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Dear editor,
A fully homomorphic encryption (FHE) allows
us to perform any complex computation on en-
crypted data without decryption. Since the break-
through by Gentry [1], researchers have made
significant efforts to improve the construction
of the FHE schemes. More specifically, because
of well-understood assumptions such as learning
with errors (LWE), the FHE constructions are
now efficient and nearly practical. Concurrently,
these constructions also support rich functional-
ities (e.g., multi-key FHE, hereafter referred as
MFHE). Notably, in [2], the authors introduced
new mathematical techniques such as key and
modulus switching that resulted in highly efficient
leveled FHE schemes. Furthermore, unexpectedly,
these constructions can also be based on the well
understood LWE. Subsequently, numerous at-
tempts have been made to achieve performances
that are orders of magnitude faster than before.
Techniques following the above-mentioned ap-
proach have recently been further improved [3–6].
In [7], the authors demonstrated an MFHE scheme
based on number theory research unit (or NTRU).
Lately, this construction method has been en-
hanced, and in [8, 9], the authors could con-
struct MFHE schemes based on the more standard
LWE assumptions. Subsequently, Mukherjee and
Wichs [9] formulated an important “linear com-
bination procedure” (referred as LCP) that could
offer auxiliary information to a player and assist

him to decrypt the ciphertexts from other play-
ers [9]. Our current efforts are directed along this
approach. In this study, we examine MFHE for
multi-bit messages. As discussed above, we ob-
serve that in the Mukherjee-Wichs scheme (i.e.,
multi-key and single-bit FHE), the core of the
LCP construction is a variant of the “single-key
and multi-bit” FHE scheme that uses the Gentry-
Sahai-Waters (GSW) [3] encryption algorithm to
encrypt each entry of a random matrix (or bit-by-
bit). This apparently introduced an undesirable
overhead. This leads to the following natural ques-
tion:

Is it possible to improve the LCP to develop a
more efficient MFHE scheme for encrypting multi-
bit messages?

In our study, to avoid encrypting each entry of
random matrix R, we improve the “LCP” con-
struction in the Mukherjee-Wichs scheme by en-
crypting random diagonal matrix R directly; this
can be viewed as a variant of multi-bit FHE (re-
ferred as mFHE).

Remark 1. The definition of FHE, related nota-
tions, and analysis of the correctness and security
are provided in Appendices A and B. Here we fo-
cus on the construction of the scheme.

Improved LCP. Mukherjee and Wichs [9] con-
structed a two-round multi-party computation via
the MFHE scheme. However, for encrypting multi-
bits with their scheme, the encryption algorithm
may be required to be repeated numerous times.
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Most notably, we utilize the mFHE scheme1) to
achieve the MFHE scheme for multi-bit messages
(referred as mMFHE). Below we present our “im-
proved LCP” (hereafter referred as iLCP). The
key concept is to use a variant of the mFHE scheme
to improve the original LCP.

iLCP construction. The encryption of random
diagonal matrix R̃ is at the core of the iLCP2). Be-
fore describing our iLCP, we first denote C# and

C& as the ciphertext of Ũ and R̃, respectively.
params← mFHE.Setup(1λ, 1L):
Take parameters λ and L as input. We de-

note χ = χ(λ), n = n(λ), and m = m(λ, L) =
O(n log q), so that the (m,n, q, χ)-LWE assump-
tion achieves at least 2λ security against known
attacks. Subsequently, choose parameter t =
O(log (n)) (as the number of secret keys). Out-
put params=(n, q, χ,m), where ℓ = ⌊log q⌋+ 1.

(pk, sk)← mFHE.KeyGen(params):
(1) Output pk := A = [b1, . . . , bt,B] ∈ Z

m×n
q ,

where bj = Btj + ej (mod q) ∈ Z
m×1
q for com-

mon public matrix B ∈ Z
m×(n−t)
q and secret vec-

tor tj = (tj,1, . . . , tj,n) ∈ Z
(n−t)×1
q .

(2) Output sk := S = [s1, . . . , st] ∈ Z
n×t
q , where

sj = [0, . . . , 1, . . . , 0 | −tTj ]
T ∈ Z

n×1
q for j ∈ [t].

We observe that A · sj = ej and A · S = [e1, . . . ,
et].

C& ← mFHE.Encode(G, R̃):

We first encode random diagonal matrix R̃ ∈
{0, 1}m×m by using gadget matrix G ∈ Z

m×mℓ
q .

