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Cardiovascular diseases such as myocardial infarction, heart failure, and cardiomyopathy, persist as a leading global cause of death. Current 
treatment options have inherent limitations, particularly in terms of cardiac regeneration due to the limited regenerative capacity of adult 
human hearts. The transplantation of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has emerged as a promising and potential 
solution to address this challenge. This review aims to summarize the latest advancements and prospects of PSC-CM transplantation (PCT), 
along with the existing constraints, such as immune rejection and engraftment arrhythmias, and corresponding solutions. Encompassing a 
comprehensive range from fundamental research findings and preclinical experiments to ongoing clinical trials, we hope to offer insights 
into PCT from bench to bedside. 
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Introduction  

Cardiovascular diseases (CVDs), such as myocardial infarction 
(MI), heart failure (HF), cardiomyopathy, and congenital heart 
diseases (CHD), significantly contribute to global morbidity and 
mortality (Roth et al., 2020). The adult human heart’s limited 
regenerative capacity poses the risk of irreversible cardiac 
damage following the loss of cardiomyocytes (CMs) (Ali et al., 
2014). Despite advancements in cardiovascular medicine, fully 
replacing lost CMs remains unattained. Allogeneic heart 
transplantation, a last-resort option for end-stage HF, faces 
challenges such as donor scarcity and side effects of immuno
suppressive therapy (IST) (Weber et al., 2017). 

Pluripotent stem cells (PSCs), including embryonic stem 
cells (ESCs) and induced pluripotent stem cells (iPSCs), offer 
promise in regenerative medicine. PSCs have the ability to 
differentiate into various cell lineages, including but not 
limited to CMs (Lian et al., 2012), intestinal cells (Spence et 
al., 2011), and endothelial cells (Wang et al., 2020a). PSC- 
derived cells can also be constructed into 3D biological 
structures with various organ-specific cell types, such as 

organoids (Vandana et al., 2023) and blastoids (Rivron et al., 
2018; Wu et al., 2024). These PSC-derived products provide 
excellent platforms for drug screening, disease modeling, and 
embryology research (Shi et al., 2017). More importantly, 
PSC-derived product transplantation has been considered and 
tested as a regenerative therapeutics for various diseases. In 
particular, iPSCs, reprogrammable from a patient’s somatic 
cells, can generate autologous grafts, potentially eliminating 
the need for IST. Among various fields of regenerative 
medicine (Shi et al., 2017), PSC-derived cardiomyocytes 
(PSC-CMs) and their transplantation have shown potential 
for heart regeneration. 

This review comprehensively summarizes PSC-CM transplan
tation (PCT) advancements, starting with the generation and 
maturation of PSC-CMs, and the methodology of PCT. Insights 
into challenges like immune rejection, engraftment arrhythmias 
(EAs), graft-host integration, and tumorigenicity are also 
provided. Finally, we systematically summarize recent PCT 
clinical trials. This review offers not only full-range knowledge 
of PCT but also practical guidance for those who endeavor to 
participate in this promising field (Figure 1). 
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Generation and maturation of PSC-CMs  

Generation of PSC-CMs  

Successful PCT relies on the in-vitro generation of functional PSC- 
CMs. In humans, four key signaling pathways: Wnt, BMP, TGF-β, 
and FGF, play a significant role in early CM differentiation 
(Parikh et al., 2015). Thus, the in-vitro differentiation of PSC-CMs 
involves introducing crucial growth factors (GFs) to modulate 

these signal pathways. 
The initial protocols of PSC-CM differentiation utilized 

embryoid bodies (EBs) formed from ESCs, with subsequent CM 
purification (Kehat et al., 2001; Mummery et al., 2002). 
However, early protocols were relatively insufficient and 
unstable (Jiang et al., 2012). Improved methods, such as 
combining GSK3 inhibitors and Wnt signaling pathway 
inhibitors (Jiang et al., 2012), achieved up to 98% cTnT + CMs 
across various hPSC lines (Lian et al., 2012; Lian et al., 2013). 

Figure 1. Overview of PCT from bench to bedside. Three steps are required for the bench-to-bedside translation of PSC-CMs. The in vitro generation of PSC-CMs constitutes the 
very first step, which can result in grafts of multiple modalities, including pure PSC-CMs, organoids, and EHT. Meanwhile, PSC-CMs must surpass the challenge of tumorigenicity, 
maturation, purification, and large-scale production to achieve transplantation. The preclinical animal study is the second step, in which NHP, rodent, and porcine are commonly 
used. PSC-CMs can be delivered through intramyocardial injection, transcatheter delivery, or cardiac patch placement, with severe challenges such as engraftment arrhythmias, 
immune rejection, vascularization, and engraftments hindering the final translation. The final stage is human clinical trials of different stages, to determine the final safety and 
efficacy of PCT. EHT, engineered heart tissue. NHP, non-human primate. PCT, PSC-CM transplantation. PSC-CM, pluripotent stem cell-derived CM.   

https://doi.org/10.1007/s11427-024-2801-x                                                                                                SCIENCE CHINA Life Sciences Vol.68 No.9, 2568–2590  September 2025 2569 

https://doi.org/10.1007/s11427-024-2801-x


Further refinements, like removing heterogeneous components 
such as bovine serum albumin (BSA) (Lian et al., 2015), and 
utilizing activin A and BMP4 (bone morphogenetic protein 4) 
(Kattman et al., 2011), have enhanced cardiac differentiation. 
Purification of PSC-CMs, often with lactate-rich substrate, 
minimizes the risk of teratoma formation post-transplantation, 
further ensuring safety (Hattori et al., 2010; Tohyama et al., 
2013) (Figure 2). 

Notably, hPSC-CMs encompass various cardiac cell lines, 
including ventricular CMs, atrial CMs, and pacemaker cells 
(Devalla and Passier, 2018). Studies have explored subtle gene 
expression differences to generate specific cardiac cell lines, such 
as sinoatrial node-like cells, offering possibilities for biological 
pacemaker creation through modulating retinoic acid and FGF 
(fibroblast growth factor) signaling pathways combined with 
metabolic screening (Darche et al., 2022; Hou et al., 2022). 

Mass production of PSC-CMs  

PCT necessitates a substantial cell quantity because each acute 
myocardial infarction (AMI) incident can claim approximately 1 
billion CMs in humans (Laflamme and Murry, 2005). For mice, 
pigs, and NHP, PCT requires around 1×10 6, 1×10 8 (Marchiano 
et al., 2023), and 1×10 9 PSC-CMs per heart, respectively (Chong 
et al., 2014), highlighting the need for mass production. 

Several strategies have been proposed for mass PSC-CM 
production. One approach involves generating clinically rele
vant-sized cardiac patches (CPs). Gao et al., Shadrin et al., and 
Fukuda et al. have all reported successful generation of large CPs, 
some exceeding 4 cm×4 cm, with over 4 million PSC-CMs of high 
purity (Gao et al., 2018; Shadrin et al., 2017), while others 
produced CPs consisting of 7.2×10 8 hiPSC-CMs per patch 
(Tohyama et al., 2017). Quite recently, another team led by 

Figure 2. Differentiation and maturation of PSC-CMs. The differentiation of PSC-CMs includes multiple steps, starting from iPSCs/ESCs to mesoderm cells, cardiac progenitors, 
and finally, CMs. During differentiation, different growth factors are needed to modulate the cell lineage. The product cells of each stage have specific markers that allow 
researchers to identify, such as cTnT for late CMs. The newly-differentiated PSC-CMs present immature structurality and functionality and thus must undergo in vitro maturation 
before transplantation. Commonly adopted methods and evaluations for maturation are also listed in the figure. CM, cardiomyocyte. cTnT, cardiac troponin T. ESC, embryonic 
stem cell. PSC-CM, pluripotent stem cell-derived cardiomyocyte.  
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Coulombe generated a mega-CP of 6.5 cm×7.5 cm with 1 billion 
hiPSC-CMs seeded, demonstrating feasibility in manufacture, 
surgical transplantation, and preclinical treatment (Dwyer et al., 
2023). An alternative solution involves differentiating PSC-CMs 
in specialized platforms, such as stirred-tank bioreactors (Pandey 
et al., 2019), microfabric vessels (Miwa et al., 2021), and PDMS 
(polydimethylsiloxane)-lined roller bottles (Dhahri et al., 2022), 
all capable of producing large quantities of PSC-CMs. 

However, not all protocols are clinically valuable or feasible. 
Evaluation criteria include economic efficiency, biocompatibility, 
and the incorporation of PSC-CM purification and maturation. 
Future comparative studies are crucial to establish optimal 
protocols for large-scale PSC-CM production, meeting clinical 
demands effectively. 

Maturation of PSC-CMs  

One of the most unique properties of PSC-CMs is that they present 
with phenotypes that closely resemble those of early fetal CMs 
rather than their adult counterparts. Structurally, PSC-CMs are 
more round-shaped and underaligned, with relatively immature 
sarcomere. Functionally, PSC-CMs present with automaticity 
and inferior Ca 2+ handling (Scuderi and Butcher, 2017). These 
properties potentially impede the efficacy of PCT, calling for 
efficient maturation of PSC-CMs (Gomez-Garcia et al., 2021; 
Hong et al., 2023; Scuderi and Butcher, 2017). 

