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1 Introduction

A Dynkin type is, by definition, a finite formal sum of the symbols Al (l > 1), Dm (m > 4) and

En (n = 6, 7, 8) with non-negative integer coefficients. For a Dynkin type R, we denote by L(R) the

negative-definite lattice whose intersection matrix is (−1) times the Cartan matrix of type R. We denote

by rank(R) the rank of L(R), and by disc(R) the discriminant of L(R).

A normal K3 surface is a normal surface whose minimal resolution is a K3 surface. It is well known

that a normal K3 surface has only rational double points as its singularities (see [2, 3]). Hence, we can

associate a Dynkin type to the singular locus Sing(Y ) of a normal K3 surface Y . Recall that the Milnor

number of a rational double point of type An (resp. Dn, En) is n. Hence, the rank of the Dynkin type

of Sing(Y ) is equal to the sum of Milnor numbers of singular points on Y , i.e., the total Milnor number

of Y . In particular, it is at most 21.

If the total Milnor number of a normal K3 surface Y is > 20, then the minimal resolution X of Y

has Picard number > 21, and hence is a supersingular K3 surface (in the sense of Shioda [22]). Goto [8,

Theorem 3.7] proved that a normal K3 surface Y with total Milnor number 21 exists only when the

characteristic of the base field divides the discriminant of the Dynkin type of Sing(Y ). Shimada [17]

made the complete list of the pairs (R, p) of a Dynkin type R of rank 21 and a prime integer p such

that R is the Dynkin type of the singular locus of a normal K3 surface in characteristic p.

In this paper, we investigate normal K3 surfaces with total Milnor number 20.
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Definition 1.1. Let R be a Dynkin type of rank 20. A prime integer p is called an R-supersingular

K3 prime if it satisfies the following:

(i) p is odd and does not divide disc(R), and

(ii) there exists a normal K3 surface Y defined over an algebraically closed field of characteristic p

such that Sing(Y ) is of type R.

The Artin invariant of a supersingular K3 surface X in characteristic p is the positive integer σ such

that the discriminant of the Néron-Severi lattice NS(X) of X is equal to −p2σ (see [1]). We will prove

that, if p is an R-supersingular K3 prime for a Dynkin type R with rank(R) = 20, and if Y is a normal

K3 surface in the condition (ii) above, then the Artin invariant of the minimal resolution of Y is 1. It is

known that, for each p, the supersingular K3 surface with Artin invariant 1 is unique up to isomorphisms

(see [7, 12]). Therefore, the condition (i) and (ii) above is equivalent to (i) and the following:

(ii′) the supersingular K3 surface Xp in characteristic p with Artin invariant 1 is birational to a

normal K3 surface Y such that Sing(Y ) is of type R.

In this paper, we present an algorithm to determine the set of R-supersingular K3 primes for a given

Dynkin type R of rank 20. As a corollary, we prove the following.

Theorem 1.2. Let R be a Dynkin type of rank 20, and let aR be the product of the odd prime divisors

of disc(R). We put bR := 8aR if disc(R) is even, while bR := aR if disc(R) is odd. Then there exists

a subset ΣR of (Z/bRZ)
× such that a prime integer p is an R-supersingular K3 prime if and only if

p mod bR ∈ ΣR.

In fact, we have a result finer than above. Let Y be a normal supersingular K3 surface in characteristic

p 6= 2 such that Sing(Y ) is of Dynkin type R with rank(R) = 20, and let X → Y be the minimal resolution

to Y . We denote by LY the sublattice of the Néron-Severi lattice NS(X) of X generated by the classes

of the exceptional curves of X → Y . Then LY is isomorphic to L(R). Let TY denote the orthogonal

complement of LY in NS(X). Then TY is an even indefinite lattice of rank 2. Our key observation is the

following:

tt′ ∈ pZ, for all t, t′ ∈ TY , (1.1)

where tt′ ∈ Z is the intersection number of the classes t and t′ in NS(X). Thus we can define an indefinite

lattice T ′
Y of rank 2 by introducing a new bilinear form (t, t′)T ′

Y
:= 1

p
(tt′) on the Z-module underlying TY .

It turns out that disc(T ′
Y ) divides disc(R). Note that, since p is odd, T ′

Y is an even lattice. Let L̃Y be

the orthogonal complement of TY in NS(X). Then L̃Y is an even overlattice of LY such that the set

roots(L̃Y ) of roots in L̃Y coincides with the set roots(LY ) of roots in LY . The following is a refinement

of Theorem 1.2.