This yields the following encoded message: C& :=
R̃ ·G (mod q) ∈ Z

m×mℓ
q .

Ṽ ← mFHE.Extend(pk(i),pk(j)):
(1) We denote the public key and secret key of

an i-th User as pk(i) and sk(i), respectively. We
note that S(i) is the secret key matrix of an i-th

User and s
(i)
j is the j-th row vector of an i-th User,

where i ∈ [N ] and j ∈ [t].
(2) For any two players User1 and User2, we

parse pk(1)= [b
(1)
1 , . . . , b

(1)
t | B], pk(2)= [b

(2)
1 , . . . ,

b
(2)
t | B] over Zm×n

q .

(3) Output connection vector Ṽ = [V | 0] ∈

Z
m×n
q by combining V = [(b

(2)
1 − b

(1)
1 ), (b

(2)
2 −

b
(1)
2 ), . . . , (b

(2)
t − b

(1)
t )] ∈ Z

m×t
q with (m× (n− t))-

dimension 0 together.
X ← mFHE.iLCP(C&, Ṽ):
To obtain auxiliary information X ∈ Z

m×n
q , the

mFHE.iLCP(·) algorithm takes Ṽ and C& as in-
put. Then compute and output the lower dimen-

sional ciphertext3) by using a symmetrical encryp-
tion.

X = mFHE.iLCP(C&, Ṽ) = A+C& · G̃
−1(Ṽ)

= A+ R̃ · Ṽ (mod q) ∈ Z
m×n
q .

mFHE.Decode(sk,X):
Compute and output

S
T · (A+ R̃ · Ṽ)T = S

TṼT · R̃+AS

= VT · R̃+ [e1, . . . , et] (mod q) ∈ Z
t×m
q .

The security and correctness of the iLCP are
proved by the following lemmas.

Lemma 1 (Correctness). If we set the noise of
X under secret key S by T := [e1, . . . , et], then
the bound of T is ‖[e1, . . . , et]‖ 6 t · ‖e‖ < t · E.

Lemma 2 (Security). If the LWE assumption is
hard, then the iLCP is IND-CPA-secure.

Take note that the detailed analysis of the cor-
rectness and security is provided in Appendix D.

Construction of mMFHE via iLCP. Below we
describe our mMFHE construction by the iLCP4).

params← mMFHE.Setup(1λ, 1L): Identical to
the algorithm of mFHE.Setup(1λ, 1L).

(pk, sk) ← mMFHE.KeyGen(params): Identi-
cal to the algorithm of mFHE.KeyGen(params).

(C#)← mMFHE.Enc(pk,Ũ):
(1) To encrypt t bits ui ∈ {0, 1} for i ∈ [t],

we first embed these t bits into message matrix
U = diag(µ1, . . . , µt) ∈ Z

t×t
q , and then create the

plaintext matrix as follows:

M =

(
Ut×t 0t×(n−t)

0(n−t)×t E(n−t)×(n−t)

)
∈ {0, 1}n×n,

where matrix E = diag(1, . . . , 1) ∈
{0, 1}(n−t)×(n−t) is the identity matrix. Concur-

rently, Ũ and E are also the two partitioned
matrices of plaintext matrix M .

(2) Sample uniform matrix R̃ ← {0, 1}m×m,

then compute and write C = M · G̃ + AT · R̃
(mod q) ∈ Z

n×m
q , where G̃ ∈ Z

n×m
q .

Ĉ←mMFHE.Expand((pk(1), . . . , pk(N)),i,C#):
(1) For j ∈ {pk(1), . . . , pk(N)} \ {i}, com-

pute Ṽ ← mFHE.Extend(pk(i), pk(j)) and obtain

X
(j) ← mFHE.iLCP(C&, Ṽ).

(2) Then define matrix Ĉ ∈ Z
nN×mN
q as a con-

catenation of N2 sub-matrix Ca,b ∈ Z
n×m
q for any

a, b ∈ [N ] that is defined as

1) The construction of the mFHE scheme can be found in Appendix C.
2) We note that the concept of the “Improved GSW Masking Scheme” in [9] is not required in our scheme.