Strategies to promote the maturation of PSC-CMs  
The process of native CM maturation is intricately influenced by 
the microenvironment of CM development (Yang et al., 2014). 
Replicating this microenvironment in vitro has been shown to 
improve CM maturation, such as applying electrical stimulation, 
mechanical stretch, and metabolic manipulation (Hong et al., 
2023; Sun and Nunes, 2016). For instance, Lu et al. applied 
progression stretch to PSC-CM-based heart tissue and observed 
an increase in the maximum contractile force and sarcomere 
length, almost comparable to that of adult human CMs (Lu et al., 
2021). Crestani et al. (2020) on the other hand, discovered that 
applying electrical stimulation in the beginning stages of PSC-CM 
differentiation resulted in enhanced PSC-CM maturation in 
aspects of gene expression, formation of gap junction, faster 
depolarization, and improved Ca 2+ transients. Biochemical 
manipulation of proteins and signal pathways has also been 
widely investigated. As an example, Chirico et al. and Liu et al. 
reported improved maturation with the treatment of peroxisome 
proliferator-activated receptor gamma coactivator 1α (PGC-1α) 
activators asiatic acid and GW501516 (Chirico et al., 2022), and 
ZLN005 (Liu et al., 2020), respectively. Of note, engineered heart 
tissue (EHT) has emerged as an important platform for PSC-CM 
maturation by incorporating various strategies (Hong et al., 
2023; Sun and Nunes, 2016), including engineering the 
substrates, co-culturing with other cardiac-specific cells, intro
ducing electrical stimulation, and mechanical stretch (Kumar et 
al., 2023; Patel et al., 2023; Ruan et al., 2016; Song et al., 
2022b). Collectively, these cues replicate the essential compo
nents responsible for the maturity of PSC-CMs. However, current 
maturation strategies still cannot generate fully-matured PSC- 
CMs in vitro, whereas the immature electrophysiology is 
considered a prime reason for side effects such as EAs (see 
“Engraftment arrhythmias”). Future efforts are needed to address 
this limitation, possibly by combining multiple strategies to 

facilitate the maturation process (Figure 2). 

Parameters to evaluate the maturation of PSC-CMs  
The maturation of PSC-CMs can be evaluated with various 
parameters, including biochemical, structural, and biophysical 
ones (Hong et al., 2023). At the genetic and molecular levels, 
maturation involves shifts in gene expression and protein 
isoforms, such as the downregulation of pluripotency transcrip
tion factors and upregulation of mesodermal and cardiac 
markers. Key transitions include the modulation of sarcomeric 
proteins like  cTnT and myosin heavy chain (MHC) (Hunkeler et 
al., 1991; Opitz et al., 2004; Xu et al., 2009) and the titin isoform 
shift from N2BA (3,200–3,700 kD) to N2B (3,000 kD) (Opitz et 
al., 2004). These changes are identified through RNA sequen
cing (RNA-seq), ATAC sequencing (ATAC-seq), and single-cell 
RNA sequencing (scRNA-seq), providing a comprehensive toolkit 
for assessing PSC-CM maturity (Murphy et al., 2021; van den 
Berg et al., 2015). 

Morphologically, early-stage PSC-CMs are smaller and round
er, with an average sarcomere length of 1.65 μm, while late- 
stage cells become more elliptical and develop a highly organized 
sarcomere structure of about 2.2 μm in length (Awasthi et al., 
2012; Kehat et al., 2001; Yang et al., 2014). Despite these 
changes, late-stage PSC-CMs lack transverse tubules and multi
nucleation (Pioner et al., 2019; Robertson et al., 2013). 
Metabolically, PSC-CMs transition from glycolysis to oxidative 
metabolism, with mitochondria volume increasing significantly 
during maturation (Giordano, 2005; Hattori et al., 2010; Hu et 
al., 2018; Lopaschuk and Jaswal, 2010; Mills et al., 2017). Adult 
CMs rely primarily on fatty acid oxidation, while PSC-CMs 
depend more on glycolysis (Lopaschuk and Jaswal, 2010). 

Electrophysiologically, PSC-CM maturation is marked by 
improved action potential profiles and increased force generation. 
Immature cells have slower upstroke velocities (~50 V s −1) and 
less negative resting membrane potentials (−50 – −60 mV), 
compared with mature cells (~250 V s −1, −80 – −90 mV) 
(Goversen et al., 2018; Kim et al., 2015; Yang et al., 2014). The 
conduction velocity increases from ~0.1 to 0.3 – 1.0 m s −1 in 
mature myocardium (Yang et al., 2014). PSC-CMs start 
spontaneous beating early in differentiation and maintain 
rhythmic activity for over a year, with rates from 21 to 52 beats 
per minute (Brito-Martins et al., 2008; Burridge et al., 2011; 
Karakikes et al., 2015; Mummery et al., 2012; Otsuji et al., 
2010). These cells exhibit major ion currents typical of adult 
CMs, though often at abnormal levels, and their contractile force 
increases from the nanonewton to the micronewton range (Yang 
et al., 2014).  

Another significant parameter of CM maturation is the 
improved Ca 2+ handling, which is substantial in bridging 
electrophysiology and mechanical contraction (also known as 
excitation-contraction coupling) (Ernst et al., 2023; Karbassi et 
al., 2020). For adult mature CMs, the cell depolarization triggers 
the Ca 2+ influx into the cells through L-type calcium channels 
(LTCC), which then results in the release of Ca 2+ from the 
ryanodine receptors (RyR) on the sarcoplasmic reticulum. 
Finally, Ca 2+ that has been released binds with troponin C, 
initiating muscle contraction (Setterberg et al., 2021). For 
immature PSC-CMs, however, the calcium dynamics are slower, 
and the expression of calcium handling-related proteins, such as 
LTCC and RyR, is significantly lower than that of adult 
ventricular CMs (Ernst et al., 2023; Karbassi et al., 2020). 
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Therefore, the improved calcium transient, signified by an 
increase in Ca 2+ amplitude, upstroke velocity, and recovery 
time, also suggests the maturation of PSC-CMs (Ernst et al., 
2023; Hwang et al., 2015). By using precise parameters to 
quantify PSC-CM maturation, we can enhance the consistency 
and effectiveness of cell therapies, contributing to better 
treatment outcomes for cardiovascular diseases. 

Methodology of PSC-CM transplantation  

Graft modalities  

Dispersed PSC-CMs  
Dispersed PSC-CMs are one of the most widely adopted modalities 
of PSC-CM graft transplantation, for they can be easily obtained, 
preserved, and purified (Chong et al., 2014). Generally, dispersed 
PSC-CMs can be harvested once the cells are well-differentiated in 
vitro (with spontaneous contractions), and subject to direct 
intramyocardial injection. The application and limitation of 
dispersed PSC-CMs will be further elaborated in the section 
“Direct intramyocardial injection”. 

Engineered heart tissue  
EHT refers to 2D or 3D structures composed of various cells and 
biomaterials, such as fibrin, hydrogel, and decellularized extra
cellular matrix (ECM), mimicking the function and structure of 
natural cardiac tissue (Jiang et al., 2021; Riegler et al., 2015; 
Wendel et al., 2015). Apart from PSC-CMs, EHT can include 
cardiac fibroblasts (CFs), endothelial cells (ECs), smooth muscle 
cells (SMCs), and mesenchymal stem cells (MSCs) (Lou et al., 
2023; Pinto et al., 2016; Zhang et al., 2018). With diverse 
combinations of cells, biomaterials, and construction strategies, 
EHT can manifest in various modalities, with 2D PSC-CM cardiac 
patches (CPs or “cell sheets”) and 3D PSC-CM spheroids being the 
most commonly used. 

PSC-CM CPs, configured as cord-like or mesh-like constructs, are 
usually placed on the epicardium, and offer controlled generation 
and transplantation, making them widely used in clinically 
relevant studies. Large-scale PSC-CM CPs have shown success in 
injured pig hearts (Gao et al., 2018; Querdel et al., 2021; 
Weinberger et al., 2016) and clinical cases of end-stage HF patients 
(NYHA class III to class I, LVEF from 26% to 56%) (Menasché et 
al., 2015), resulting in improved cardiac function. PSC-CM 
spheroids, another frequently used modality, have demonstrated 
heart recovery in MI (Mattapally et al., 2018b) and HF 
(Kawaguchi et al., 2021) models. Compared with CPs, PSC-CM 
spheroids, being 3D-structured, provide additional dimensions for 
tissue engineering, enhancing the maturity and function of PSC- 
CMs (Beauchamp et al., 2020; Veldhuizen et al., 2020). Their 
injectable size also allows minimally invasive delivery, reducing 
transplantation-associated damage (Kim et al., 2023). 

Given the complexity of EHTs with multiple cell types, oxygen 
supply is crucial for their survival. However, EHT vascularization 
remains insufficient during manufacture and post-transplanta
tion (Liu et al., 2018), necessitating strategies such as cytokine 
application, co-transplantation of vascular organoids, or 3D 
printing vascularized and perfusable cardiac tissues (Noor et al., 
2019; Silberman et al., 2023) to address this challenge. These 
strategies require extensive, clinically relevant experiments to 
validate their effectiveness before further clinical translation can 
be considered. 

Cardiac organoid  
Cardiac organoids (COs) can be considered a special type of 3D 
EHT. Different from traditional EHT, which requires artificial 
construction in special cultures or platforms with engineering, 
COs can be formed simply by self-organization, without the need 
for mold during tissue formation (Silberman et al., 2023). More 
distinctively, EHT can encompass any cell lines, whereas COs are 
mainly constituted of heart-specific cell types (such as CMs, CFs, 
and ECs) (Cho et al., 2022; Lancaster and Knoblich, 2014). 

Ideally, mature organoids can serve as the basic structural and 
functional units of hearts. While this has not been fully 
accomplished, researchers have successfully generated 3D COs 
composed of 70% hiPSC-CMs, 15% hiPSC-ECs, and 15% hiPSC- 
CFs, replicating the natural percentage of different cell lines in 
hearts (Campostrini et al., 2021). Several other research teams 
have also generated self-organizing COs with different composi
tions and in different organ development stages (Drakhlis et al., 
2021; Hofbauer et al., 2021; Lewis-Israeli et al., 2021). 
However, COs generated in previous studies were mainly used 
for developmental studies as well as disease modeling and drug 
screening (Richards et al., 2020). To further expand the 
application of COs, Ying Mei’s team developed nanowired COs 
consisting of hPSC-CMs, CFs, ECs, stromal cells, and e-SiNWs 
(electrically conductive silicon nanowires). As these nanowired 
COs were transplanted in vivo, they presented significant 
vasculogenesis and cell retention (cell retention rate on D7: 
COs vs. dispersed hPSC-CMs, ~30% vs. <1%–10%) (Tan et al., 
2023). However, this experiment, as pioneering as it was, used 
only rats. It will be necessary to further explore the therapeutic 
and regenerative potential of COs in larger animals, with a special 
focus on the retention rate and incidence of EAs. 

