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Abstract As far as we know, the testing problem of legal firing sequence is NP-complete for gener-
al Petri net; the related results of this problem on the polynomial-time solvability are limited only to
some special net classes, such as persistent Petri nets, conflict-free Petri nets and state machine Petri
nets. In this paper, the language properties of synchronous composition net are discussed. Based on
these results, the testing algorithm polynomial-time complexity for legal firing sequence is proposed.
Therefore, net classification of polynomial-time solvability for testing legal firing sequence is extended.
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In the dynamic analysis method, the testing problem of legal firing sequence (LFS) of Petri
nets is quite fundamental in the sense that it is included, as a sub-problem, in various basic
problems of Petri net theory. For example, (i) classical scheduling problems[1_3] or cyclic
scheduling problems that can be formulated as the testing problems of legal firing sequence for

[4—

timed Petri nets'4 ! ; (ii) the minimum initial resource allocation problem ( called the minimum

initial marking problem)[7_“] ; (iii) the well-known state reachability problemm_“] . As far as
we know, the testing problem of legal firing sequence is NP-complete for general Petri net, the
related results of this problem on the polynomial-time solvability are limited only to some special
net classes, such as persistent Petri nets, conflict-free Petri nets and state machine Petri

(7, 8, 15]

nets . For a general Petri net model, the testing of legal firing sequence is also only an

approximation algorithm[ls]. In this paper, the language properties of synchronous composition
net are discussed. Based on these results, the testing algorithm polynomial-time complexity for
legal firing sequence is proposed. Therefore, net classification of polynomial-time solvability for
testing9¥égal firing sequence is extended .

The question to be answered is described as follows:

(LFS) Given a Petri net 5 = (P, T; F, M,) and a nonnegative integers vector X, is
there a legal firing sequence 6 on My, such that My[ 6 > and each component X(¢) of X e-
quals all to occurrence times # (¢/¢) of the transition ¢ in sequence ¢ ?

1 Synchronous composition operation of Petri net and its properties

Definition 11", LetS, = (P,, T;; F;, My;), i = 1, 2 be two Petri nets. P,
P,=@, TINT,%«@B. SetS = (P, T; F, M), such that
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(i) P=P,UP,;

(ii) T=T,U Ty;

(iii) F= F,U F,; and

(iv) Mo(p) = My;(p), f pEP;, i=1, 2. \
Then 3 is called a synchronous connection net of 3, and S, while @ is used to represent the
synchronous operations, denoted as 3 = 2,.®Z2,. On the contrary, if a Petrinet 5 = (P, T
F, M,) is synchronous decomposed into two Petri nets 3, = (P;, T;; F;, My),i=1,2,
such that the above conditions (i)—(iv) are satisfied. Then 3 1 and ¥, are called synchronous
decomposition nets of 3.

Definition 2. Let X be a finite alphabet, Y C X.

(i) Set I'y~y: X*—>Y*, such that Yo € X*, and I'y.y(c) is the remnant sub-string
after deleting each element in X — Y from 0. I'y_y is called a projection mapping from X to Y.

(ii) Set I'y~x: Y*—=>X", such that Vo' € Y*, and I'yls(c’) = (a1 (s € X*) A
(Iy~y(a) =6')}. 'yl is called an extension mapping from Y to X, where “ * ” is a closed
operation of the language .

Definition 3. Let X be a finite alphabet, ¥ C X, Ly and Ly be the languages on X and
Y, respectively. Set I'yoy (Ly) = {I'x~y (6) € Y* | ¢ € Ly} and Tyl x(Ly)
= V,UG LyI";LX(a' ), Then I'y.y(Ly) and I'yix(Ly) are called the projection language of Ly

from X to Y, and the extension language of Ly from X to Y, respectively .

Lemmal. Let3; = (P, T;; F;, My;), i = 1, 2 be two Petri nets, and 3 =3, @
22:‘ (P, T; F, My). Then L(3) = P?}»T(L(zl)) N F?:—J(L(zz))-

Proof. Vo€ L(Z), denoted 5 =0[1]0[2] a[glE(T,UT,)". Set o;<e (e is
an empty string) . Since My[ o > , consider the following three cases:

Casel. HKo[l]ET, -T,, M, = (M7, ML), such that Molty > My N My, =
Mg, then set a,<a,t;;

Case2. Ifo[1]€ET,-T,, M;= (ML M), such that Mupltya> Mp A M, = My,
then set 0,<a,1;;

Case3. Ifo[1]€ T\N Ty, My=(MLM)T, such that My [ty > My A Moy[ £y >
M, then set 6y<a,t;; \ 6,051, .