Theorem 1.3. Let R be a Dynkin type of rank 20, let T ′ be an even indefinite lattice of rank 2 such that

disc(T ′) divides disc(R), and let L̃ be an even overlattice of L(R) such that roots(L̃) = roots(L(R)). Then

there exist a subset Sl of {1,−1} for each odd prime divisor l of disc(R), and a subset S2 of {1, 3, 5, 7},

such that the following holds. Let p be an odd prime that does not divide disc(R). Then there exists a

normal K3 surface Y in characteristic p with Sing(Y ) being of type R such that T ′
Y
∼= T ′ and L̃Y

∼= L̃ if

and only if (
p

l

)
∈ Sl for each odd prime divisor l of disc(R), and p mod 8 ∈ S2. (1.2)

If disc(R) is odd, then we have S2 = {1, 3, 5, 7}.

Using computational algebra system Maple, we have made the complete list of R-supersingular K3

primes, which is too large to be included in this paper. It is available from the first author’s home page

http://www.math.sci.hiroshima-u.ac.jp/∼shimada/K3.html in the plain text format. From this list, we

derive the following fact:

Theorem 1.4. For each Dynkin type R with rank(R) = 20, the set of R-supersingular K3 primes is

either empty or has a natural density 1/2.
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It would be very nice if Theorem 1.4 is proved, not by brute calculations of making the complete list,

but by some geometric reasonings.

As another corollary of the key observation (1.1), we obtain the following:

Corollary 1.5. Let Y ⊂ PN be a normal supersingular K3 surface of total Milnor number 20 such

that Sing(Y ) is of type R. If the characteristic p of the base field is odd and does not divide disc(R), then

the degree of Y is divisible by 2p.

Indeed the class of the pull-back of the hyperplane section of Y to X is contained in TY . Note that, if R

is of rank 20, then every prime divisor of disc(R) is 6 19. Combining Corollary 1.5 with [8, Theorem 3.7],

we obtain the following corollary.

Corollary 1.6. Let Y be a normal K3 surface of degree d in characteristic p > 19. If p does not

divide d, then the total Milnor number of Y is 6 19.

In particular, a sextic plane curve C ⊂ P2 or a quartic surface S ⊂ P3 in characteristic p > 19 with only

rational double points as its singularities has total Milnor number 6 19. Yang [25,26] classified all possible

configurations of rational double points on sextic plane curves and quartic surfaces in characteristic 0. It

would be interesting to investigate Yang’s classification in characteristic p > 19. See [19] for a result on

this problem.

In our previous paper [21], we have proved that normal K3 surfaces with ten ordinary cusps exist only

in characteristic 3. This implies that the set of 10A2-supersingular K3 primes is empty. More generally,

the proof of Dolgachev-Keum [6, Lemma 3.2] shows that, if disc(R) is a perfect square integer, then there

exist no R-supersingular K3 primes (see Lemma 2.7).

There are 3058 Dynkin types of rank 20. Among them, there exist 2437 Dynkin types R such that

disc(R) is not a perfect square integer, and 483 Dynkin types with non-empty set of R-supersingular K3

primes.

This paper is organized as follows. In Section 2, we reduce the problem of determining R-supersingular

K3 primes to the calculation of overlattices of L(R) and their quadratic forms. In Section 3, we investigate

how the multiplications by odd prime integers affects the isomorphism classes of finite quadratic forms.

In Section 4, we present an algorithm to calculate the set of R-supersingular K3 primes. In the last

section, we explain the algorithm in detail by using an example.

The study of the cases where p is 2 or divides disc(R) seems to need more subtle methods, and hence

we do not treat these cases.

2 The Néron-Severi lattices of supersingular K3 surfaces

A free Z-module Λ of finite rank with a non-degenerate symmetric bilinear form Λ × Λ → Z is called a

lattice. Let Λ be a lattice. The dual lattice Λ∨ of Λ is the Z-module Hom(Λ,Z). Then Λ is naturally

embedded into Λ∨ as a submodule of finite index. There exists a natural Q-valued symmetric bilinear

form on Λ∨ that extends the Z-valued symmetric bilinear form on Λ. An overlattice of Λ is a submodule

N of Λ∨ containing Λ such that the bilinear form on Λ∨ takes values in Z on N ×N . If Λ is a sublattice

of a lattice Λ′ with finite index, then Λ′ is embedded into Λ∨ in a natural way, and hence Λ′ can be

regarded as an overlattice of Λ.

We say that Λ is even if u2 ∈ 2Z holds for every u ∈ Λ. Let Λ be an even negative-definite lattice. A

vector r ∈ Λ is called a root if r2 = −2. We denote by roots(Λ) the set of roots in Λ. Let R be a Dynkin

type. Recall that L(R) is the negative definite root lattice of type R. We put

L̃(R) := {L̃ | L̃ is an even overlattice of L(R)}, L(R) := {L̃ ∈ L̃(R) | roots(L̃) = roots(L(R))}.