Delivery strategies  

Direct intramyocardial injection  
Direct intramyocardial injection (DII) stands as one of the most 
widely utilized strategies for PSC-CM delivery, involving the 
loading of dispersed PSC-CMs, cardiac spheroids, or COs into 
syringes and injecting them directly into the infarct or peri- 
infarct zone of the host myocardium (Chong et al., 2014; Liu et 
al., 2018). DII can be accomplished through direct vision under 
thoracotomy, catheter-based methods, or ultrasound-guided 
percutaneous delivery, offering flexibility for diverse scenarios. 
However, DII comes with limitations, notably a low early cell 
retention rate ranging from 2.89% to 11.19% (Chong et al., 
2014; Liu et al., 2018). The hostile environment and poor 
vascularization during early ischemic injury contribute to this 
suboptimal efficacy. 

Various efforts have been made to enhance early cell retention, 
such as overexpressing Cyclin D2 (Zhao et al., 2021), co- 
transplanting hiPSC-ECs with hiPSC-CMs (Cheng et al., 2023a), 
co-transplantation of microvessels (Sun et al., 2020), adminis
tration of Tb4 (thymosin β4) (Tan et al., 2021), and over
expression of CDH2 (N-cadherin) (Lou et al., 2020) and Ang-1 
(angiopoietin-1) (Tao et al., 2021). However, challenges persist 
in controlling the injection site, depth, and graft area, impacting 
treatment outcomes and hindering clinical translation. For 
instance, research has indicated that the injection site, i.e., 
intra-infarct injection or peri-infarct injection, plays an impor
tant role in the formation of EAs, as well as electromechanical 
integration (Gibbs et al., 2023). These limitations call for further 
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development of more exquisite and accurate injection devices, 
such as reported by Tabei et al. (2019). 

Despite the challenges, DII facilitates direct cell-cell contact 
between the host myocardium and graft, fostering electrome
chanical integration. While this improves cardiac function and 
directly restores lost CMs, the combination of electromechanical 
integration and the immature electrophysiology of PSC-CMs can 
lead to severe side effects, particularly EAs, raising significant 
safety concerns (see “Engraftment arrhythmias”). 

Epicardial delivery  
Epicardial transplantation mainly applies to PSC-CM CPs, by 
directly placing the patch on the epicardium via thoracotomy. 
Different from DII, epicardial transplantation does not result in 
direct cell-cell contact between the graft and host CMs since the 
patches do not directly extend into the myocardium (Shadrin et 
al., 2017; Weinberger et al., 2016). Instead of remuscularization, 
CPs from epicardial delivery (ED) can improve the function of 
injured hearts via the paracrine effects of the patch cells. 
Interestingly, compared with DII, epicardial delivery of CPs 
demonstrates superior cell retention, with around 10% to 25% of 
the transplanted cells preserved within 4 weeks (Gao et al., 2018; 
Gao et al., 2017; Riegler et al., 2015). This is likely because CPs 
provide a stable substrate for cell retention, minimizing cell 
leakage. However, commonly used epicardial delivery strategies 
involve thoracotomy to expose the site on which patches are 
transplanted, which is relatively invasive and traumatic. In 
clinical practice, this invasive delivery strategy is likely to be used 
only during coronary artery bypass graft (CABG) surgery (Gao et 
al., 2018; Gao et al., 2017). More minimally invasive delivery 
strategies would further expand the implication of CPs. 

Minimally-invasive delivery   
Currently, the majority of MI without left main occlusion is 
treated with minimally invasive procedures, such as percuta
neous catheter intervention (PCI) (Byrne et al., 2023). Other 
possible indications of PSC-CMs, such as HF and cardiomyo
pathy, are also generally treated non-surgically. Therefore, it is 
important to develop minimally invasive delivery (MID) strategies 
for PSC-CM grafts, to coordinate with clinical treatment options. 

Previous attempts of MID mainly involve transcatheter 
delivery into the endocardium or coronary artery. Professor C. 
Murry’s lab (Marchiano et al., 2023; Nakamura et al., 2021) has 
done extensive studies on catheter-guided percutaneous endo
cardial delivery to transplant dispersed PSC-CMs into pigs. On the 
other hand, Wang et al. (2021c) constructed an injectable shape- 
memory CP with a micromesh structure, which can be delivered 
to the endocardium via catheters. These strategies avoid the need 

for thoracotomy, resulting in better recovery and broader clinical 
applications. Notably, Kobayashi et al. (2023) attempted to 
deliver PSC-CM spheroids of different sizes to cynomolgus 
monkeys through intracoronary injection. Unfortunately, they 
discovered it was insufficient, as spheroids of small sizes are 
washed out quickly into the circulation system, and those of 
medium and large sizes result in coronary occlusion following 
ischemic injury and scar formation. Interestingly, they also 
observed partial cell engraftment in 2 out of 6 animals, 
suggesting transplanted PSC-CMs can migrate through the vessel 
wall (Kobayashi et al., 2023). Further experiments are needed to 
optimize the delivery strategy of transplanted grafts, to ensure 
both the safety and cell retention. 

Comparison between the aforementioned strategies can be 
seen in Table 1. 

Evaluating graft fixation  

In various forms of PSC-CM transplantation, establishing 
effective graft fixation techniques is crucial for ensuring the 
stability and integration of the graft. The most commonly used 
methods are histology analysis and immunostaining of cardiac 
markers such as cTnT (Chong et al., 2014; Liu et al., 2018; 
Romagnuolo et al., 2019; Shiba et al., 2012). While such an 
approach can directly visualize the graft size, graft retention, and 
host-graft integration, it requires sacrificing the host and 
extracting the host heart, limiting their use in clinical settings. 
To monitor the position and status of grafts post-transplantation, 
a range of imaging techniques are utilized. For small animal 
models like mice, bioluminescence imaging effectively tracks the 
engraftment of iPSC-CMs (Funakoshi et al., 2016). In models 
with greater tissue depth or in clinical settings, MRI (magnetic 
resonance imaging) serves as a valuable non-invasive tool. 
Contrast-enhanced MRI (CE-MRI) allows researchers to localize 
and assess myocardial cells within scar tissue non-invasively 
(Cook et al., 2024; Liu et al., 2018). Quantitative analysis using 
fractional anisotropy (FA) and mean diffusivity (MD) reflects the 
microstructural properties of the graft. Studies show that the FA 
and MD values of mature PSC-CM grafts are comparable to 
healthy myocardium, indicating similar structural anisotropy 
(Cook et al., 2024). Additionally, diffusion tensor imaging (DTI) 
parameters can distinguish graft tissue from surrounding scar 
tissue, as scar tissue typically exhibits low anisotropy (Cook et al., 
2024; Sosnovik et al., 2014). Comparing these DTI parameters to 
those of healthy myocardium can also determine the extent of 
graft absorption by the host, with similar parameters suggesting 
successful integration and absorption of the graft (Cook et al., 
2024; Sosnovik et al., 2014). 

Table 1. Comparison of different delivery strategies 

Strategy Modality Delivery Cell retention Mechanism Limitations References 

DII 
Dispersed PSC-CMs,  

cardiac spheroids, COs 

Injection to the infarct site under 
thoracotomy or ultrasound- 

guided delivery 

Limited (2.89%– 
11.19%) 

Direct electromechanical  
integration 

Prone to EAs; limited 
cell retention rate 

(Chong et al., 2014; Gibbs 
et al., 2023; Liu et al., 

2018) 

ED 
PSC-CM cell patches or 

cell sheets 
Implantation onto the  

epicardium via thoracotomy 
Medium (10%–25%) 

Paracrine effects from the 
cardiac patches or sheets 

Need for invasive  
thoracotomy 

(Gao et al., 2018; Gao et al., 
2017; Shadrin et al., 2017; 

Weinberger et al., 2016) 

MID 
Dispersed PSC-CMs,  
cardiac spheroids,  

injectable cell patches 

Catheter-guided  
percutaneous delivery 

Varies based on specific 
delivery strategies 

Direct electromechanical  
integration 

Inability to directly  
visualize the position  

of delivery 

(Marchiano et al., 2023; 
Nakamura et al., 2021; 

Wang et al., 2021c) 
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Animal models  

In-vivo studies using animal models are crucial for evaluating the 
efficacy and safety of PCT, providing essential insights for 
subsequent clinical translation. Selecting appropriate animal 
and disease models is a significant consideration. Factors such as 
feasibility, cost-effectiveness, and researcher expertise play 
significant roles in this choice. Commonly employed animals 
for PCT range from rodents (mice, rats, and guinea pigs) to larger 
animals (porcine and NHP). 

Initial PSC-CM studies typically employ immunocompromised 
rodents (athymic rats, SCID mice) due to their cost-effectiveness 
and feasibility, requiring only a small cell quantity (~1×10 6 PSC- 
CMs per animal). However, their cardiac structure and electro
physiology differences from humans pose challenges in predict
ing transplant outcomes (Rai et al., 2017). Porcine is preferred in 
preclinical studies, given their cardiac similarities to humans. 
NHPs, being phylogenetically closer to humans, are also utilized 
in preclinical studies, despite the associated higher costs and the 
need for a substantial cell quantity (~1×10 8 to 10 9 PSC-CMs per 
animal), which can be impractical in many experiments. 

