the spatial dimension, for example, small island develop-
ing states (SIDS) often suffer from underestimated sea-level rise 
risks and economic losses, which can skew the allocation of 
international climate funds [85]. In the social dimension, AI 
models trained on mobile phone data to estimate urban carbon 
emissions may overlook the mobility and energy consumption 
patterns of low-income populations, resulting in biased and 
unjust policy decisions [86]. 

Data sovereignty and privacy. Climate-focused AI relies on 
diverse and often sensitive datasets. Cross-border data sovereignty 
disputes, combined with fragmented domestic data governance, 
can hinder transparency and collaboration [87]. Many of these 
datasets—especially those related to meteorology, disaster early 
warning, energy, and public health—are tied to national security 
and societal stability [88]. At the individual level, smart energy 
monitoring tools in homes, while useful for climate action, can 
expose personal behavioral patterns and raise privacy concerns 
[89]. 

(2) 

The development and deployment of AI demand substantial 
computational resources, leading to high energy use and associ-
ated emissions. In 2023, AI processors consumed an estimated 7– 
11 TWh of electricity—around 0.04% of global electricity use—and 
this figure is expected to rise tenfold by 2027 [90]. In early 2024, 
the World Economic Forum warned that AI development could 
trigger an energy crisis. 

(3) 

Energy consumption and carbon footprint. 

Unintended environmental consequences. 

In addition to direct emissions from AI systems, indirect envi-
ronmental risks may arise: 

Energy efficiency paradox: While AI can increase efficiency in 
high-emission industries, it may also trigger a ‘‘rebound effect.”
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Fig. 4. Challenges, disparities, and future steps in the application of AI to climate change research. 
For instance, AI-assisted oil and gas exploration can lower produc-
tion costs, encouraging more fossil fuel use. Similarly, AI-driven 
livestock management may boost herd sizes due to improved effi-
ciency, inadvertently increasing methane emissions [93,94]; 

Technological lock-in: AI may reinforce existing high-carbon 
development pathways. A prominent example is the deployment 
of autonomous vehicle technologies, which can undermine public 
transportation systems and deepen dependence on private car 
use, rather than supporting low-carbon mobility transitions [95]. 

In conclusion, AI offers major opportunities to support climate 
action—through better data, modeling, and decision-making—but it 
also brings new risks that must be addressed. These include its grow-
ing energy and carbon footprint, the challenges of ensuring fair and 
transparent decision-making, and broader concerns about privacy, 
bias, and environmental rebound effects. Addressing these challenges 
will require advances in energy-efficient AI design, stronger attention 
to equity and data governance, and a focus on interpretability and 
transparency. Only by actively managing these risks can AI contribute 
positively and sustainably to global climate goals. 

5. Summary and outlook 

Climate change remains a critical global challenge, threatening 
economic development and social progress. The rapid growth and 
adoption of AI technologies provide powerful tools to improve cli-
mate research and enhance responses to these threats. This paper 
highlights how AI is being used in key areas of climate research, 
examining its applications, challenges, and inequalities, and offer-
ing insights for guiding its future role (Fig. 4). 

5.1. Summary 

We first proposed an integrated framework for addressing cli-
mate change, based on the IPCC’s three pillars—mitigation, adapta-
2891
tion, and impact assessment—while drawing on insights from 
previous studies. This framework helps identify priority areas for 
research and action, while also pointing to key knowledge and pol-
icy gaps. 

Second, we reviewed the specific applications and emerging 
potential of AI in climate science and governance, mapping its con-
tributions across the proposed framework. We also addressed the 
possible negative impacts of AI, acknowledging that while it offers 
many advantages, it also brings important risks. Our analysis sug-
gests that AI can close many of the existing gaps in climate 
research and decision-making, and has the potential to transform 
how we study and manage climate issues. With its strengths in 
data processing, intelligent analysis, and operational efficiency, AI 
is becoming a key enabler of climate governance. 

However, three major gaps currently limit the effectiveness and 
impact of AI in climate change research: 

(1) Content disparity: Most AI applications are focused on core 
natural sciences and impact assessments, with relatively few 
efforts dedicated to supporting mitigation or adaptation pathways 
and decision-making. Within the RACC framework, while AI per-
forms well in data mining and pattern detection, its role in evalu-
ating concrete pathways or supporting behavioral decision-making 
remains underdeveloped. This area needs urgent attention. 

(2) Intelligence-level disparity: Current applications rely 
mostly on Artificial Narrow Intelligence (ANI), which is effective 
for specific tasks like data classification or feature extraction. How-
ever, Artificial General Intelligence (AGI)—which would be needed 
for complex reasoning and strategic decision-making—remains lar-
gely theoretical. This is due to the lack of major breakthroughs in 
algorithms, theory, and computational infrastructure. 

(3) Governance disparity: Regulatory systems are still catch-
ing up with the pace of AI development. Two key issues are: (i) 
Data governance, where the lack of international data-sharing 
mechanisms and weak privacy protections limit global collabora-
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tion; and (ii) Technical standards, where the absence of energy use 
and carbon emission guidelines for AI development allows 
unchecked computational growth, and where limited algorithm 
transparency undermines trust in AI outputs. 

5.2. Outlook 

To address these challenges and close the existing gaps, we pro-
pose the following directions for future AI development in climate 
research and governance: 

(1) Build shared climate data platforms: Establish an open, 
standardized platform to support high-quality, accurate, and 
privacy-respecting data sharing across borders. International orga-
nizations should work with national governments to create data-
sharing protocols that respect sovereignty. At the same time, uni-
versities, research institutions, and companies can support decen-
tralized systems—such as those based on blockchain—to enhance 
transparency, data protection, and efficiency. 

(2) Develop carbon assessment and disclosure standards for 
AI: A lifecycle-based regulatory framework is needed to assess 
the carbon footprint of AI systems from development through 
deployment. National systems can take inspiration from the EU 
AI Act’s energy efficiency rules, with the long-term goal of creating 
a global framework for monitoring and reducing the emissions 
associated with AI. 

(3) Encourage deeper integration of AI and climate science: 
First, promote explainable AI (XAI) to improve model transparency, 
build trust, and support informed climate decision-making. Sec-
ond, strengthen fundamental theoretical research in climate 
science and develop dual-driven models that combine data-
driven AI approaches with physics-based, theory-driven ones. This 
would enhance ANI’s capacity for data processing and model train-
ing while laying the foundation for future AGI applications, includ-
ing scenario evaluation, mitigation/adaptation planning, and policy 
implementation. 

By following these strategies, we can maximize the positive 
contributions of AI to climate science and action, while minimizing 
the risks. AI has the potential to become a cornerstone of sustain-
able climate governance—if developed and applied responsibly. 
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