Remark that we consider L̃(R) as a subset of the set of submodules of L(R)∨, and not up to isometries

of lattices.

Let D be a finite abelian group. A quadratic form q on D is, by definition, a map q : D → Q/2Z that

satisfies the following:
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(i) q(nx) = n2q(x) for any x ∈ D and any n ∈ Z, and

(ii) the map b[q] : D × D → Q/Z defined by b[q](x, y) := (q(x + y) − q(x) − q(y))/2 is a symmetric

bilinear form on D.

See Wall [24] for the complete classification of quadratic forms on finite abelian groups. Let q be a

quadratic form on a finite abelian group D, and let H be a subgroup of D. We put H⊥ := {x ∈ D |

b[q](x, y) = 0 for any y ∈ H}. We say that q is non-degenerate if D⊥ = {0}.

Let Λ be an even lattice. The finite abelian group Λ∨/Λ is called the discriminant group of Λ, and is

denoted by DΛ. We define a quadratic form qΛ on DΛ by

qΛ(x̄) = x2 mod 2Z, where x̄ := x mod Λ ∈ DΛ for x ∈ Λ∨,

and call qΛ the discriminant form of Λ. It is easy to see that qΛ is non-degenerate, and that |DΛ| =

|disc(Λ)| holds. By Nikulin [10], the map N 7→ N/Λ induces a bijection from the set of even overlattices of

Λ to the set of isotropic subgroups of (DΛ, qΛ). In particular, we can calculate the set of even overlattices

of a given lattice by calculating the set of isotropic subgroups of its discriminant forms. Let N be an

even overlattice of Λ. Then we have a natural sequence of inclusions Λ →֒ N →֒ N∨ →֒ Λ∨. Therefore,

disc(N) divides disc(Λ), and the exponent of DN divides the exponent of DΛ. For a prime p, we denote

by (DΛ)p and (DΛ)p′ the p-part and the prime-to-p part of DΛ, and by (qΛ)p and (qΛ)p′ the restrictions

of q to (DΛ)p and to (DΛ)p′ , respectively. We have the following orthogonal decomposition:

(DΛ, qΛ) = ((DΛ)p, (qΛ)p)⊕ ((DΛ)p′ , (qΛ)p′).

We now state the main theorem of this section.

Theorem 2.1. Let R be a Dynkin type with rank(R) = 20, and let p be an odd prime that does not

divide disc(R). Then the following three conditions are equivalent:

(1) p is an R-supersingular K3 prime.

(2) The unique supersingular K3 surface Xp of Artin invariant 1 in characteristic p is birational to a

normal K3 surface Y such that Sing(Y ) is of Dynkin type R.

(3) There exist an overlattice L̃ ∈ L(R) and a lattice T ′ of rank 2 with signature (1, 1) such that

(DT ′ , pqT ′) is isomorphic to (D
L̃
,−q

L̃
), where pqT ′ is the discriminant form of T ′ multiplied by p.

A lattice Λ is said to be p-elementary if its discriminant group DΛ is a p-elementary group. The

following results due to Artin [1] and Rudakov and Shafarevich [14] reduce our geometric problem to

calculations of lattices and finite quadratic forms.

Theorem 2.2 (See [1,14]). The Néron-Severi lattice of a supersingular K3 surface in characteristic p

is p-elementary.

Combining this result with the classification of indefinite lattices, we have the following corollary.

Corollary 2.3 (See [14]). The isomorphism class of the Néron-Severi lattice NS(X) of a supersingular

K3 surface X is uniquely determined by the characteristic p of the base field and the Artin invariant

of X.

Corollary 2.4 (See [14]). Suppose that p is odd. If Λ is an even p-elementary lattice of signature

(1, 21) and discriminant −p2σ, then Λ is isomorphic to the Néron-Severi lattice of a supersingular K3

surface in characteristic p with Artin invariant σ.

The following easy result will be used in the proof of Theorem 2.1.

Lemma 2.5. Let T ′ = Zt′1⊕Zt′2 be a lattice of rank 2 with the intersection matrix (t′i.t
′
j) = (t′ij). Let p

be a prime that does not divide disc(T ′). Define a lattice T = Zt1 ⊕ Zt2 so that the intersection matrix

(ti.tj) = (tij) with tij = pt′ij. Then the following hold:

(1) ((DT )p′ , (qT )p′) ∼= (DT ′ , pqT ′).