A unique consideration in animal selection is the occurrence of 
EAs, which are more prevalent in large animal models like 
porcine and NHPs and rarely observed in small animals like mice 
and rats, as discussed in the “Engraftment arrhythmias” section. 
Preventing EAs in large animal models can be as important as 
preventing immune rejection. Recent PCT studies and their 
adopted animal models and methods are summarized in Table 2. 

Current obstacles and solutions  

Immune rejection  

Brief overview of allograft rejection  
Currently, allograft rejection remains a prominent concern in 
both transplant medicine and regenerative medicine. Allograft 
rejection is mediated by a range of adaptive and innate immune 
responses (Figure 3). In PCT, the main contributors of immune 
rejections are CD8 + cytotoxic T cell-mediated adaptive immune 
response, and natural killer cell (NK)-mediated innate immune 
response. The CD8 + T-cell immune response originates from the 
recognition of allogeneic peptides presented in highly poly
morphic MHC (major histocompatibility complex, referred to as 

human leukocyte antigen (HLA) in humans) class I (expressed in 
nearly all nucleated cells). On the other hand, the activation of 
NKs results from an imbalance between activating and inhibitory 
signals. NK-mediated rejection is particularly significant in PSC- 
derived graft transplantation because PSCs and their derivatives 
have been shown to express low levels of inhibitory MHC class I 
(Araki et al., 2013; Kruse et al., 2015) and upregulate activating 
ligands like CD155 (Chimienti et al., 2022; Kruse et al., 2015). 
Additionally, NK infiltration and NK-mediated rejection have 
been reported not only in allogeneic but also in syngeneic 
transplantation (Bogomiakova et al., 2023; Kruse et al., 2015; 
Nakamura et al., 2019). 

Current strategies to reduce immune rejection  
Since both allogeneic and syngeneic PSC and PSC-derived grafts 
have been found to suffer from graft rejection, it is necessary to 
develop safe strategies to reduce immune response without 
causing related immunological complications. So far, substantial 
efforts have been made to promote the immune tolerance of PCT, 
as summarized in Table 3. 

(1) Co-transplantation of mesenchymal stem cells.  MSCs, 
derived from bone marrow, cord blood, and PSCs, exhibit 
multipotent capabilities, participating in wound healing and 
the inflammatory response. Notably, MSCs possess immune 
privilege and unique immunomodulatory abilities (Götherström 
et al., 2004), inhibiting T cell proliferation and promoting 
regulatory T cell (T reg) expansion (Kimbrel et al., 2014). Co- 
transplantation of MSCs has been explored to reduce T cell- 
mediated graft rejection. 

Previous studies demonstrated that simultaneous injection of 
MSCs during allogeneic heart transplantation significantly 
prolonged graft survival and inhibited immune rejection (Chen 
et al., 2021; Gao et al., 2020; Wang et al., 2021b; Wang et al., 
2014), which is also observed in allogeneic islet (Xu et al., 2012) 
and trachea (Khan et al., 2019) transplantation. Subcutaneous 
co-transplantation of syngeneic MSCs with iPSC-CMs reduced 
immune rejection in allogeneic models, leading to nearly twofold 
improvement in graft survival. This effect involved the recruit
ment of T reg cells to the graft site, upregulation of IL-10 and TGF- 
β, and CD8 + T cell depletion (Yoshida et al., 2020). Systemic 
venous administration of syngeneic iPSC-MSCs before PCT in an 
MI model also yielded positive results (Sun et al., 2021). 

Table 2. Methods used in PCT in animal models of myocardial infarction a) 

Animal Cell Cell number (×10 6) Days after MI Delivery method References 

Pigtail macaques * hESC-CMs 1,000 14 TDII (Chong et al., 2014) 

Cynomolgus macaques * MHC-matched allogeneic iPSC-CMs 400 14 TDII (Shiba et al., 2016) 

Pigtail macaques * hESC-CMs 90.3 12–15 TDII (Liu et al., 2018) 

Minipigs iPSC-CM sheets 100 30 TDED (Ishida et al., 2019) 

Pigs hESC-CMs+pro-survival cocktail 1,000 21 TDED (Romagnuolo et al., 2019) 

Mice CPs 1 per mL Chronic MI model TDED (Cui et al., 2020) 

Rats hiPSC-CMs 10 10 TDII (Guan et al., 2020) 

Rats Engineered heart tissue 7–10 4 TDED (Munarin et al., 2020) 

Minipigs CPs 
7 per cm 3 (D=25 mm; 

T=1.2 mm) 
7 Transcatheter delivery (Wang et al., 2021c) 

Cynomolgus macaques * Cardiac spheroids 5–30 >5 Trans-coronary delivery (Kobayashi et al., 2023) 

Pigs MEDUSA hESC-CMs 150 4 TDII (Marchiano et al., 2023) 

a) D, diameter. hESC, human embryonic stem cell. hESC-CM, hESC-derived cardiomyocyte. T, thickness. TDED, thoracotomy and epicardial delivery. TDII, 
thoracotomy and direct intramyocardial injection. *, non-human primates, NHP.  
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While the precise mechanisms underlying MSC-induced 
immune tolerance are not fully understood, current research 
emphasizes the crucial role of recruited T reg cells (Sun et al., 
2021; Wang et al., 2014; Yoshida et al., 2020). Additionally, 
MSC co-transplantation and the use of MSC-conditioned medium 
have been shown to improve integration between iPSC-CMs and 

the host myocardium, enhancing cardiac function, possibly 
through paracrine effects (Kc et al., 2020; Neef et al., 2022; 
Rubach et al., 2014). Taken together, co-transplantation of MSCs 
or the utilization of MSC-derived exosomes or cytokines holds 
significant potential in mitigating immune rejection and enhan
cing graft integration. 

Figure 3. Mechanisms and solutions for immune rejection in PCT. Immune rejection constitutes one of the most serious challenges hindering PCT. The immune rejection for 
PSC-CMs is mostly mediated by CD8 + cytotoxic T cells (due to the recognition of allogeneic MHC-I molecules) and NK cells (due to the loss of balance between activating and 
inhibitory signals). Various strategies have been applied to reduce immune rejection, including transplanting MHC-matched grafts, generating HIPSC-CMs without MHC 
expression, co-transplanting MSCs to modulate immune reaction, administering immunosuppressive agents, as well as modulating NK signals. HIPSC-CM, hypoimmune PSC-CM. 
MHC, major histocompatibility complex. MSC, mesenchymal stem cell. NK, natural killer cell. PCT, PSC-CM transplantation. PSC-CM, pluripotent stem cell-derived 
cardiomyocyte.  
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(2) Generation of MHC-matched PSC-CMs.  Adaptive immu
nity-mediated graft rejection is primarily based on the recogni
tion of non-self MHC molecules (Duneton et al., 2022). Initial 
hypotheses and subsequent studies demonstrated that when the 
donor and recipient share partially matching MHC, the 
immunogenicity of iPSCs (Mizukami et al., 2014) or iPSC-CM 
(Kawamura et al., 2016) allografts can be significantly reduced 
without inducing tumorigenicity (Ishigaki et al., 2021). For 
instance, iPSC-CMs with homozygous MHC haplotype HT4 (or 
HT1) survived without obvious immune rejection in hetero

zygous HT4 (or HT1) recipients when coupled with ISTs 
(Kawamura et al., 2016; Shiba et al., 2016). While MHC- 
matching grafts induced lower immune responses, MHC- 
mismatched grafts still improved cardiac function similarly 
(Kashiyama et al., 2019). The concept of using PSCs with 
homozygous MHC haplotypes as an “off-the-shelf” cell source 
with acceptable immunogenicity is supported by research 
findings (Taylor et al., 2012). However, practical implementation 
would require establishing cell banks with different homozygous 
MHC haplotypes, addressing challenges posed by regional and 

Table 3. Overview of immunomodulating strategies to reduce immune rejection in recent PCT studies a) 

Immunomodulating strategy Graft Animal model  Immunity Transp. strategy Outcome References 

Co-transplantation of PSC-CMs with MSCs 

Localized co-transp. of  
syngeneic BALB/c MSCs 

C57BL/6 iPSC-CM 
sheets 

Untreated BALB/c mice Allo. Subcutaneous 
Graft survival on D7: iPSC-CM/MSC 
vs. iPSC-CM: 61%±7% vs. 34%±5% 

(P=0.008) 
(Yoshida et al., 2020) 

IV administration of  
hiPSC-MSCs 

hiPSC-CMs MI ICR mice Xeno. Intramyocardial 
Graft survival on D7: hiPSC-CM/ 

hiPSC-MSC vs. hiPSC-CM: 29.15%  
vs. 15.51% (P<0.01) 

(Sun et al., 2021) 

Transplantation of MHC-matched PSC-CMs 

MHC-matched allo. transp. + 
PSL/MMF/TAC 

MHC-HT1 homo.  
iPSC-CM sheets 

MHC-HT1 hetero.,  
untreated cynomolgus 

macaques 
Allo. 

