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Abstract For every Jacobi form of Shimura type over H � C , a system of L-functions associated to it

is given. These L-functions can be analytically continued to the whole complex plane and satisfy a kind of

functional equation. As a consequence, Hecke's inverse theorem on modular forms is extended to the context

of Jacobi forms with Shimura type.
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1 Introduction and notations

As is well known, one can attach to a holomorphic modular form an L-function which has

many good properties shared with Riemannian zeta function. This L-function can be also ana-

lytically continued to the whole complex plane and satis�es a functional equation. It was in 1936

when Hecke[1] gave a brilliant theorem which states an equivalent relation between a cusp modular

form and its L-function. This started the study of the so-called converse theorems. Generally,

one wants to know how to �nd a criterion for an admissible irredudible representation of an al-

gebraic reductive group to be an automorphic representation. Many authors, including Weil[2],

Langlands[3], Shapiro[4], contributed their elegant work to this research �eld.

However, little is known concerning similar problems for an arbitrary algebraic non-reductive

group, although there exist some investigations for Jacobi groups, a typical case of non-reductive

groups. T. Shintani (unpublished notes) �rst introduced a standard zeta function associated

to a cuspidal Jacobi form of degree n. Murase[5] established the analytic continuation and the

functional equation of the zeta function. Unfortunately he imposed an extra stronger condition

for the index to exclude the e�ect from the Heisenberg group into the Hecke algebra. Recently,

Dulinski[6] extended Murase's results to the case of square free index in some special cases following

an idea of B�ocherer, and Martin[7] also proved that each L-function has an integral representation,

and therefore admits a continuation to the whole space C n and satis�es a functional equation of

a particular type. T. Sugano and W. Kohnen also discussed this subject of L-function from their

points of view.

The goal of this paper is to do the same thing for the Jacobi forms of Shimura type over H�C .
For every level N , we can associate a system of L-functions to the Jacobi forms of index m and

weight k with respect to a lattice. For the particular case N = 1, a kind of inverse theorem will be

given, which extends the known results. For the general level, we cannot get the correspondence

of Weil's inverse theorem in the present work, but we hope to return to it in the future.
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In the rest of this section, some notations will be �xed. Throughout this paper m; l; k are

positive integers, H denotes the upper-half plane. C ; R and Z denote the complex number �eld,

real number �eld and the ring of integers respectively. � denotes the full modular group as

usual, and � (N) denotes a congruence subgroup of level N . For convenience, let e(z) denote the

exponential e2�iz for z 2 C . Write the complex variables � = x+iy; z = p� + q; x; y 2 R . Finally,

denote the lattice lZ � lZ of Z2 by L(l).

Now we can de�ne precisely the terminology of a Jacobi form of Shimura type. The standard

reference for Jacobi forms is ref. [8].

De�nition. A Jacobi form of weight k and index m with Shimura type on (� (N); L(l)) is

a holomorphic function f mapping H � C into C satisfying the following conditions:

(1) f jk;m
 = (c� + d)�ke
�
� mcz

2

c�+d

�
f
�
a�+b
c�+d ;

z

c�+d

�
= f for every 
 =

�
a b

c d

�
2 � (N):

(2) f jmX = e(m(�2� + 2�z))f(�; z + �� + �) = f for every X = [�; �] 2 L(l).

(3) For each 
 2 � (1), f jk;m
 has a Fourier expansionX
n;r

4mn�r2>0

c(n; r)e(�)ne(z)r:

In fact, we could replace L(l) by any lattice of Z2 invariant under � . But in this work, we are

only interested in the special case L(l). In principle, the method here can be used to deal with

the general case. Now the space of all such functions f is denoted by Jk;m(� (N); L(l)), or simply

written as Jk;m(N; l) or Jk;m(� (N); l), while the set of all Jacobi cusp forms in Jk;m(� (N); l) is

denoted by J0
k;m

(� (N); l).