(2) There exist positive integers ℓ1 and ℓ2 such that

T∨/T ∼= Z/(pℓ1)⊕ Z/(pℓ2), (T ′)∨/T ′ ∼= Z/(ℓ1)⊕ Z/(ℓ2).
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Proof. Since rank(T ′) = 2, we can write (T ′)∨/T ′ ∼= Z/(ℓ1) ⊕ Z/(ℓ2) so that ℓi > 0, ℓ1 | ℓ2 and

disc(T ′) = det(t′ij) = ℓ with |ℓ| = ℓ1ℓ2. We can calculate the dual bases of T ′ and T as follows:

((t′1)
∗, (t′2)

∗) = (t′1, t
′
2)(t

′
ij)

−1 =
1

ℓ
(t′1, t

′
2)(sij), (t∗1, t

∗
2) = (t1, t2)(tij)

−1 =
1

p2ℓ
(t1, t2)(psij),

where s11 = t′22, s22 = t′11 and s12 = s21 = −t′12 = −t′21. Note that (T∨/T )p′ is generated by (cosets of)

the two coordinates of the vector (pt∗1, pt
∗
2) =

p
ℓ
(t1, t2)(sij). Set bT ′ = b[qT ′ ], etc. Then

(bT ′((t′i)
∗, (t′j)

∗)) = (t′ij)
−1 =

1

ℓ
(sij), (bT (t

∗
i , t

∗
j )) = (tij)

−1 =
1

p2ℓ
(psij).

One can check that the following is an isomorphism of abelian groups:

(T ′)∨/T ′ → (T∨/T )p′ , (t′i)
∗ + T ′ 7→ pt∗i + T.

Under the identification via this map, we have pqT ′ = (qT )p′ . This proves (1). Clearly, disc(T ) =

det(tij) = p2 disc(T ′). Also the expression of the dual basis shows that (T∨/T )p is p-elementary. Thus (2)

follows. This proves the lemma.

The following is the key to the proof of Theorem 2.1.

Proposition 2.6. Let R be a Dynkin type with rank(R) = 20, and let L be an even overlattice of

L(R). Suppose that p is an odd prime and that p 6 | disc(L).

(1) Suppose that L → Λ is a primitive embedding into an even p-elementary lattice of signature (1, 21)

with non-cyclic Λ∨/Λ. Let T = L⊥ be the orthogonal complement of L in Λ. Then (1a)–(1e) below hold.

(1a) T is an even lattice of signature (1, 1) such that disc(T ) = −p2 disc(L) and T∨/T ∼= Z/(pℓ1)

⊕ Z/(pℓ2).

(1b) There are a canonical isomorphism ϕ : L∨/L → (T∨/T )p′ and the relation (qT )p′ = −qL (after

the identification via ϕ).

(1c) Write T = Zt1 ⊕ Zt2. Then (ti.tj) = p(t′ij) for some t′ij ∈ Z.

(1d) Let T ′ = Zt′1 ⊕ Zt′2 be the lattice with the intersection form (t′i.t
′
j) = (t′ij). Then (DT ′ , pqT ′) ∼=

((DT )p′ , (qT )p′) ∼= (DL,−qL).

(1e) Λ is the unique even p-elementary lattice of signature (1, 21) and discriminant −p2.

(2) Conversely, suppose that T is a lattice of signature (1, 1) satisfying (1a) and (1b). Then there

is a primitive embedding L → Λ into the unique p-elementary even lattice Λ of signature (1, 21) and

determinant −p2 such that T is isomorphic to the orthogonal complement L⊥ of L in Λ.

Proof. Consider the inclusions

L⊕ T ⊂ Λ ⊂ Λ∨ ⊂ L∨ ⊕ T∨. (2.1)

Since L → Λ is a primitive embedding, its dual is a surjection Λ∨ → L∨ which factors as Λ∨ →

L∨⊕T∨ → L∨ where the first is the inclusion in (2.1) while the second is the projection. This surjection

induces surjections Λ∨/(L ⊕ T ) → L∨/L and ϕ1 : (Λ∨/(L ⊕ T ))p′ → (L∨/L)p′ = L∨/L where the

latter equality is because gcd(p, disc(L)) = 1. Since Λ is p-elementary we have (Λ∨/Λ)p′ = 0 and hence

(Λ∨/(L⊕ T ))p′ = (Λ/(L⊕ T ))p′ . Similarly, we have surjection ϕ2 : (Λ∨/(L⊕ T ))p′ → (T∨/T )p′ . On the

other hand, the inclusion (2.1) and the assumption that Λ is p-elementary imply |L∨/L| |(T∨/T )p′ | =

|(Λ/(L ⊕ T ))p′ |2 > |L∨/L| |(T∨/T )p′| where the latter inequality is due to the surjectivity of both ϕi.