Subcutaneous and  
intramyocardial 

MHC-matched: higher graft fluores
cence intensity in 1 and 2 M (P<0.05); 

lower T cell infiltration (P<0.05) 

(Kawamura et al., 
2016) 

MHC-matched allo. transp. + 
methyl-PSL/TAC 

MHC-HT4 homo.  
iPSC-CMs 

MHC-HT4 hetero., MI 
cynomolgus macaques 

Allo. Intramyocardial 

MHC-mismatched: severe rejection 
with T cell infiltration by 4 W; 

MHC-matched: No obvious immune 
rejection by W12, with graft  

remuscularization 

(Shiba et al., 2016) 

Transplantation of HIPSC-CMs 

B2M and CIITA KO MHC-I/II KO hiPSC-CMs NA NA NA 

T cell activation: MHC-I/II KO hiPSC- 
CMs vs. WT-hiPSC-CMs: 21% vs. 75%; 

Inhibition of HLA-E and HLA-F, but 
not HLA-G 

(Mattapally et al., 
2018a) 

B2M and CIITA KO,  
CD47 OE 

B2m −/− Ciita −/− Cd47 
miPSC-CMs/ECs 

Immunocompetent,  
ischemic heart failure 

BALB/c mice 
Allo. Intramyocardial 

Survival: WT: total rejection by D14; 
B2m −/− Ciita −/− Cd47: stable survival 

by D28; 
SV: B2m −/− Ciita −/− Cd47 vs. WT:  

~30 μL vs. ~18 μL (P<0.0001) 

(Deuse et al., 2021) 

B2M and CIITA KO,  
CD47 OE 

B2m −/− Ciita −/− Cd47 
miPSC-CMs; 

B2M −/− CIITA −/− CD47 
hiPSC-CMs 

BALB/c mice 
Humanized  

NSG-SGM3 mice 
Allo. Intraperitoneal  

In BALB/c mice: 
WT: total rejection by D35; B2m −/− 

Ciita −/− Cd47: 100% survival by D50; 
In NSG-SGM3 mice: 

WT: slow rejection; B2M −/− CIITA −/− 

CD47: 100% survival by D50 

(Deuse et al., 2019) 

Modulation of NK cell ligand-receptor interaction 

Anti-NK1.1 antibody  
treatment; 

IFN-γ-induced MHC-I upre
gulation + antibody-induced 
CD226 and NKG2D blockage 

C57BL/6 miPSC-CM 
sheets 

Untreated C57BL/6 
mice 

Syn. Subcutaneous 

Apoptosis index: 
Control vs. NKC-depleted: 22.2% 

±2.9% vs. 8.1%±3.8%; 
Control vs. IFN-γ(+)/Anti-CD226  

Ab/Anti-NKG2D Ab: 31.6%±2.4%  
vs. 6.2%±1.6% 

(Nakamura et al., 2019) 

Biallelic KI of HLA-G1 into 
B2M loci (B2M mHLAG) to 

create β2m-HLA-G1 fusion 
protein; OE of soluble form of 
fusion protein (B2M m/sHLAG) 

B2M mHLAG and B2M m/ 

sHLAG hESC-CMs 
NA NA NA 

APA: WT, B2M mHLAG, B2M m/sHLAG: 
101.0, 95.52, 100.9 mV; 

APD 90: WT, B2M mHLAG, B2M m/sHLAG: 
221.6, 278.9, 191.7 ms 

(Chen et al., 2023) 

Generation of B2M mHLAG  

and B2M m/sHLAG hESCs  
(see above) 

B2M mHLAG and  
B2M m/sHLAG  

hESC-CMs 
NA NA NA 

Cytotoxicity of NK cells (co-cultured 
with hESC-CMs): WT, B2M mHLAG, 
B2M m/sHLAG: ~15%, ~10%, ~7% 

(P<0.01) 

(Shi et al., 2020) 

a) D0 is defined as the day of transplantation, Dx is defined as x day(s) after D0. Ab, antibody. Allo., allogeneic. APA, action potential amplitude. APD, action 
potential duration. B2M, beta-2-microglobulin. CTIIA, class II MHC transactivator. hESC, human embryonic stem cell. hESC-CM, hESC-derived cardiomyocyte. 
Hetero., heterozygous. hiPSC, human induced pluripotent stem cell. hiPSC-CM, hiPSC-derived cardiomyocyte. hiPSC-MSC, hiPSC-derived mesenchymal stem cell. 
Homo., homozygous. HT, haplotype. IFN, interferon. IV, intravenous. KI, knock-in. KO, knock-out. M(s), month(s). miPSC, mouse induced pluripotent stem cell. MMF, 
mycophenolate mofetil. NA, not applicable. NKC, natural killer cell. OE, overexpression. PSL, prednisolone. SV, stroke volume. Syn., syngeneic. TAC, tacrolimus. 
Transp., transplantation. W(s), week(s). WT, wild type. Xeno., xenogeneic.  
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population-specific MHC polymorphisms. 
CRISPR-based gene editing has been employed to manipulate 

HLA class I genes, generating iPSCs with homozygous-like MHC 
haplotypes. Researchers have successfully developed immune- 
compatible HLA-I-matching iPSC-ECs (expressing HLA-A*11:01) 
(Song et al., 2022a), and hypoimmune, gene-edited ESCs with 
HLA compatibility in around 40% of the Asian-Pacific population 
(Kim et al., 2021). Chinese HLA typing-based cell lines have also 
been created, with the disruption of HLA-B, -C, and CIITA, while 
preserving HLA-A*11:01. The authors estimate that this cell line 
covers approximately 21% of the Chinese population (Ji et al., 
2023). 

Although the long-term safety of gene editing for generating 
homozygous-like MHC haplotypes requires further investigation, 
these approaches hold promise for future clinical translation and 
may serve as a potential “off-the-shelf” stem cell bank. However, 
current studies indicate that IST is still needed even with MHC- 
matching allogeneic graft transplants. 

(3) Engineering of MHC expression.  As previously discussed, 
the rejection of PSCs in allografts is primarily based on the 
recognition of allogeneic MHC (HLA) molecules. Cells with low 
HLA expression, such as MSCs, enjoy immune privilege, 
particularly with adaptive immunity. Therefore, there has been 
a significant effort to create hypoimmune pluripotent stem cells 
(HIPSCs) by disrupting the expression patterns of HLA class I 
and/or II molecules. 

HIPSCs are commonly generated by manipulating the HLA 
class I complex, either through complete ablation of B2M 
(Karabekian et al., 2015; Kitano et al., 2022; Suzuki et al., 2020; 
Wang et al., 2015), a necessary component of the HLA class I 
complex, or allele-specific genome editing (Jang et al., 2019; Ji et 
al., 2023; Kim et al., 2021; Xu et al., 2019). The former results in 
complete HLA deficiency, while the latter allows more precise 
manipulation of specific HLA alleles. Inactivating HLA class II 
can also be achieved by inactivating CIITA (MHC II transacti
vator) (Deuse et al., 2019; Deuse et al., 2021; Hu et al., 2023; Hu 
et al., 2024; Mattapally et al., 2018a; Thongsin et al., 2023; 
Wang et al., 2021a; Wang et al., 2020b). HIPSCs edited for HLA 
class I and/or II molecules exhibit resistance to CD8 + cytotoxic T 
cells and other anti-HLA immune responses. 

Combining multiple manipulations of HLA-associated genes 
can optimize immune properties. For instance, HIPSCs generated 
by ablating HLA-A/-B/-C and HLA class II, and overexpressing 
immunomodulatory factors PD-LA, HLA-G, and CD47, are 
insensitive to T cells, NK cells, and macrophages (Han et al., 
2019). HIPSCs, with the biallelic knockout of B2M or forced 
expression of membrane-bound or secretory β2m-HLA-G fusion 
protein, remain pluripotent and generate fully functioning cells 
with minimal immunogenicity (Chen et al., 2023). Recently, 
HIPSC-derived CMs were developed, evading NKs and T cells with 
downregulated expression of STAT-1 and NF-κB via the SHP-1 
pathway, surviving in post-MI rat hearts with minimal IST (Fang 
et al., 2023). 

Compared to iPSCs with homozygous MHC haplotypes, HIPSCs 
typically do not require MHC matching and exhibit more robust 
immune privilege with proper surface editing of the cells. 
However, careful evaluation of potential risks associated with 
gene editing and tumorigenicity is crucial before their application 
in future preclinical and clinical studies. 

(4) Modulation of NK ligand-receptor interaction.  While MHC- 
matching and HIPSC-derived graft transplantation have largely 

avoided adaptive immune responses, challenges may still arise 
from NK-mediated innate immune responses, even in subjects 
receiving syngeneic grafts (Bogomiakova et al., 2023; Kruse et 
al., 2015). NK activation results from an imbalance of signals 
between activating and inhibitory NK ligand-receptor interac
tions (Bogomiakova et al., 2023). To achieve immune evasion 
from NK cells, one approach involves upregulating inhibitory NK 
ligand-receptor interactions while downregulating activating 
interactions. 

MHC class I molecules, classic inhibitory ligands for NK cells, 
can be upregulated with IFN-γ stimulation. iPSCs (Kruse et al., 
2015) and their derivatives (Bogomiakova et al., 2023; 
Nakamura et al., 2019) typically exhibit low expression of 
MHC class I molecules. Upregulating inhibitory MHC class I 
molecules through IFN-γ treatment has been shown to sig
nificantly reduce NK infiltration and NK-mediated lysis (Bogo
miakova et al., 2023; Nakamura et al., 2019), leading to 
increased iPSC-CM engraftment in syngeneic mice. Forced 
expression of inhibitory NK ligands, such as HLA-E and HLA-G, 
in iPSCs and MSCs has also resulted in NK cell evasion by 
inhibiting NK cell activity (Gornalusse et al., 2017; Wang et al., 
2021a; Zheng et al., 2022). Additionally, depleting activating 
NK ligands, such as CD155, in iPSC-derived T and B cells has 
protected the graft from NK-mediated lysis both in vivo and in 
vitro (Chimienti et al., 2022). 

Genetically engineered HLA-disrupted HIPSCs exhibit low or 
absent expression of MHC class I, making them potentially 
susceptible to NK-mediated cytolysis (Guo et al., 2021). To 
induce immune tolerance in both lymphocytes and NK cells, gene 
editing has been applied to insert the sequence of inhibitory 
ligands into HLA alleles, generating fusion proteins like β2m- 
HLA-G and β2m-HLA-E (An et al., 2022; Chen et al., 2023; 
Gornalusse et al., 2017; Guo et al., 2021; Shi et al., 2020). These 
proteins serve as inhibitory ligands for NK cells while invading T 
cell recognition, thereby evading both T cell-mediated and NK- 
mediated cytolysis. 