Similar processes will be also applied to M;, M;,***, M ¢ Finally, o, and o, can be ob-
tained such that (g; is a sub-string of o, &;€ T ) A (My;[ 0, > Mi)AN(i=1,2). Thus o; =
FT_.Ti(a)E L(Z;). This gives o € I";_.LT(G,-)QP;‘_LT(L(E,-)), i=1, 2. Or equivalently,
1S P;II—»T(L(ZO)D F;ZLT(L(EZ)) » which leads to L(Z) ¢ P;lLT(L(El)) N P}ZLT(L
(22)).

The following formula can be proved through a reversal of the above procedure :

P7r(L(30) N Tip(L(35,) ¢ L(3).
Based on the above descriptions, we have

L(Z) = T r(L(Z)) N Tilr(L(S,)).

Hence, Lemma 1 is proved.
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Lemma2. Let S, =(P;, T;; Fi, My;), i=1, 2 be two Petri nets, = =3; @3,
and A= Ty T,. Then I'roy (L(Z2)) = Tr o2 (L(Z)) NTr~a (L(Z2)).

Proof. From Lemma 1, L(Z) = F;lLT(L(Zl)) N FEII_»T(L(EZ)). Thus 'y s (L
(2))= PT—»A(PEll—»T(L(El))) N FT—»A(szLT(L(Ez))) = FTK—>A(L(21)) N PTZ—»A(L
(Z,)). Hence it is completely proven.

Next, we discuss some language properties of Petri nets for synchronous composition (or de-
composition) . These results will be made into the basis of backward algorithms .

Lemma 3. Let T be a finite alphabet, and ¥ T;, T,C T: TUT,=T, T/\NT,#08.
VoET", set I’T_.Tl_(a) =0;,, i=1, 2. Then FT‘_.A(O'l) = FTZ_.A(O'Z), where A = T,
T,.

Proof. FT—»Tlﬂ Tz(O') = FT_.TIQ Tz(a) if and only if

PT1—>T10 TZ(FT—»TX(G')) = FT:"TIH Tz(PT"Tz(G)) if and only if

FT;»A(OH) = FT2—>A(0'2)-

Definition 4. Let 7,, i =1, 2 be two finite alphabets, T, T, @, Ly be the lan-
guages on T;, i=1, 2. For 5,€ LTs’ set 0102 = {all"TluTz_.Ti(a) =g;, i=1, 2}. Then
01(®)0 is said as synchronous sequence set of 5, and o,. Let X; be the firing vectors correspond-
ing with firing sequences o;, i =1, 2. Set X = X;0X,, such that V t & T,UT,: (i) ¥ (t€
TN T,)—~>(X,(¢) = X,(t)), then X(¢) = X,(¢); (i) if (€ T, - (T\NT))A(X5_;
(¢)=0), then X(¢) = X,(t), i=1, 2. Then X is said as synchronous firing vector of X; and
X,.

Lemmad. Let 3, =(P;, T;; F;, My;), i =1, 2 be two live Petri nets, = = 3, @
S,,andA=T,NT,. If,€L(3;), i=1, 2, then crl@o‘sz(E), if and only if I'r 5
(01) = FTZ—»A(Gz)-

Proof. o,®02C L(ZX) if and only if 61®) 02 C FElLT(L(El)) N FEZLT(L(EZ))
(from Lemma 1) ;

if and only if 0'1®0'2QFE;.T(L(2,-)), i=1, 2;

if and only if YV 0 € 0,®0,: FT_.Ti(o‘)G L(Z),i=1,2;

if and only if PT1—>A(0'1) = PT;»A(Uz) (from Lemma 3) .

Definition 5. Let ;= (P;, T;; F;, My;), i=1, 2, =", k be k Petri nets, o; be the

firing sequences of 3;, and X; be the firing vectors corresponding with firing sequences o;, i =
1, 2, -, k. Then denoted ’

21*,':21 @22@@2” Tl*iz TIU TzUUT,,

O1x i =01R02® " ®0i3  Xixi= X10X,06X;;

i=1,2, k. ‘

Lemma 5. Let 3;=(P;, T;5 Fi, My;), i =1, 2 be two Petri nets, 3 =3,.,=(P,
T; F, Mp). X be a | Tl-nonnegative integers vector of £, and I‘T_.Ti(X) =X, 1=1, 2,
Then X is a firing vector of = if and only if
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(i) X;is a firing vector 3;, i=1, 2;

(ii) PTF’ TN Tz(al) = PT:"Txn Tz(az) , where ¢; is the firing sequence corresponding with
firing vector X;, i=1, 2. _

Proof. (=) Since X is firing vector of = . Then there is a firing sequence corresponding
with firing vector X of 2. Set g, = PT_.Ti(a) , =1, 2. Since I'T_,Ti(X) =X;,i=1, 2, that
is X = X;8X;. Then o; are the firing sequences corresponding with firing vector X;, i =1, 2 of
2;. Hence X; are the firing vectors of 5;, i =1, 2. Thus the result in (i) is true. Moreover,
according to Lemma 3, the result in (ii) is also true. »