Thus both ϕi are isomorphisms. Set ϕ = ϕ2 ϕ
−1
1 : L∨/L → (T∨/T )p′ . For every r′ ∈ L∨/L, we write

ϕ(r′) = t′, and see that the coset of r′+t′ belongs to (Λ/(L⊕T ))p′ . So 0 = qΛ(r′ + t′) = qR(r′)+(qT )p′(t′).

This proves (1b).

Let e be the exponent of the abelian group L∨/L so that the latter is e-torsion. This e is coprime to p

by the assumption. Then Λ/(L⊕ T ) (∼= (L∨ ⊕ T∨)/Λ∨) is e-torsion. Indeed, for r′ + t′ ∈ Λ ⊂ L∨ ⊕ T∨,

we have, mod L ⊕ T , that e(r′ + t′) = et′ ∈ Λ ∩ L⊥ = T . So Λ/(L ⊕ T ) equals (Λ/(L ⊕ T ))p′ and is

isomorphic to both L∨/L and (T∨/T )p′ via ϕi’s; denote by r the order of these three isomorphic groups,

which is coprime to p.
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We assert that T∨/T is pe-torsion. Indeed, for t′ ∈ T∨, we have et′ ∈ Λ∨ and hence pet′ ∈ Λ∩L⊥ = T ,

because Λ is p-elementary. Since T is of rank 2, we have T∨/T ∼= Z/(pε1ℓ1) ⊕ Z/(pε2ℓ2) where ℓi > 1,

each εi ∈ {0, 1} and gcd(p, ℓi) = 1. Note that Λ∨/Λ ∼= (Z/(p))⊕λ for some λ > 2. The inclusion (2.1)

above implies that −pε1+ε2ℓ1ℓ2 disc(L) = disc(T ) disc(L) = r2 disc(Λ) = −pλr2. So |Λ| = −p2 and both

εi = 1. Note also that ℓ1ℓ2 = |(T∨/T )p′| = r = disc(L). This proves (1a) and (1e). The assertion (1c)

is the observation in (1a) that (T∨/T )p is p-elementary, rank(T ) = 2 and disc(T ) = p2× (some integer

coprime to p) and that the calculation of T∨/T is essentially the calculation of the matrix (ti.tj)
−1;

see Lemma 2.5. The assertion (1d) follows from (1b) and Lemma 2.5 by noting that p does not divide

disc(T ′) = − disc(L).

Next, we prove Proposition 2.6(2). We define an overlattice Γ of L ⊕ T by adding elements r′ + t′ ∈

L∨ ⊕ T∨ such that ϕ(r′) = t′. Note that qL⊕T (r′ + t′) = qL(r′) + (qT )p′ (t′) = 0, so Γ is an even

overlattice of L⊕T such that the projections induce isomorphisms: L∨/L ∼= Γ/(L⊕T ) ∼= (T∨/T )p′ . Now

|Γ| = |L⊕ T |/ disc(L)2 = disc(T )/ disc(L) = −p2 by (1a). Consider the inclusion (2.1) above but with Λ

replaced by Γ, we see that Γ∨/Γ equals (Γ∨/Γ)p, i.e., it is p-torsion because so is ((L∨⊕T∨)/(L⊕T ))p =

(T∨/T )p by (1a). So Γ is p-elementary. It is clear from the construction that both L → Γ and T → Γ

are primitive embeddings, whence T = L⊥ in Γ. This proves Proposition 2.6.

Proof of Theorem 2.1. We now prove Theorem 2.1, the direction (1) ⇒ (2). So there is a normal K3

surface Y defined over an algebraically closed field k with char(k) = p such that Sing(Y ) is of Dynkin

type R. Let f : X → Y be the minimal resolution and Ex(f) the reduced exceptional divisor. Then Ex(f)

is also of Dynkin type R. Since the Picard number ρ(X) = ρ(Y )+#Ex(f) > 21, we have ρ(X) = 22 (see

Artin [1]) and hence X is supersingular in the sense of Shioda [22]. Let Λ be the Néron-Severi lattice

NS(X) of X . Then Λ is p-elementary and |Λ| = −p2σ, where 1 6 σ 6 10 is the Artin invariant (see

Corollary 2.4). Let L denote the sublattice of Λ spanned by numerical equivalence classes of irreducible

components in Ex(f). Then we have L ∼= L(R). Let L̃ be the closure of the sublattice L in Λ. Applying

Proposition 2.6 to the primitive embedding L̃ → Λ, we see that σ = 1. So Theorem 2.1(2) is true.

Next, we prove Theorem 2.1, the direction (2) ⇒ (3). We use the notation above. We assert that

roots(L̃) = roots(L). Indeed, suppose that v ∈ L̃ is a (−2)-vector. By considering −v and the Riemann-

Roch theorem, we may assume that v is represented by an effective divisor V on Xp. Since this V is

perpendicular to the pull back of an ample divisor on Y , our V is contractible to a point on Y , whence

v = [V ] belongs to L. The assertion is proved. The rest of (3) follows from Proposition 2.6 applied to

the primitive embedding L̃ → Λ.