Despite these advances, iPSC-derived grafts may express 
activating ligands, such as CD112 (ligand for DNAM-1 receptor), 
CADM1 (ligand for CRTAM receptor), CD70 (ligand for CD27 
receptor) (Bogomiakova et al., 2023), and MICA/B (ligands for 
NKG2D) (Kruse et al., 2015), suggesting that future research 
may focus on genetically modulating the expression of activating 
ligands or generating monoclonal antibodies to directly block 
activating ligands or receptors. However, it is crucial to carefully 
assess the safety of NK immune tolerance, considering that NK 
cells may also play a role in preventing undifferentiated iPSCs 
from forming teratomas or tumors (Gröschel et al., 2017). 

(5) Immunosuppressive therapies.  ISTs represent the primary 
approach for preventing immune rejection following allograft or 
organ transplantation (Strzelec et al., 2023). Mature IST 
protocols have been established for various allogeneic organ 
transplantations through extensive clinical trials and practice. 
For instance, the common regimen for heart transplant patients 
involves a triple immunosuppressant combination of cyclospor
ine (Cs) or tacrolimus (TAC), mycophenolate mofetil (MMF), and 
prednisolone (PSL) (Guethoff et al., 2013; Guethoff et al., 2015). 

Studies have employed clinically relevant doses and types of 
immunosuppressants, such as methyl-PSL/TAC (Shiba et al., 
2016), TAC/MMF/PSL (Kashiyama et al., 2019), and CsA/ 
methyl-PSL/Abatacept (Chong et al., 2014), to induce immune 
tolerance in allografts (Table 4). IST is necessary even when 

https://doi.org/10.1007/s11427-024-2801-x                                                                                                SCIENCE CHINA Life Sciences Vol.68 No.9, 2568–2590  September 2025 2577 

https://doi.org/10.1007/s11427-024-2801-x


donors and recipients share matching MHC, as it has been shown 
to inhibit graft rejection, prolong graft survival, and improve 
cardiac function (Kashiyama et al., 2019; Kawamura et al., 
2016). However, the optimal IST protocol for PSC-derived grafts 
remains uncertain due to the significant differences in immuno
genicity between iPSC and ESC-derived grafts, as well as between 
PSC grafts and solid organs (Ito et al., 2023; Nakamura et al., 
2019). 

Recent studies, such as the work by Ito et al. (2023) on an IST 
protocol for iPSC-CM patch transplantation in allogeneic rat MI 
models, highlight the importance of developing context-specific 
IST protocols. Despite the widespread use of ISTs in autologous, 
allogeneic, and xenogeneic transplantation of PSC-CMs and 
other stem cell derivatives, it is crucial to consider the potential 
side effects of long-term IST, including infections, nephrotoxicity, 
and malignancies (Söderlund and Rådegran, 2015). Future 
efforts should focus on identifying optimal IST protocols for PCT, 
particularly in different immunogenicity backgrounds, with a 
priority on minimizing immunosuppressant dosages to reduce 
the risk of graft rejection for the benefit of recipients. 

(6) Other emerging strategies.  Apart from the previously 
mentioned strategies, several recent studies have reported 

potentially promising strategies for future application. For 
example, Fang et al. (2020) harvested iPSCs reprogrammed 
from immune-privileged human amniotic fluid-derived stem cells 
(hAFSCs) and then differentiated them into functional hAFSC- 
iPSC-CMs, with minimal immunogenicity, with low expression of 
MHC class I and no expression of MHC class II. Another 
interesting discovery is related to the complement system. As 
previously mentioned, the complement system is a significant 
part of innate immunity, yet little is known about how it interacts 
with PSCs and PSC-derived cells. Recently, Gaykema et al. (2023) 
reported that overexpression of CD55 in hiPSCs and hiPSC- 
derived kidney organoids obstructed the activation of the 
complement system by inhibiting the key enzyme responsible 
for the complement cascade, C3 convertase. Future research may 
further uncover the important role that the complement system 
plays in stem cell-based cellular therapy, as well as proper 
strategies to modulate this system. 

Immunogenicity in current clinical reports with iPSC-based therapy  
Clinical case reports involving iPSC-based cell therapy have 
showcased promising results, addressing various medical condi
tions such as macular degeneration (Mandai et al., 2017; Sugita 

Table 4. Common immunosuppressive protocols for PCT a) 

Animal model Graft Immunity Immunosuppressive protocol References 

Pigtail macaques * hESC-CMs Xenogeneic 
Methyl-PSL: Init. 500 mg on D0; Maint. 1.0–1.5 mg kg −1 d −1 

CsA: Maint. serum conc. 200–250 μg L −1 (reached on −D5) 
Abatacept: Init. 12.5 mg kg −1 d −1 on D0; Maint. QOW 

(Chong et al., 2014) 

Cynomolgus macaques * iPSC-CMs Allogeneic, MHC-matched 
Methyl-PSL: Init. 10 mg kg −1 d −1 from −D1 to D2; Maint.  

1 mg kg −1 d −1 

TAC: Maint. 0.1 mg kg −1 d −1 from −D2 
(Shiba et al., 2016) 

Cynomolgus macaques * iPSC-CMs 
Allogeneic, MHC-matched  

and -mismatched 

PSL: Maint. 1 mg kg −1 d −1 from −D2 
MMF: Maint. 40 mg kg −1 d −1 from −D2 

TAC: Maint. 0.5 mg kg −1 d −1 from −D2, target serum conc. 
>10 ng mL −1 

(Kashiyama et al., 2019;  
Kawamura et al., 2016) 

Pigtail macaques * hESC-CMs Xenogeneic 

Methyl-PSL: Init. 30 mg kg −1 d −1 on −D1; Maint.  
6 mg kg −1 d −1 for 2 d, then 3 mg kg −1 d −1 

CsA: Maint. serum conc. 200–250 μg L −1 (reached on −D5) 
Abatacept: Init. 12.5 mg kg −1 d −1 on D0; Maint. QOW 

(Liu et al., 2018) 

Yorkshire pigs hiPSC-CMs Xenogeneic CsA: Maint. 15 mg kg −1 d −1 from −D3 (Ye et al., 2014) 

Yorkshire pigs hESC-CMs Xenogeneic 

Methyl-PSL: Init. 250 mg on D0; Maint. 125 mg d −1 

CsA: Maint. serum conc. 250 μg L −1 (reached by  
10–16 mg kg −1 BID from −D5) 

Abatacept: Init. 12.5 mg kg −1 d −1 on D0; Maint. QOW 

(Romagnuolo et al., 2019) 

Minipigs hiPSC-CMs Xenogeneic TAC: Maint. 0.6 mg kg −1 d −1 IV from −D5 (Kawamura et al., 2012) 

Minipigs hESC-CMs Xenogeneic 

Methyl-PSL: Init. 3 mg kg −1 d −1 from −D2 for 2 weeks; 
Maint. 1.0–1.5 mg kg −1 d −1 

CsA: Maint. serum conc. >300–400 ng mL −1 (reached by 
250–1,000 mg BID) 

Abatacept: Init. 12.5 mg kg −1 d −1 on D0; Maint. QOW 

(Marchiano et al., 2023;  
Nakamura et al., 2021) 

Yorkshire pigs hiPSC-CMs Xenogeneic 
Methyl-PSL: Maint. 1.5 mg kg −1 d −1 

CsA: Maint. 15 mg kg −1 d −1 (Gao et al., 2018) 

SD rats hESC-CMs Xenogeneic 
Methyl-PSL: Maint. 2 mg kg −1 d −1 

CsA: Maint. 15 mg kg −1 d −1 
(Caspi et al., 2007;  
Guan et al., 2020) 

SD rats 
hESC-CMs-constructed 

EHT 
Xenogeneic TAC: Maint. 8 mg kg −1 d −1 PO, BID, for 30 d (Riegler et al., 2015) 

SD rats hiPSC-CMs Xenogeneic 
PSL (80 μg d −1) for 1 month, then TAC (12 μg d −1) and  

MMF (8 μg d −1) for 1 month, tapering for 1 month 
(Ito et al., 2023) 

Recommendation: (methyl-)PSL: Maint. 1.0–1.5 mg kg −1 d −1 from −D2; MMF: Maint. 40 mg kg −1 d −1 from −D2; TAC: Maint. 0.1–0.5 mg kg −1 d −1 IV −D2, target serum conc.  
>10 ng mL −1; Abatacept: Init. 12.5 mg kg −1 d −1 on D0; Maint. every 2 weeks; CsA: Maint. 15 mg kg −1 d −1 PO from −D3, target serum conc. >250–400 μg L −1 

a) D0 is defined as the day of transplantation, −Dx is defined as x day(s) prior to D0, and Dx is defined as x day(s) after D0. BID, bis in die/twice a day. CsA, 
cyclosporine A. hESC-CM, human embryonic stem cell-derived cardiomyocyte. hiPSC-CM, human induced pluripotent stem cell-derived cardiomyocyte. Init., initial 
dosage. Maint., maintenance dosage. (Methyl-)PSL, (methyl-)prednisolone. QOW, quaque omni week/every other week. TAC, tacrolimus. *, non-human primates, 
NHP.  
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et al., 2020; Takagi et al., 2019), Parkinson’s disease (Schweitzer 
et al., 2020), and ICM. These reports include autologous iPSC- 
RPE transplantation for macular degeneration, autologous iPSC- 
derived dopamine progenitor transplantation for Parkinson’s 
disease, and allogeneic iPSC-CM patch transplantation for ICM 
(Miyagawa et al., 2022). The last case, which involved epicardial 
transplantation of an allogeneic, clinical-grade hiPSC-CM patch, 
reported improvements in clinical symptoms, wall motion, and 
cardiac function without detectable complications such as 
arrhythmias, tumors, or immunosuppression-related issues 
(Miyagawa et al., 2022). Notably, the participants in these 
studies have not reported severe immune reactions so far. 