(&) Since X; are the firing vectors of ;, i =1, 2. Then there are the firing sequence o;,
i =1, 2 corresponding with firing vector X; of ;. Since PTF’Tln Tz(al) = FT;"Tln T2(02) ,
then we have 0,®0,C L(Z) according to Lemma 3. Thus J 6 € 01®02C L(Z), such that
o;=Ir. Ti(a) » =1, 2. Since o;, i =1, 2 are the firing sequences corresponding with firing
vector X;, and I"T_.Ti(X) =X, i=1, 2, that is, X = X;0X,. Then o is a firing sequence
corresponding with firing vector X of 5. Therefore, X is a firing vector of 3.

Theorem 1. Let 3;=(P;, T;; F;, My;), i=1,2, -,k be k Petri nets, 5 = 3,,,
=(P, T; F, My),X is a | T|-nonnegative integers vector of 5, and FT_,T‘_(X) =X, i=1,
2, ***,k. Then X is the firing vector of 3 if and only if

(i) X; are the firing vectors of 3;, i =1, 2, *, k;

(ii) Ir 1. n Tm(al*i) = PTM..TWnTM(diH), where o, ; is the firing sequence
corresponding with X, ; of 3,.;. 0;, are the firing sequences corresponding with X, of
Sivisi=1,2, », k-1.

Proof. Since operations @, U, @ and O all satisfy the law of association, according to
the idea in fig.1 and Lemma 5, the result is true.

Theorem 2. Let =; = (P;, T;; F;, My;), i=1,2, **,k be k Petri nets. o, € L
(=), i=1,2, -, k.Then FTIH»T“_.HT‘_”(O'I*:‘) = PTl*TlﬂTi‘l(o'l)®PT2—>TzﬂTiH(0'2)®
“'®PT;"T.“TM(J")’ i=1,2, -, k-1.

Proof. VaAEI’Tm_,A(al*,-),where A=T«;NT;,;. Then 6€ s, ®a,, such
that FTM_.A(G) =05. Set A;=T,NA, i=1,2, **,k.Then

os € FA—»AI(O'A) ®FA—>A2(0’A) ¢ ®FA—>Ai(O'A)

= Taes (Tr +4(0)) ®Tses (T1~s(0)) @ ®Taa (T .a(0))

= FT“I,——AI(G) ®PTM—>A2(0) X ®FTM—>A.,(U)

= PTI—»AI(PTM—»TI(G)) ®FT2—»AZ(FTM—>1'2(0')) I ®FTi—>A‘_(PT1'i—>Ti(0'))

= Prl-Al(Gl) ®PT2—>A2(02) @ ®PTi—>Ai(di)-
Therefore, PT“__—»Tmn TM(UH i) c PTl—>Tlﬂ Ti+1(q1)®PT2—>T2ﬂ Tl,ﬂ(o'z)@"'@f'ri—»z'__nrm
(6), i=1,2, -, k~1.

On the other hand, if 3 o‘AEPTI_.A(01)®PTZ_,A(az)®'"®1"Ti_.A(0',~). However, o,
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l l

Is there o, L(Z,) corresponding with X, ? Is there ¢, EL(Z,) corresponding with X, ?

No

I'rira T;(L(al))=r r-r,n (T, 7

Yes /

G EL(Z ) Is there o,€L(Z;) corresponding with X,?

\ Yes No

A

Lyooron (0= pp or, (L(o'u X is not a firing vector of Z.

<

S N/ No No
Yes

O EL(E ) Is there o, ,€L(Z,,) corresponding with X,_,?

AN

Yes

7

FTl-H"Tn-Hn T;(L(al’k_l))=r7 Trea " K(L(a:s)) ?

[

Yes

Xis a firing vector of Z.

Fig. 1. The proving idea of Theorem 1.

¢PT“_—>A(dl*i)° ThUS VO'EO'I*i, we have Pf“__.A(O'i)#O'A. Since FTl”...Ti(O') =0y

set PTA_.A_(O',‘) =064, 1=1,2, ***, k. Then
A ¢ 04 ®0A2 @ ®O'A1 = PT|—>A1(0'1) ®FT2—>A2(0'2) @ ®PT3—>Ai(O'i)-
This is contradictory with o, € FTI—*A(al)®FT2—*A(62)®"'®FTi->A(Gi)- Hence,
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FT1—>Tlﬂ Tm(o'l) ®FT2—>T2F| TM(O'z) N @FTi—»Tin Tm(ai)
g FT“;_)TH;OT.-A(GI*;')’ i = 19 27 ""k-

This result is true.
2 Testing algorithm and its computing complexity

Based on Theorems 1 and 2, the testing algorithms of ledge firing sequence are described as
follows :

Algorithm Testing.