Finally, we prove Theorem 2.1, the direction (3) ⇒ (1). Define T as in Lemma 2.5. Then Proposi-

tions 2.6(1a) and 2.6(1b) are satisfied by L̃ and T . By Proposition 2.6 (both assertions there), there is a

primitive embedding L̃ → Λ into the unique even p-elementary lattice of signature (1, 21) and discrim-

inant −p2 such that T = L̃⊥ in Λ. We have NS(Xp) = Λ. Take a primitive element v in T∨ such that

v2 < −2. Let h be a generator of v⊥ ∩ T∨. So h2 > 0. We claim that

roots(h⊥ ∩ Λ) = roots(L̃). (2.2)

It is clear that the left-hand side of (2.2) includes the right-hand side of (2.2). Let u be in the left-hand side

of (2.2). Write u = r′ + t′ with r′ ∈ L̃∨ and t′ ∈ T∨. Then 0 = h.u = h.t′, whence t′ ∈ T∨ ∩ h⊥ = Z[v].

So t′ = mv for some integer m. If m 6= 0, then −2 = u2 = (r′)2 + (t′)2 6 m2v2 < −2, absurd. So

m = 0 and u = r′ ∈ L̃∨ ∩ Λ = L̃ and hence u ∈ the right-hand side of (2.2). The claim is proved. By

considering −h and isometry of Λ, we may assume that a positive multiple of h is represented by a nef

and big Cartier divisor H on Xp (see [13]). Note that |2H | is base point free (see [11, Proposition 0.1]

and [15, Corollary 3.2]). Let f : Xp → Y be the birational morphism onto a normal surface, which is

the Stein factorization of Φ|2H| : Xp → PN with N = dim |2H |. Then f is nothing but the contraction

of all the curves perpendicular to H . So by the genus formula and the Riemann-Roch theorem, Ex(f)

contains and consists of all curves representing elements in roots(h⊥ ∩ Λ) = roots(L̃) = roots(L(R)),

whence Ex(f) is of Dynkin type R. Thus Y is a normal K3 surface with Sing(Y ) of Dynkin type R.

Hence, the assertion (1) is true. This completes the proof of Theorem 2.1.
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The following result imposes on a Dynkin diagram R of rank 20 a necessary condition for the set of

R-supersingular K3 primes to be non-empty. The proof follows from the proof of Dolgachev-Keum [6,

Lemma 3.2]. We reprove it here for the convenience of the readers.

Lemma 2.7. Let R be a Dynkin diagram of rank 20. If the set of R-supersingular K3 primes is

non-empty, then disc(R) is not a perfect square.

Proof. By the assumption, there exist a K3 surface X and 20 smooth rational curves on X whose nu-

merical equivalence classes span a sublattice L(R) ⊂ NS(X) of Dynkin type R and which are contractible

to rational double points on a normal K3 surface Y . Since ρ(X) > 1 + 20, we have ρ(X) = 22 and X is

supersingular. Let T denote the orthogonal complement of L(R) in NS(X). Then L(R)⊕T is a sublattice

of NS(X) of index a say. So we have

disc(R) disc(T ) = −a2p2σ(X), (2.3)

where disc(NS(X)) = −p2σ(X) with σ(X) ∈ {1, 2, . . . , 10} the Artin invariant.

Suppose the contrary that disc(R) is a perfect square. Then (2.3) implies that − disc(T ) is a perfect

square too. By Conway and Sloane [4, Chapter 15, Section 3], T represents zero: There is a non-zero

vector t in T with t2 = 0. We may assume that t is primitive in T . By the Riemann-Roch theorem, we may

assume that t is represented by an effective divisor. Applying Rudakov and Shafarevich [14, Chapter 3,

Proposition 3], there is a composite σ : NS(X) → NS(X) of reflections with respect to (−2)-vectors such

that σ(t) is represented by a general fibre F of an elliptic or quasi-elliptic fibration ϕ : X → P1. There is

a natural inclusion below where the lattice F⊥ is the orthogonal in NS(X) of Z[F ]: σ(L(R)) → F⊥/Z[F ].

