- 环糊精脱除猪油中胆固醇的研究

肖杨 罗永康 于海燕(中国农业大学食品科学与营养工程学院 北京 100083) 何刚强(浙江金大地生物工程股份有限公司 浙江 314100)

摘 要:本实验利用三因素二次正交旋转设计,研究了搅拌温度、搅拌时间和 - 环糊精添加量对 - 环糊精包埋法脱除猪油胆固醇效果的影响,建立了各因素与胆固醇脱除率的回归方程,筛选出了较理想的胆固醇脱除条件,即:搅拌时间90min、搅拌温度45 和 - 环糊精添加量8.5%。在这三个因素中, - 环糊精添加量为主要影响因素,而搅拌时间的影响较小。

关键词:脱除胆固醇; - 环糊精;猪油

Cholesterol removal from lard with -cyclodextrin

Abstract: This study was carried out to determine the effects of three different factors (mixing temperature, mixing time and -cyclodextrin concentration) in reduction of cholesterol in lard-water mixture by application of -cyclodextrin. Three factors quadratic rotating design was applied in the experiment. The regression equation of cholesterol reduction with mixing temperature, mixing time and -cyclodextrin concentration was established. The optimized conditions for the process was addition of 8.5% -cyclodextrin, mixing temperature of 45 and 90-min mixing time. -cyclodextrin concentration was the most effective factor. Among other factors, mixing time (30 to 150 min) did not significantly affect cholesterol removal.

Keywords: cholesterol removal; -cyclodextrin; lard

前言

胆固醇是维持生命和正常生理功能所必需的一种营养成分。胆固醇不溶于稀酸、稀碱,不能皂化,在食品加工中几乎不被破坏。人体内约2/3的胆固醇是由肝脏、小肠壁等器官自身合成,这部分称为内源性胆固醇;另外约 1/3 则由食品中获取,称为外源性胆固醇。食品中胆固醇作用于肝脏及小肠,对胆固醇的合成也形成负反馈调节。血液中的胆固醇反映总体胆固醇,缺少胆固醇的现象很少发生,而体内胆固醇含量超过标准却易发生。

由于食品中胆固醇的过量摄入易引起心血管疾病,人们开始利用不同的加工手段来脱除食品中的胆固醇[1]。其中 - 环糊精包埋快捷有效,在蛋、奶方面的应用较多^[2,3],而在猪油脂中应用的报道却很有限。在我国猪油的应用广泛。我国南方如江西、湖项目来源:浙江省科技厂资助项目(2003C12002)

南、四川、重庆、云南、贵州等地,仍保持着食用猪油的习惯,这些地区宾馆餐厅及家庭炒菜大多都用猪油,消费量大。在食品工业中,猪油则大量用于油炸方便面、快餐调料、糕点起酥和速冻食品等[4]。本试验主要研究使用 - 环糊精包埋时搅拌温度、搅拌时间和 - 环糊精添加量对猪油中胆固醇脱除率的影响,以优化去除猪油中胆固醇的加工工艺。

1 材料与设备

猪油,由购于市场上的猪板油干法炼制而成; -环糊精,陕西礼泉"西秦"牌 -环糊精厂提供; 电子分析天平;电热恒温水浴锅;UV-2100型 分光光度计;JJ-1 电动搅拌器;离心机。

2 试验方法

2.1 猪油中胆固醇含量的测定 参考 GB/T 15206-1994,使用铁-硫酸显色 法测定猪油中胆固醇的含量[5]。

2.2 猪油中胆固醇的脱除

用 - CD 包埋法脱除猪油胆固醇试验的工艺流程:猪油和水以质量比1:1混合[6] 添加 CD> 恒温搅拌 离心分离 低胆固醇猪油(上层)。

具体操作是: 称取 40g 猪油于 250ml 烧杯中,加入 40g 水和不同量的 - CD,混合均匀。将混合物置于不同温度的恒温水浴锅中,使用悬浆搅拌器以一定的转速搅拌,搅拌不同时间后取出,于 4000rpm下离心 10min^[6],小心取出上层油脂,密封避光保存待后续试验使用。