Imput S=(P, T; F, My), 3,=(P;, T;; F;, My;), i=1,2, =, k, X

Output b/ If 36€ L(Z): such that Yt E T, X(t)= # (t/0), then b =1, other-
wise b=0. /

(1) begin

(2) for i=1to k do

(3) Xi*“FT—»Ti(X);

(4) For X; and Z;, the solutions are found by call algorithm in ref. [15]; / If J o;
G L(Z,):

such that YVt € T;, X;(t) = # (¢/0;), then b;<1, otherwise b;<0. /
(5) if b; =0 then b<0;
(6) goto (24);
(1 endif ;
(8) endfor;
9) b<1; T\x,<9D;
(10) fori=1to k-14do
(11) Tl*,“"THiU T;s
(12) A<T« ;N Ty
(13) 0';‘+1,A<_PTHI—>A(0'1‘+1);
(14) Ar<TNTiys
(15) o, A<—FT1_,A1(01);

(16) for j=2to i do

(17) A<T,NTi, 13

(18) oi, a0, A®I’Ti_.4j(aj);
(19) endfor;

(20) if 0;, A# 041, 2 then b<0;
(21) goto (24);

(22) endif ;

(23) endfor;

(24) endbegin.

Now, we analyse the time complexity of testing algorithm. First, the other two results for
persistent Petri nets and state machine Petri nets are described in the following.

Lemma 6!'5},  The testing problem of legal firing sequence for a Petri net is NP-com-
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plete.

Lemma 71" % %1, Let 3= (P, T; F, My) be a persistent Petri nets, and X be a
| T| nonnegative integers vector. Then the time complexity of testing algorithm depending
whether X is a firing vector of = is O(IP || X1).

Note. Since conflici-free Petri net is also persistent Petrit'?!

Therefore, the time com-
plexity of testing algorithm for conflict-free Petri net is not larger than O(| P Il x1).

Lemma 8% 3],  Let 3= (P, T; F, M) be a state machine Petri net, and X be a
| T1 nonnegative integers vector. Then time complexity of testing algorithm whether X is a firing
vector of 3 is 0(1X1?).

Theorem 3. Let PCSPN be the set of persistent Petri nets, conflict-free Petri nets and
state machine Petri nets, =; = (P;, T;; F;, My;) €PCSPN, i=1,2, =k, 3=231.,=
(P, T; F, My), X be a | Tl-nonnegative integers vector of = . Then time' complexity of test-
ing algorithm whether X is a firing vector of Z is O(max(IT1%, IP] XI, 1X1%).

Proof. In Algorithm Testing, the time complexity of computing X;is | T || T;1. Accord-
ing to Lemmas 7 and 8, the time complexity of computing o; by call algorithm in refs. [7, 8,
15j is max{ | P; || X;| + 1 X;1?}, and the time complexity of testing b; = 0 is 1. Thus the time

k
complexity of (2)—(8) is Z(I T T;'+ max{| P X;1, | X1*} +1). The time complexi-
i=1
ty of computing Ty ;is | Ty« ; | T;|. The time complexity of computing A is | T« | T;1. The
time complexity of computing o; .1, o is | T1«; | X;.!. The time complexity of (14)—(17) is

i-1

Z(l Till Tyyy 1+ X; 11 T; N Tiyq 1) . The time complexity of computing a;, 5 is | X; IZ

j=1

| X; |, and the time complexity of tasting o; s 0;.1, ai8 | Xy | E | X; |. Thus, the time
j=1

complexity of (2)—(8) is
Z(! Tiwi VU TV 4] Towi 11 Xy 14+ Z(l Tl T 141 X511 TN T 1) +

i=1
IXIZIXI+IX,+1IZIXI)

j=1

Therefore, the time complexity of Algorlthm Testing is
k

Z(ITW U T 41 Tows 1] Xipg 1+ Z(l T T (41X 1T N Tig 1) +

IXiIZIXjIHXMIZIX,-I)
j=1 j=1
k
+ 0T N T+ max{l PH X 1+1 X2 +1) = OGmax(1 T 12, [P IX L, 1 XPP).
i=1

3 Conclusion

As far as we know, the testing problem of legal firing sequence is NP-complete for general
Petri net, the related results of this problem on the polynomial-time solvability are limited only to
some special net classes, such as persistent Petri nets, conflict-free Petri nets and state machine
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Petri nets!”’ ® 151 For general Petri net model, the testing of legal firing sequence is also only an

[15]

approximation algorithm' ™" . In this paper, a polynomial-time testing algorithm of legal firing se-

quence for the synchronous composition net of some persistent Petri nets, conflict-free Petri nets
and state machine Petri nets is proposed. Therefore, the results in refs. [7, 8, 15] are extend-

ed.
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