Since rank(L(R)) = 20, we can write F⊥/Z[F ] ∼= K1 ⊕ · · · ⊕Kr which includes σ(L(R)) as a sublattice

of finite index b say; whence

disc(R) = b2
r∏

ℓ=1

disc(Kℓ); (2.4)

moreover, each Kℓ is of Dynkin type An(ℓ), Dn(ℓ), or En(ℓ) so that ϕ has reducible fibres of type K̃ℓ in

the notation of Cossec and Dolgachev [5]; see the reasoning below and the proof of [9, Lemma 2.2]. Let

j : J → P1 be the Jacobian fibration of ϕ so that j and ϕ have the same type of singular fibres. We note

that ρ(J) = 2 + 20, J is supersingular, and J has a torsion Mordell-Weil group MW(j). By Shioda [23]

and Theorem 1.3, we have
r∏

ℓ=1

disc(Kℓ) = −p2σ(J)|MW (j)|2, (2.5)

where disc(NS(J)) = −p2σ(J) with σ(J) ∈ {1, 2, . . . , 10}. Now (2.5) and (2.4) imply that p divides

disc(R), a contradiction. Thus the lemma is proved.

3 Finite quadratic forms and prime integers

Let q and q′ be quadratic forms on a finite abelian group D. We denote by d the order of D. In this

section, we consider the set K(q, q′) of odd prime integers p which are prime to d such that (D, pq) is

isomorphic to (D, q′).

For a prime l, we put

Tl :=

{
(Z/8Z)×, if l = 2,

{1,−1}, if l 6= 2,

and for an odd prime p 6= l, we define τl(p) ∈ Tl by

τl(p) :=




p mod 8, if l = 2,(
p

l

)
, if l 6= 2.
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We then put Td :=
∏

l Tl, where l runs through the prime divisors of d, and put τd(p) := (τl(p)) ∈ Td for

an odd prime integer p prime to d.

Proposition 3.1. Let p1 and p2 be odd prime integers which are prime to d. If τd(p1) = τd(p2), then

saying p1 ∈ K(q, q′) is equivalent to saying p2 ∈ K(q, q′).

Proof. It is enough to prove that (D, p1q) and (D, p2q) are isomorphic. Let l be an odd prime divisor

of d, and let ν be the largest integer such that lν | d. It follows from τl(p1) = τl(p2) that there exists

an integer al such that p1 ≡ a2l p2 mod lν holds. Note that al is prime to l. Suppose that d is even. It

follows from τ2(p1) = τ2(p2) that there exists an integer a2 that satisfies p1 ≡ a22p2 mod 2µ+1, where µ is

the largest integer such that 2µ | d. Note that a2 is odd. By the Chinese Remainder Theorem, we have

an integer a that satisfies a ≡ al mod lν for each odd prime divisor l of d, and

a ≡

{
a2 mod 2µ+1, if d is even,

1 mod 2, if d is odd.

Then we have p1 ≡ a2p2 mod 2d. Note that a is prime to d. Since b[q](x, x) = q(x) mod Z, q(x) is

contained in (1/d)Z/2Z ⊂ Q/2Z for any x ∈ D. Therefore, we have p1q = a2p2q. The multiplication by a

induces an automorphism α of D. Since α∗(p2q) = p1q, we see that p1q and p2q are isomorphic.

Corollary 3.2. There exists a subset S(q, q′) of Td such that K(q, q′) is equal to the set of odd prime

integers p which are prime to d such that τd(p) ∈ S(q, q′).

4 Algorithm

Let R be a Dynkin type of rank 20. We put T (R) :=
∏

l Tl, where l runs through the set of prime divisors

of disc(R), and for an odd prime p that does not divide disc(R), we put τ(p) := (τl(p))l ∈ T (R). In this

section, we present an algorithm to obtain a subset S(R) ⊂ T (R) with the following property: An odd

prime p that does not divide disc(R) is an R-supersingular K3 prime if and only if τ(p) ∈ S(R).

Step 1. We first calculate the set L̃(R) of even overlattices of L(R) using [10, Proposition 1.4.1]. For

each even overlattice L̃ of L(R), we can calculate the set roots(L̃) of roots of L̃ by the method described

in [16], [18] or [20]. Comparing roots(L̃) with roots(L(R)) for each L̃, we make the set L(R).

Step 2. We calculate the discriminant group D
L̃
for each L̃ ∈ L(R), and make the set L′(R) of all

L̃ ∈ L(R) such that the length of D
L̃
is 6 2. For each L̃ ∈ L′(R), we calculate the isomorphism class of

the finite quadratic form (D
L̃
,−q

L̃
).