2.3 脱除胆固醇的最佳工艺条件的确定

采用三因子二次正交旋转设计进行试验,猪油中胆固醇脱除的三因素分别为:搅拌温度(),搅拌时间(h)和 -CD的添加量(%)。试验的因素水平编码表见表1。胆固醇的脱除率(%)作为Y值。

表1 因素水平编码表

因素	编码值水平 Xj					
心 系	-1.682	-1	0	1	1.682	
温度 X₁ (℃)	30	36	45	54	60	
时间 X ₂ (min)	30	54	90	126	150	
β-CD 添加量 X ₃ (%)	4.0	5.2	7.0	8.8	10.0	

3 结果与分析

3.1 结果

不同的搅拌温度、搅拌时间和 - CD 添加量对胆固醇脱除率的影响结果见表 2。应用统计分析系统软件(SAS)对表 1 中的数据进行回归分析,得出了最优的工艺条件是:搅拌温度 45 、搅拌时间 90min、

-CD 添加量 8.5%, 能脱除猪油中 98.0% 的胆固醇。

用 SAS 软件对表 2 中的数据进行回归分析,得出胆固醇脱除率 (Y) 对搅拌温度 (X_1) 搅拌时间 (X_2) 和 -CD 添加量 (X_3) 的回归方程为:

$$Y = \mathbf{b}_{i_0} + \sum_{i=1}^{3} \mathbf{b}_{i_1} X_i + \sum_{i=1}^{3} \mathbf{b}_{i_0} X_i^2 + \sum_{i=1}^{3} \mathbf{b}_{i_0} X_i X_i$$

该回归方程系数如表 2 所示,由表可知,3 个变量对胆固醇脱除率影响的大小为: - CD添加量>搅拌温度>搅拌时间。

表 2 三因素二次正交旋转回归设计试验安排及结果

试验编号	温度 X ₁ (c)	时间 X ₂ (min)	β-CD X ₃ (%)	脱除率 Y (%)
Ĩ	36(-1)	54(-1)	5.2(-1)	80.45
2	36(-1)	54(-1)	8.8(1)	85.76
3	36(-1)	126(1)	5.2(-1)	89.63
4	36(-1)	126(1)	8.8(1)	92.01
5	54(1)	54(-1)	5.2(-1)	73.11
6	54(1)	54(-1)	8.8(1)	88.25
7	54(1)	126(1)	5.2(-1)	79.93
8	54(1)	126(1)	8.8(1)	86.8
9	30(-1.682)	90(0)	7.0(0)	89.95
10	60(1.682)	90(0)	7.0(0)	84.95
11	45(0)	30(-1.682)	7.0(0)	91.66
12	45(0)	150(1.682)	7.0(0)	81.51
13	45(0)	90(0)	4.0(-1.682)	69.54
14	45(0)	90(0)	10.0(1.682)	98.04
15	45(0)	90(0)	7.0(0)	96.49
16	45(0)	90(0)	7.0(0)	95.39
17	45(0)	90(0)	7.0(0)	95.98
18	45(0)	90(0)	7.0(0)	97.43
19	45(0)	90(0)	7.0(0)	96.62
20	45(0)	90(0)	7.0(0)	97.21

表 3 三元二次正交旋转设计回归系数的分析

常数项	线性系数			二次项系数			因素间的互作系数		
bo	bı	b 2	b ₃	bı;	b 22	b 33	b 12	b _{t3}	
0.965	-0.021	0.003	0.057**	-0.034*	-0.037**	-0.047**	-0.013	0.018	-0.014

注:*表示差异显著 (P<0.05); **表示差异极 显著 (P<0.01)。

3.2 单因素分析

在单因素效应分析中,采用降维方法,将其它 两因子固定在零编码水平,分别描述单个因素的 变动对溶解性的影响。

搅拌温度 (X_1) 搅拌时间 (X_2) -CD添加量 (X_3) 三个因素的单因素效应方程如下:

曲线1: Y₁=0.965-0.021X₁-0.034X₁²

曲线2: $Y_1 = 0.965 + 0.003X_2 - 0.037X_2^2$

曲线3: Y₁=0.965+0.057X₃-0.047X₃²

由图 1 中曲线 1 可知当搅拌温度 (X_1) 较小时, X_1 与胆固醇脱除率呈正相关,当 X_1 超过某一值时,随着温度的升高,脱除率下降。分析其原因,当搅拌温度较小时,温度升高有助于提高猪油的流动性和 - CD 在水中的溶解度;当搅拌温度超过一特定值时,过高

的温度可能会破坏 - CD 和胆固醇包合物稳定性[7]。

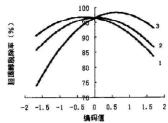
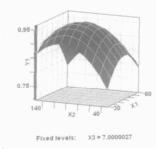


图1单因素对胆固醇脱除率的影响

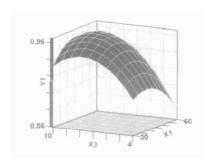
由图 1 中曲线 2 可知搅拌时间(X_2) - 脱除率的 关系与曲线 1 相似,当 X_2 大于一定值时,随着搅拌时间的延长,脱除率逐渐降低,这可能是因为经过长时间的搅拌 - CD 和胆固醇结合形成的包合物变得不稳定的缘故[8]。

由图 1 中曲线 3 可知当 - CD 添加量(X₃)与胆固醇脱除率呈正相关,当 X₃ 超过一定值时,X₃ 与脱除率呈负相关。利用皂甙和毛地黄皂苷吸附牛乳和黄油中的胆固醇的同类实验^[9]表明,当皂甙和毛地黄皂苷的浓度超过一定值时,胆固醇的脱除率会随皂甙和毛地黄皂苷的浓度的增加而降低。该研究推测过量的 - CD 可能与自身竞争同胆固醇分子结合,从而导致降低胆固醇的包埋率。

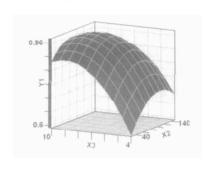
3.3 双因素分析


采用降维分析方法,将三因素其中一个因素固定 在零水平即可得到另外两因素对胆固醇脱除率的方程:

 $Y_1 = 0.965 - 0.021X_1 + 0.003X_2 - 0.034X_1^2 - 0.012X_1X_2 - 0.037X_2^2$


 $Y_1 = 0.965 - 0.021X_1 + 0.057X_3 - 0.034X_1^2 + 0.018X_1X_3 - 0.047X_3^2$

 $Y_1 = 0.965 + 0.003X_2 + 0.057X_3 - 0.037X_2^2 - 0.014X_2X_3 - 0.047X_2^2$


根据该子模型,绘制另两个因素对胆固醇脱除率(Y₁)的曲面图和等值线图,如图2所示。

a. 搅拌温度 - 搅拌时间对胆固醇脱除率的影响 (-CD 添加量为 8.5%)

b. 搅拌温度 - - CD 添加量对胆固醇脱出率的 影响(搅拌时间为90min)

c. 搅拌时间 - - CD 添加量对胆固醇脱除率的 影响(搅拌温度为 45)

图 2 搅拌温度 (X_1) 、搅拌时间 (X_2) 、 -CD 添加量 (X_3) 对胆固醇脱除率 (Y_1) 的影响的响应面图

由图 2 可以看出得到的三个曲面图呈显出的趋势是相似的。例如,如图 2(a),当 X_1 处于图中一定值时,胆固醇脱除率随着 X_2 的增大而增大,但是当 X_2 超过某一值时,又随着 X_2 增大而降低;当 X_2 处于一定值时,脱除率随着 X_1 的增大而增大,但 当 X_1 超过某一值时,又随着 X_1 增大有下降趋势。从图中也可看出,三种情况下,脱除率都能取到峰值,可判断最优的组合能落在所选的因素取值范围内。