While these initial findings are encouraging, long-term 
evaluations of graft function, immunogenicity, and graft-host 
integration are necessary to further validate the safety and 
efficacy of iPSC-based therapy. The use of immunosuppressants 
in iPSC-CM patch transplantation indicates the need for ongoing 
efforts to optimize IST. Autologous iPSC-derived therapies, while 
promising, currently face challenges related to the time- 
consuming and costly nature of their production. Achieving 
broader adoption of iPSC-based therapy may hinge on the 
establishment of a universal “off-the-shelf” HIPSC bank. 

It is crucial to consider the varying immunogenicity of iPSC- 
derived grafts, with different cell lineages displaying distinct 
immunogenic profiles. For instance, iPSC-RPE exhibits relatively 
low immunogenicity (de Almeida et al., 2014; Guha et al., 
2013), while iPSC-CMs may elicit intense immune responses 
(Araki et al., 2013; Kawamura et al., 2016). This variability 
underscores the importance of carefully evaluating the necessity 
for different levels of immunomodulation tailored to specific iPSC- 
derived grafts (Miyagawa et al., 2022). Overall, the evolving 
landscape of iPSC-based therapies holds promise, but ongoing 
research and clinical studies will be pivotal in refining protocols 
and expanding their applicability. 

Engraftment arrhythmias  

Overview of engraftment arrhythmias  
EA is defined as transient but severe ventricular arrhythmias, 
typically sustained ventricular tachycardia (VT) and accelerated 
idioventricular rhythm (AIVR), occurring and peaking 1–2 
weeks after PCT, and decreasing within 1–2 months (Nakamura 
et al., 2021). 

EA has been widely reported in many studies and is 
considered one of the greatest safety concerns obstructing the 
clinical application of PCT. In comparison to small animal 
models (such as mice, rats, and guinea pigs), where apparent 
EAs have not been observed (likely masked by their rapid 
baseline heart rate) (George et al., 1990), almost all large 
animals, such as pigs (Marchiano et al., 2023; Nakamura et al., 
2021; Romagnuolo et al., 2019) and NHP (Chong et al., 2014; 
Liu et al., 2018; Shiba et al., 2016), exhibit a heavy burden of 
EAs after PCT, reaching as high as approximately 90% of the 
time per day suffering from EAs. Interestingly, while NHPs, such 
as Macaca nemestrina (Chong et al., 2014; Liu et al., 2018) and 
Macaca fascicularis (Shiba et al., 2016), have shown relative 
tolerance to EAs without fatal distress, EAs can be much more 
severe, even fatal in pigs, causing sustained VTs with heart rates 
of 220–350 bpm (beats per minute), leading to ventricular 
fibrillation or acute HF (Marchiano et al., 2023; Nakamura et 
al., 2021; Romagnuolo et al., 2019). The occurrence of fatal 

EAs in pigs can be especially concerning due to the structural 
and functional similarities between pig and human hearts. 
Particularly, the sinus heart rate (HR) of pigs (approximately 90 
bpm) is closest to that of humans (approximately 60–100 bpm), 
compared with NHPs and small animals (Romagnuolo et al., 
2019) (Figure 4). 

Mechanisms of engraftment arrhythmias  
As mentioned previously, one of the main differences between 
hPSC-CMs and adult ventricular cardiomyocytes (vCMs) is that 
hPSC-CMs exhibit relatively immature electrophysiology. Parti
cularly, hPSC-CMs present automaticity (the ability to sponta
neously depolarize, generate action potentials, and contract), 
while adult vCMs are quiescent, only excited by the pacemaker 
cells. Therefore, the automaticity of immature hPSC-CM grafts 
has long been suspected to mediate EAs. Much evidence has 
emerged to support this suspicion. For instance, recipients of 
hPSC-CMs typically do not exhibit EAs right after transplanta
tion. However, as the graft electromechanically integrates with 
the host myocardium, the burden and severity of EA started 
peaking, eventually waning down as the grafted hPSC-CMs 
matured in vivo 1–2 months post-transplantation (Chong et al., 
2014; Liu et al., 2018; Romagnuolo et al., 2019; Shiba et al., 
2016). Once the EA commenced, neither overdrive pacing nor 
electrical conversion successfully terminated EAs (Liu et al., 
2018). More recently, electrical mapping revealed that EAs 
originate from a focal point source at the site of the hPSC-CM 
graft (Liu et al., 2018; Romagnuolo et al., 2019). Collectively, 
these findings suggest that EAs most likely result from the ectopic 
excitation originating from the automaticity of immature hPSC- 
CM grafts, rather than reentry mechanisms (Marchiano et al., 
2023). Results from computational modeling for hPCT after MI 
are also in line with this conclusion (Gibbs et al., 2023; Yu et al., 
2019). 

Fundamentally, the automaticity of immature hPSC-CMs is 
driven by the high expression of depolarizing-related ion 
channels and the low expression of repolarizing-related ion 
channels (Marchiano et al., 2023). However, the spontaneous 
excitation of PSC-CMs does not seem to cover all the mechanisms 
for EAs, as the in vitro quiescent MEDUSA hESC-CMs (HCN4/ 
CACNA1H/SLC8A1 3KO/KCNJ2 KI) developed by Marchiano et 
al. (2023) still resulted in sporadic premature ventricular 
contractions and rare nonsustained ventricular tachycardia, 
suggesting more complex mechanisms may contributed to the 
appearance of EAs. Future investigations are necessary for a 
more complete understanding of how EAs are driven, and 
corresponding strategies to eliminate them. 

Strategies to reduce engraftment arrhythmias  
As the mechanisms underlying EA are gradually being revealed, 
EAs can potentially be mitigated, if not avoided completely, by 
targeting the mechanisms, particularly the automaticity of 
immature PSC-CM grafts. Here, we further summarize some of 
the most current attempts as well as possible future directions. 

(1) Anti-arrhythmic drug therapies.Given that the automati
city of the graft is mainly responsible for EA, it is thought that 
drugs that suppress automaticity may mitigate EA, ensuring 
recipients’ safety until the graft matures in vivo and automaticity 
diminishes. Nakamura et al. (2021) have reported that the 
combination of amiodarone (a class III anti-arrhythmic drug) 
and ivabradine (a selective inhibitor of I f, one of the main 
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currents responsible for the phase 4 spontaneous depolarization 
in cardiac pacemaker cells) effectively decreased the HR and EA 
burden, and increased survival after PCT in a pig MI model. 
However, the therapy failed to eliminate EAs entirely, with an EA 
burden of nearly 40% seven days post-PCT. Future attempts may 
focus on exploring more accurate dosages or effective combina
tions of drug therapy to further decrease or even eliminate the EA 
burden in the early stages post-PCT. 

(2) Gene editing of ion channels.  The expression pattern of ion 
channel genes mechanistically underlies the automaticity of 

hPSC-CMs, as well as that of pacemaker cells. In general, hPSC- 
CMs are found to have higher levels of expression for depolariza
tion-associated genes and less hyperpolarization-associated ones, 
compared with vCMs (Nakamura et al., 2021). For instance, the 
hPSC-CMs exhibit extremely low expression levels of KCNJ2, 
which encodes Kir2.1, the ion channel mediating inward 
rectifying K + current (Nakamura et al., 2021). Therefore, 
modulating gene expression patterns towards quiescent vCMs 
may fundamentally limit the occurrence of EAs. 

To this attempt, Marchiano et al. (2023) applied gene editing 

Figure 4. Mechanisms, emergence and current solutions of engraftment arrhythmias. EAs refer to the severe and constant ventricular arrhythmias that occur during early 
stages post-transplantation and are almost exclusively observed in large animals with relatively slower baseline HR. The fundamental mechanism contributing to EAs lies within 
the immature electrophysiology of PSC-CMs, as a consequence of immature ion channel expression. Due to the overexpression of depolarization channels, and low expression of 
hyperpolarization channels, PSC-CMs can spontaneously depolarize and contract, resulting in ectopic excitation, and present as EAs. Solutions for EAs include anti-arrhythmic 
drug therapy, gene-editing of ion channels, promoting PSC-CM maturation, and optimizing graft modalities. EA, engraftment arrhythmia. HR, heart rate. PSC-CM, pluripotent 
stem cell-derived cardiomyocyte.  
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to knock out three depolarizing associated ion channel genes, 
HCN4 (responsible for I f), CACNA1H (responsible for I CaT), and 
SLC8A1 (encoding NCX1, which mediates Na +/Ca 2+ currents), 
and overexpressed hyperpolarizing associated ion channel gene 
KCNJ2, creating a quadruple gene-edited cell line, the MEDUSA 
(modification of electrophysiological DNA to understand and 
suppress arrhythmias) hPSC-CMs. The team confirmed that 
MEDUSA hPSC-CMs are quiescent yet excitable and contractable 
in vitro, and can decrease post-transplant EA burden by ~95% (P 
<0.001) in porcine (Marchiano et al., 2023). Nevertheless, even 
with quadruple gene-editing, porcine recipients of MEDUSA 
hPSC-CMs still presented sporadic, transient, and self-limited VTs 
at high dosages of cell transplantation (Marchiano et al., 2023), 
calling for deeper scoping of the mechanisms that may result in 
residual EAs. On top of that, the multiple gene editing strategy 
may raise concerns in regard to the safety and functionality of the 
cells. The concern of whether or not gene editing is necessary is 
especially important, as EAs can decrease over time while the 
editing of genes, as well as the matured cardiomyocytes, remain 
permanent. Functional modulation of genes through RNA 
delivery may also serve as a potential means for only temporal 
modulation. 