We next de�ne a set, denoted by S(m; l), of holomorphic functions f on H � C satisfying

(H1) f(�; z) =
X
n;r

4mn�r2>0

c(n; r)e(�)ne(z)r; r 2 1

l
Z:

(H2) For some � > 0,

f(�; z)e(mpz) = o(y��); when y ! 0:

(H3) For each � 2 lZ,

c(n; r) = c(n+ �r + �2m; r + 2m�):

It is obvious that J0
k;m

(N; l) � S(m; l). A natural question is: Which one of S(m; l) is the

element of J0
k;m

(� (N); l)? An answer will be given in the next section as a consequence of the

main results of this paper.

2 Main theorems

Let f 2 S(m; l). From the condition (H3) and the Shimura correspondence, we have the

following formula

f(�; z) =
X
a2T

fa(�)�2m;a(�; z);

where 1
2ml2

T is a complete system of representatives of the cosets (2ml2)�1Z=Z, and

�2m;a(�; z) =
X
�2Z

e
�4m2l4 + 4aml2 + a2)� + (4m2l3 + 2aml)z

4ml4

�
:



No. 3 L-FUNCTIONS OF JACOBI FORMS WITH SHIMURA TYPE 303

Furthermore we have

fa(�) =

1X
n=0

ca(f; n)e
� �

4ml2

�
(a 2 T );

where ca(f; n) is nothing but c(t; r) satisfying n = 4ml2t� r2. For every fa(�), one can attach to

it an L-function

La(f; s) =

1X
n=1

ca(f; n)

ns
;

and extended L-functions

�a(f; s) = (2ml2)s�
1

2��s� (s)La(f; s);

�a(f;N; s) = (2
p
Nml2)s�

1

2��s� (s)La(f; s);

�
N

a
(f; s) = (2

p
Nml2)s�

1

2��s� (s)
X
n>1

4mnl2 � a2

(4mnl2N � a2)s
:

By the same argument of Hecke[1], one can prove that these L-functions converge absolutely and

uniformly on any compact set of the complex half-plane Re(s) > � + 1. The �rst one of our main

results is

Theorem 2.1. Suppose k and N are positive integers, and f; g 2 S(m; l) satisfy the

transformation formula

(H4) g(�; z) = (N�)�ke(�mz2��1)f(�(N�)�1; z(N�)�1):

Then for every a 2 T , �a(f;N; s) can be holomorphically continued to the whole complex

plane and satisfy the following functional equation

�a

�
g;N; k � s� 1

2

�
= N� k

2 i�k(2ml2
p
N)�

1

2

X
a2T

e
�
� ra

2ml2
p
N

�
�
N

r
(f; s):

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.1. Keep the assumption of Theorem 2.1. If Re(s) < k � 1
2 , then

ik(Nk+ 1

2 2ml2)
1

2�a

�
g;N; k � s� 1

2

�

=

Z 1

0

Z 1

0

f
� iyp

N
;
pliyp
N
� a

2mlN

�
e(p2ml2

p
Niy)ys�

1

2 dpdy:

Proof. By Ia; I1 and I2 we denote the integrations

Z 1

0

Z 1

0

;

Z 1

0

Z 1

0

and

Z 1

1

Z 1

0

respec-

tively. Exchange the variables by y = x�1, we see

I1 =

Z 1

1

Z 1

0

f
� iyp

N
;
pliyp
N
� a

2mlN

�
e(p2ml2

p
Niy)ys�

1

2 dpdy

=

Z 1

0

Z 1

0

f
� ix�1p

N
;
plix�1p

N
� a

2mlN

�
e(p2ml2

p
Niy)x�s�

3

2 dpdx:

Then applying the condition (H4) and taking � = ip
N
x, we have

I1 =

Z 1

0

Z 1

0

ikN
k

2 g
� 1p

N
ix;�pl � aix

2ml
p
N

�
e
�
pa+

a2ix

4ml2
p
N

�
xk�s�

3

2dpdx:

Now we compute the integral I2. For the same argument above, we have

I2 =

Z 1

0

Z 1

0

f
� ix�1p

N
;
plixp
N
� a

2mlN

�
e(p2ml2

p
Nix)xs�

1

2dpdx

= ikN
k

2

Z 1

1

Z 1

0

g
�
ix
p
N;�pl � aix

2ml
p
N

�
e(p2ml2

p
Nix)xk�s�

3

2 dpdx:
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In other words, we obtain

Ia =

Z 1

0

Z 1

0

ikN
k

2 g
� ixp

N
;�pl � aix

2ml
p
N

�
e
�
pa+

a2ix

4ml2
p
N

�
:

We denote the Fourier coeÆcients of g and ga as d(n; r) and ca(g;M) respectively. Thus

Ia = ikN
k

2

Z 1

0

X
n;r

d(n; r)e
� nixp

N
� raix

2ml
p
N

�
e
� a2ix

4ml2
p
N

�
xk�s�

3

2

Z 1

0

e(pa� rpl)dpdx

= ikN
k

2

1X
M=1

ca(g;M)

Z 1

0

e
� Mix

4ml2
p
N

�
xk�s�

3

2 dx:

By the condition (H2), we can interchange the order of the integration and the summation above.

Also note that we have substituted ca(g;M) for d(n; r), and have used the orthogonality of the

exponential functions in the integration. So that we have shown that

Ia = ikN
k

2 (2ml2
p
N)

1

2�a

�
g;N; k � s� 1

2

�

for Re(s) < k � 1

2
. This �nishes the proof of Lemma 2.1.

Lemma 2.2. For Re(s) > 0, one has

Ia =
X
r2T

e
� �ar
2ml2N

�
�
N

r
(f; s):

Proof. We now give another computation for Ia, in order to deduce Lemma 2.2. Making

a variable change, let q = (l
p
Nm)p+ r

2
p
Nm

, we have

Ia =

Z 1

0

Z 1

0

X
n;r

c(n; r)e
��n+ plrp

N
+ p2ml2

p
N
�
iy
�
� e
�
� ar

2mlN

�
ys�

1

2 dpdy

= (l
p
Nm)�1

Z 1

0

X
N 0;r1

cr1(N
0)e
�
� ar1

2ml2N

�
�
Z

l

p
Nm+

r1

2l

p
Nm

r1

2l

p
Nm

e
�q + n� r

2

1

4ml2Np
N

iy
�
ys�

1

2 dqdy

= (l
p
Nm)�1

X
M;r

cr(M)e
�
� ar

2mlN

��pN
2

� 1

2

Z 1

0

e
�4nml2N � r2

4Nml2
p
N

iy
�
ys�1dy

= (l
p
Nm)�1

X
M;r

cr(M)e
�
� ar

2mlN

��pN
2

� 1

2

��s� (s)
�4nml2N � r2

2Nml2
p
N

��s

= (l
p
Nm)�1(2Nml2

p
N)s

�pN
2

� 1

2

��s� (s)
X
r

e
�
� ar

2ml2N

�X
M

cr(M)

(4mnl2N � r2)s

= (2m
p
Nl2)s�

1

2��s� (s)
X
r

e
�
� ar

2ml2N

�X
M

cr(M)

(4mnl2N � r2)s
:

This completes the proof of Lemma 2.2.

Proof of Theorem 2.1. Checking the process of the proof of Lemmas 2.1 and 2.2, one can

�nd that I1 and I2 de�ne two holomorphic functions on C , since they are absolutely and uniformly

convergent on any vertical strip domain of the complex plane. So that Ia is a holomorphic function

on the complex plane, and therefore �a(g;N; s) can be holomorphically continued to the whole

plane. As for the function equation, one can get it by comparing the expressions of the integrations

in the lemmas. Thus we have �nished the proof of Theorem 2.1.