Step 3. For each L̃ ∈ L′(R), we do the following calculation. We put d := disc(L̃), which is a

positive integer. First we make the list T (d) of isomorphism classes of even indefinite lattices T ′ of

rank 2 with discriminant −d using the classical theory of binary forms due to Gauss (see [4, Chapter 15,

Subsection 3.3]). For each T ′ ∈ T (d), we calculate the discriminant group DT ′ of T ′. If DT ′ is isomorphic

to D
L̃
, then we calculate the set

S(L̃, T ′) :=
∏

l | disc(R)

Sl(L̃, T
′) ⊂ T (R)

such that (DT ′ , pqT ′) is isomorphic to (D
L̃
,−q

L̃
) if and only if τl(p) ∈ Sl(L̃, T

′) for each prime divisor l

of disc(R). In virtue of Proposition 3.1, we have to check only a finite number of prime integers. (Note

that the set of prime divisors of |D
L̃
| is a subset of the set of prime divisors of disc(R) = |DL(R)|. If a

prime divisor l of disc(R) does not divide disc(L̃), then we put Sl(L̃, T
′) = Tl.) If DT ′ is not isomorphic

to D
L̃
, then we put S(L̃, T ′) = ∅.

The set S(R) is the union of all S(L̃, T ′), where L̃ runs through the set L′(R) and T ′ runs through the

set T (disc(L̃)).
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5 Example

We will explain the case R := D7 +A11 + 2A1 in detail. The discriminant form of the negative-definite

root lattice L(R) is expressed by the diagonal matrix diag[−7/4,−11/12,−1/2,−1/2] with respect to the

basis of the discriminant group

DL(R)
∼= Z/4Z× Z/12Z× Z/2Z× Z/2Z

given in [16, Section 6]. There are eight isotropic vectors in DL(R),

0 := [0, 0, 0, 0], v1 := [0, 6, 1, 1], v2 := [1, 3, 0, 0], v3 := [1, 9, 0, 0], v4 := [2, 0, 1, 1],

v5 := [2, 6, 0, 0] = 2v2 = 2v3, v6 := [3, 3, 0, 0] = −v3, v7 := [3, 9, 0, 0] = −v2.

Let L(i) be the even overlattice of L(R) corresponding to the totally isotropic subgroup ofDL(R) generated

by vi. The Dynkin type of roots(L(i)) is equal to R if i 6= 4, while it is A11 + D9 if i = 4. Hence, the

even overlattice L(H) of L(R) corresponding to an totally isotropic subgroup H satisfies roots(L(H)) =

roots(L(R)) if and only if v4 /∈ H . The totally isotropic subgroups that do not contain v4 are listed

as follows: H0 = {0}, H1 = {0, v1}, H2 = {0, v5}, H3 = {0, v2, v5, v7}, H4 = {0, v3, v5, v6}. Let γ ∈

Aut(L(R)) be the isometry of L(R) = L(D7) ⊕ L(A11 + 2A1) that is the multiplication by −1 on the

factor L(D7) and the identity on L(A11 +2A1). Then the action of γ on DL(R) interchanges H3 and H4.

Therefore the even lattices L(H3) and L(H4) are isomorphic. The lengths of DL(H0) and DL(H2) are > 3,

while the lengths of DL(H1) and DL(H3)
∼= DL(H4) are 2.

The discriminant form of L(H1) multiplied by (−1) is given by

(
Z/4Z× Z/4Z,

[
7/4 0

0 3/4

])
× (Z/3Z, [ 2/3 ]).

There are four isomorphism classes of even indefinite lattices of rank 2 with discriminant −48:

S± :=

[
±2 6

6 ∓6

]
, T± :=

[
±4 4

4 ∓8

]
.

The discriminant group of S± is isomorphic to Z/2Z × Z/8Z × Z/3Z, and hence is not isomorphic to

DL(H1). The discriminant forms of T± are

(
Z/4Z× Z/4Z,

[
±1/4 0

0 ±5/4

])
× (Z/3Z, [±2/3 ]).

Hence, we have the following equivalence for prime integers p 6= 2, 3:

p ∈ K(−qL(H1), qT+
) ⇔ p mod 8 ≡ 3 or 7 and

(
p

3

)
= 1,

p ∈ K(−qL(H1), qT−
) ⇔ p mod 8 ≡ 1 or 5 and

(
p

3

)
= −1.

There are two isomorphism classes of even indefinite lattices of rank 2 with discriminant −12,

U± :=

[
±2 2

2 ∓4

]
.

By the same calculation as above, we have the following equivalence for prime integers p 6= 2, 3:

p ∈ K(−qL(H3), qU+
) ⇔ p mod 8 ≡ 1 or 5 and

(
p

3

)
= −1,
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p ∈ K(−qL(H3), qU−
) ⇔ p mod 8 ≡ 3 or 7 and

(
p

3

)
= 1.

Thanks to the equalities K(−qL(H1), qT+
) = K(−qL(H3), qU−

), K(−qL(H1), qT−
) = K(−qL(H3), qU+

), the

natural density of R-supersingular K3 primes is 1/2.
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