3) The iLCP algorithm can reduce the dimension of a ciphertext via the function G̃−1, (i.e., from Z
n×m to Z

m×n).
4) Note that the Extend(·) and UniEnc(·) algorithms in the MFHE scheme of Mukherjee and Wichs [9] are not used in

our mMFHE.

 https://engine.scichina.com/doi/10.1007/s11432-017-9206-y



Li Z P, et al. Sci China Inf Sci February 2018 Vol. 61 029101:3

Ca,b :=





C#, when a = b;

X
(j), when a = i 6= j and b = j;

0
n×m, otherwise.

(3) Output ĉ := Ĉ as the expanded ciphertext.
mMFHE.Eval(params, C, pk,(ĉ1, . . . , ĉN )):
Take N expanded ciphertexts as input. The

algorithm achieves the homomorphic evaluation
by the two algorithms: mFHE.Add(·) and
mFHE.Mult(·).

mMFHE.Dec(params, (sk(1), . . . , sk(N)),c):

Take a ciphertext c = Ĉ and the sequence of
secret keys (sk(1), . . . , sk(N)) as input. Then parse
each secret key S(i) := sk(i) and construct a joint
secret key by Ŝ = [(S(1))T, . . . , (S(N))T] ∈ Z

t×nN
q .

Below we will illustrate precisely how to achieve
threshold decryption for the mMFHE.

mMFHE.PartDec(ĉ, (pk(1), . . . , pk(N)), i, sk(i)):

On input of an expanded ciphertext ĉ = Ĉ under a
sequence of keys (pk(1), . . . , pk(N)) and i-th secret
key sk(i)= (S(i))T ∈ Zq

t×n.
Then we perform the following steps:
(1) Parse Ĉ into Ĉ = (Ĉ(1); . . . ; Ĉ(N))nN×mN ,

where each sub-matrix Ĉ(i) is over Zn×mN
q .

(2) First denote the following matrix:

W =




⌈q/2⌉ . . . 0 01×(n−t)

...
. . .

...
...

0 · · · ⌈q/2⌉ 01×(n−t)


 ∈ Z

t×n
q .

Then obtain the following matrix: ŴT =
[WT, . . . ,WT

︸ ︷︷ ︸
N

] ∈ Z
nN×t
q .

(3) For simplicity, we re-denote ĜN ∈ Z
nN×mN
q and

Ĝ−1
N ∈ Z

mN×nN
q , and we write each element of r(i) as

one column of R(i) = (S(i))T · Ĉ(i) ·Ĝ−1(ŴT) ∈ Z
t×t
q .

Most notably, for convenience, here R(i) can be re-
garded as the following matrix:

R(i) := [r
(i)
1 , . . . , r

(i)
t ] =




γ
(i)
1,1 · · · γ

(i)
1,t

...
. . .

...

γ
(i)
t,1 · · · γ

(i)
t,t


 ,

where γ(i) = 〈s
(i)
j , Ĉ(i)〉 · G̃−1(ŴT

j ) for i ∈ [N ]

and j ∈ [t]. We must stress that s
(i)
j is the j-th

column of S(i) and Ŵj is the j-th column of Ŵ .
Hence, there exists p(i) = γ(i) + e(i)

sm
∈ Zq, where

e(i)
sm
← [−Bdec

smdg, B
dec
smdg] is some random “smudging

noise”.
(4) Output P (i) = [p

(i)
1 , . . . ,p

(i)
t ] ∈ Z

t×t
q , where

p(i) =
∑t

j p
(i)
j ∈ Z

t×1
q .

mMFHE.FinDec(P (1), . . . ,P (N)):
The algorithm takes P (1), . . . ,P (N) as input, and

computes

P :=

N∑

i=1

P
(i) =

[
N∑

i=1

p
(i)
1 , . . . ,

N∑

i=1

p
(i)
t

]
.

Output decryption message U := 1
N
· ‖⌈ P

q/2
⌋‖.

Remark 2. Bdec
smdg is bounded for extra “smudging”

noise and Bdec
smdg = 2dλ logλBχ.

Theorem 1. Assume that the MFHE scheme of
Mukherjee and Wichs and our constructed scheme
iLCP are indistinguishable chosen-plaintext attacks
(or IND-CPA) secure, then the mMFHE scheme is
IND-CPA-secure.

Remark 3. Assume that there exist two players
(e.g., User1 and User2) in the system. If User2 uses

his own secret key S(2) to decrypt the ciphertext C
(1)
#

received from User1, then there exists

〈S(2),C
(1)
# 〉+ 〈S

(1),XT〉 = (S(2))T ·MG̃+ noise.
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