In particular, the following statement is true.

Theorem 2.2. Let f and g be in S(m; l), and satisfy the transformation formula (H4).

Then �a(f; s) can be analytically continued to a holomorphic function on the whole s-plane for
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every a 2 T , and satis�es a functional equation

�a

�
g; k � s� 1

2

�
= i�k(2ml2)�

1

2

X
r2T

e
�
� ra

2ml2

�
�r(f; s):

Since any element f(�; z) of J0
k;m

(� (1); l) satis�es the condition (H1)|(H4) (taking g = f in

(H4)), we obtain the following

Corollary. If f 2 J0
k;m

(� (1); l), then

�a

�
f; k � s� 1

2

�
= i�k(2ml2)�

1

2

X
r2T

e
�
� ra

2ml2

�
�r(f; s):

Following the classical argument from Hecke[1], or a version of Martin[7], we can prove the

following

Theorem 2.3. Let f 2 S(m; l), the following two conditions are equivalent

(1) f(�; z) 2 J0
k;m

(� ; l);

(2) �r(f; s) (r 2 T ) can be analytically continued to whole complex plane, and are bounded

on any vertical strip, and satisfy the functional equation

�a

�
f; k � s� 1

2

�
= i�k(2ml2)�

1

2

X
r2T

e
�
� ra

2ml2

�
�r(f; s)

for every a 2 T .

Proof. (1))(2), by Theorem 2.1. For (2))(1), we give here an outline of the proof.

Since � (1) is generated by two elements

�
1 1

0 1

�
and

�
0 �1
1 0

�
, it is suÆcient to show that

(2) has to imply the following relation

f(�; z) = ��ke
�
� mz2

�

�
f
�
� 1

�
;
z

�

�
:

Recalling that

f(�; z) =
X
a2T

fa(�)�2m;a(�; z);

we get

f
�
� 1

�
;
z

�

�
=
X
a2T

(2ml2)�
1

2

��
i

� 1

2

e
�mz2

�

�
�
X
b2T

e
�
� ab

2ml2

�
fb

�
� 1

�

�
�2m;a(�; z):

Thus the problem is reduced to prove

fa(�) = ��k+
1

2 (2ml2i)�
1

2

X
b2T

e
�
� ab

2ml2

�
fb

�
� 1

�

�
: (�)

Because fa is a holomorphic function on s-plane, it is enough to verify (�) for the special line

f� = iy : y 2 R ; y > 0g.
First note a fact, for � > 0,

e�t =
1

2�i

Z
Re(s)=�

� (s)t�sds:

From this fact and the following expansion

fa(iy) =
X
N

ca(N)e
� Niy

4ml2

�
;

we obtain

fa(iy) =
X
N

ca(N)
1

2�i

Z
Re(s)=�

� (s)
�2�yN
4ml2

��s
ds
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for any � > 0: If � > � + 1, then La(f; s) is uniformly convergent and bounded on Re(s) = �.

So that �a(f; s) is absolutely integrable. Hence the exchange of the order of integration and

summation is justice, and

fa(iy) =
1

2�i

Z
Re(s)=�

(2ml2)
1

2 y�s�a(f; s)ds: (��)

Taking � such that k � 1
2 � � > � + 1, we can show that

fa(iy) =
1

2�i

Z
Re(t)=k� 1

2
��

(2ml2)
1

2 yt�k+
1

2�a

�
f; k � t� 1

2

�
dt

=
1

2�i

Z
Re(t)=k� 1

2
��

i�kyt�k+
1

2

X
b2T

e
�
� ab

2ml2

�
�b(f; t)dt

= (iy)�k+
1

2 (2ml2i)�
1

2

X
b2T

e
�
� ab

2ml2

�
fb

�
� 1

iy

�
:

The last step uses the formula (��). This �nishes the proof of Theorem 2.3.
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