4 结论

本试验研究得出,脱除猪油中胆固醇的最优生产工艺参数为:搅拌温度45 、搅拌时间90min、-CD添加量8.5%(其他条件为:猪油和水以质量比1:1混合和4000rpm离心10min),在该条件下可得到最高的胆固醇脱除率98.0%。数据分析结果表明,另一较优水平是:搅拌温度45 、搅拌时间59min、-CD添加量8.5%。在该水平下脱除率仍可达到96.2%,加之其要求的处理时间短,有利于猪油品质的保持以及便于实施工业生产。

牛肉香肠的加工工艺

郑坚强 司俊玲(郑州轻工业学院食品与生物工程系 郑州 450002)

摘 要:本产品是以牛肉为主要原料,采用中西结合的生产工艺,加工而成的香肠

制品。

关键词:灌制;烟熏

Study on Processing Technology of Beef Sausage
Zheng Jianqiang Si Junling

Abstract: This product regards beef as main rawmaterials, the processing technology of of beef sausage is adopted the production technology combined in Chinese and Western.

Keywords:canned;sootiness

牛肉是营养价值较高的食品之一,牛肉中含有蛋白质、脂肪、矿物质和各种维生素。牛肉中蛋白质含量较猪肉高,而脂肪含量则相反,其含热量适中,对人体健康有利。因其营养丰富,风味独特,肉质结实,咀嚼性好,食之不腻而深受消费者喜爱。对牛肉进行多种产品的加工不仅能增加肉类食品的品种,丰富肉类食品的供应,而且使牛肉增加附加值,牛肉产业的发展。

随着我国经济建设的加快和人们收入水平及消费水平的提高,家庭生活逐步走向社会化,消费

者对方便食品的需求量越来越大,饮食结构也逐渐由能量型向营养型、风味型、低脂肪和高蛋白型转变。据调查资料表明,我国居民膳食蛋白质的70%来自植物蛋白。而植物蛋白质的质量相对低,并且数量也不足。使我国人民的营养问题主要表现在动物性蛋白质摄取不足。因此,近年来国内和省内不少专家、学者对全国各省市居民食物结构提出调整的建议,也都集中在动物性食品的供应量上。首先要使每人每天对优质蛋白质的摄入量尽快提高到10~15克这一最低水平,并逐步提高

参考文献

- [1] 于景华,张玉洁等.食品中胆固醇脱除工艺的研究[J].中国乳品工业,1999,27(4):14~16.
- [2] 曹劲松, 彭志英. 环状糊精包合法脱除乳品胆固醇的研究[J]. 中国乳品工业,1996,24(1):15~18.
- [3] Smith D.M, et.al. 1995. Cholesterol reduction in liquid eggyolkusing -cyclodextrin[J]. Journal of Food Science. 60: 681 ~ 694.
- [4] 张颂培. 猪油脂的开发及其在食品中的应用[J]. 肉类工业,2002,252(4): 22~25.
- [5] 朱庆英, 裘爱泳等. 猪油中胆固醇含量的测定

- [J].中国油脂,2002,27(4):72~74.
- [6] Gow-chinyen, et. al. 1995. Cholesterol removal from a lard-water mixture [J]. Journal of Food Science. 60: $561 \sim 564$.
- [7]S.Y.Shim,J.Ahn,andH.S.Kwak.2003.Functional properties of cholesterol-removed whipping cream treated by -cyclodextrin [J].Dairy Sci.86:2767 ~ 2772.
- [8] 曹劲松,彭志英. 环状糊精与胆固醇的包合物结构研究[J].食品与发酵工业,1996,3:8~12. [9] Oh, H. I., E. J. Chang, and H. S. Kwak.1998. Conditions of the removal of cholesterol frommilk by treatment with saponin. Korean [J]. Dairy Sci.20: 253~260