(3) Promoting maturation of PSC-CMs.  Since automaticity is 
characteristic only for immature PSC-CMs, and EAs gradually 
decrease as the graft matures correspondingly, it has been 
assumed that transplanting PSC-CMs that have undergone 
maturation in vitro may reduce EAs. In support of the hypothesis, 
Dhahri et al. (2022) reported that transplanting matured PSC- 
CMs resulted in less proarrhythmic behavior and improved 
integration and functionality. However, there has been no 
evidence of similar observations in large animal models, which 
calls for further investigation. Additionally, it would be beneficial 
to examine the effect of different maturation protocols. For 
instance, electrical stimulation, one of the most commonly used 
methods to enhance hPSC-CM maturation (Hong et al., 2023), 
has been observed to alter the expression of ion channels and 
electrophysiological properties of hPSC-CMs (Eng et al., 2016). 
Whether and how different maturation protocols may influence 
EA is a subject under further exploration. 

(4) Optimizing graft modalities.  The different graft modalities 
may also influence arrhythmic activity. For instance, Gao et al. 
(2018) reported that swine MI models receiving a human CM 
patch showed no spontaneous arrhythmias compared with 
controls. The authors suspected that the absence of arrhythmic 
activity was due to the improved electrophysiological maturation 
of hPSC-CMs, yet the low cell engraftment rate might also have 
contributed to the result (Gao et al., 2018). Another computa
tional modeling research suggested that, although ectopic 
activation is rare due to improved cellular alignment, hPSC-CM 
cell sheets may serve as a substrate for reentrant VTs (Yu et al., 
2019), though this has yet to be observed in animal studies. 

In addition to the modalities for hPCT, the location (e.g., 
intramyocardial or epicardial), the spatial and electrical relation
ship between the graft and infarct scar tissue of the host 
myocardium (e.g., peri-infarct or intra-infarct), and the delivery 
strategy (e.g., DII, epicardial patch placement, or transcatheter 
delivery) may all influence in the arrhythmic episodes post- 
transplantation (Gibbs et al., 2023; Yu et al., 2019). An 
optimized protocol with the least proarrhythmic properties 
remains to be established to ensure the safety of clinical 
translation. 

Graft-host integration  

The degree of structural and electromechanical integration 
between PSC-CM grafts and host tissues significantly affects the 
safety and efficacy of PCT. For instance, immature graft-host 
integration has been linked to severe host-related complications, 
such as EAs, as previously described, while mature integration 
exhibits suboptimal graft survival (Cheng et al., 2023b; Shiba et 
al., 2016). Nonetheless, the electromechanical integration 
between host and graft is a prerequisite for restoring cardiac, 
especially contractile function in injured hearts (Shadrin et al., 
2017). So far, studies in MI NHPs have generated the most 
promising outcomes, with effective electromechanical integra
tion within a few weeks post-transplantation (Chong et al., 2014; 
Liu et al., 2018). 

Traditional evaluation of graft-host integration involves 
immunohistology analysis, which limits real-time observation 
of integration in live subjects. Over the past years, cardiac live 
imaging technology has been developed to provide more dynamic 
observation of graft-host integration. One approach involves 
introducing the genetically encoded fluorescent calcium sensor 
GCaMP into the graft, enabling the visualization of cyclical 
cytosolic calcium transients (Zhu et al., 2014). This approach 
can effectively distinguish the PSC-CMs from the host myocar
dium, thus allowing for the quantitative evaluation of the 
presence and extent of host-graft electromechanical integration 
and the status of graft retention (Zhu et al., 2014). Another team 
innovatively introduced a dual-objective light-sheet fluorescence 
microscope (LSFM) system to achieve 3D imaging with high 
spatio-temporal resolution and limited photo-toxicity (Dvinskikh 
et al., 2023). Future attempts are needed to explore the optimal 
protocol that leads to superior graft-host integration, as well as 
means to monitor the integration status. 

Tumorigenicity  

Tumorigenicity remains a significant concern in PSC-based 
therapy, for their potential for infinite proliferation (Yamanaka, 
2020). When compared with ESCs, iPSCs have shown a greater 
susceptibility to teratoma formation (Gutierrez-Aranda et al., 
2010). However, iPSC-CMs have not been demonstrated to result 
in teratoma formation after in vivo transplantation in preclinical 
and clinical studies (Guan et al., 2020; Li et al., 2023; Liu et al., 
2018; Miyagawa et al., 2022). These findings partly establish the 
safety rationale for broader clinical translation of PCT. 

Nevertheless, as the long-term tumorigenicity of transplanted 
grafts remains unknown, and patients receiving allogeneic or 
even syngeneic PSC-CMs may require IST, there is still a need to 
establish rigorous protocols to minimize or eliminate tumor
igenicity, generating clinical-grade iPSC-CMs. This protocol may 
encompass the detection and targeted eradication of undiffer
entiated or aberrantly proliferating iPSCs (Ito et al., 2019) and 
the introduction of apoptotic genes aimed at removing undiffer
entiated iPSCs (Itakura et al., 2017). 

Clinical trials of PSC-CM transplantation  

At present, PCT treatment is still in the preclinical and clinical 
trial stages. In the following sections, we will discuss clinical trials 
of dispersed PSC-CM and EHT transplantation, respectively, 
whether derived from ESCs or iPSCs. Table 5 summarizes the 
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most recent clinical trials of PCT. 

Clinical trials of dispersed PSC-CM transplantation  

While many preclinical experiments chose ESCs as the source of 
CMs, there are relatively few clinical trials involving the use of 
ESC-CMs. In a phase 1 dose-escalation pilot study, Joseph and his 
colleagues injected 50 million, 100 million, and 150 million ESC- 
CMs into the hearts of 18 patients to explore the optimal 
concentration for the treatment of chronic ischemic left 
ventricular dysfunction (CYG ID: NCT05068674). 

In the case of iPSC-CMs, related research began as early as 

2013. Andreas et al. collected somatic cells from patients with 
MI, reprogrammed and induced them into iPSC-CMs. These iPSC- 
CMs were originally used as the earliest disease models and 
research materials (CTGID: NCT02413450). 

In May 2019, Nature reported two patients from China 
received iPSC-CMs injections during CABG surgery. Dongjin 
Wang, the surgeon, stated that the operation received a very 
positive effect, with neither of the two patients experiencing 
tumorigenesis, immune rejection, arrhythmias, or other compli
cations. This marked the first known clinical application of 
dispersed iPSC-CMs for treating injured hearts (Mallapaty, 2020). 
The research group was subsequently granted approval to 

Table 5. Overview of current clinical trials of PCT a) 

Trial ID Sponsor Title Condition Intervention Est. enroll. Start date Country 

NCT05068674 
Stanford  

University 

Human Embryonic Stem  
Cell-Derived Cardiomyocyte 

Therapy for Chronic Ischemic 
Left Ventricular Dysfunction 

Chronic ischemic left  
ventricular dysfunction 

Injection of hESC-CMs 18 Mar. 2022 The U.S. 

NCT02413450 
Johns Hopkins  

University 

Derivation of Human Induced 
Pluripotent Stem (iPS) Cells  

to Heritable Cardiac  
Arrhythmias 

Inherited cardiac arrhyth
mias, LQTS, BrS, CPVT, 

ERS, AC, ARVD/C, HCM, 
DCM, muscular dystrophies 

(Duchenne, Becker,  
myotonic dystrophy),  

normal control subjects 

Not provided 100 Aug. 2013 The U.S. 

NCT03763136 Help Therapeutics 
Treating Heart Failure With 

hPSC-CMs (HEAL-CHF) 
Heart failure 

Injection of allogeneic hPSC- 
CMs during CABG surgery. 
200 million hPSC-CMs in  

2.5–5 mL medium  
suspension will be injected 

into the myocardium 

20 May 2019 China 

NCT05223894 Help Therapeutics 
Treating Heart Failure With 

hiPSC-CMs 
Heart failure 

Injection of allogeneic  
hPSC-CMs during CABG  

surgery. 100 million  
hPSC-CMs in 2.5–5 mL  

medium suspension will be 
injected into the myocardium 

20 Apr. 2022 China 

NCT04982081 Help Therapeutics 
Treating Congestive HF  

With hiPSC-CMs Through  
Endocardial Injection 

Cardiovascular diseases 
Congestive heart failure 

DCM 

hiPSC-CM will be injected 
into the myocardium through 
a transcatheter endocardial 

injection system 

20 Sept. 2021 China 

NCT05566600 Help Therapeutics 

Allogeneic iPSC-derived  
Cardiomyocyte Therapy in  
Patients With Worsening  

Ischemic Heart Failure 

Ischemic heart failure 
Chronic heart failure 

10–20 epicardial injections  
(0.25 mL each) of iPSC-CMs 

will be delivered in the border 
zone of the infarcted  

myocardium 

32 Oct. 2022 China 

NCT05647213 HeartWorks 

Autologous Induced  
Pluripotent Stem Cells of  

Cardiac Lineage for  
Congenital Heart Disease 

Univentricular heart 
Congenital heart disease 

Heart failure NYHA class III 
Heart failure NYHA class IV 

Subjects in the treated arm 
will receive one dose of  
investigational product 

50 Feb. 2023 The U.S. 

NCT04696328 Osaka University 
Clinical Trial of Human  

(Allogeneic) iPS Cell-derived 
Cardiomyocytes Sheet for ICM 

Myocardial ischemia 
Transplantation of allogeneic 

hiPSC-CM sheet 
10 Dec. 2019 Japan 

NCT04945018 Heartseed 

A Study of iPS Cell-derived 
Cardiomyocyte Spheroids  

(HS-001) in Patients With 
Heart Failure (LAPiS Study) 

(LAPiS) 

Heart failure 
Ischemic heart disease 

Injection of allogeneic  
hiPSC-CM spheroids  

suspension 
10 Apr. 2022 Japan 

NCT04396899 
University Medical 
Center Goettingen 

Safety and Efficacy of Induced 
Pluripotent Stem Cell-derived 
Engineered Human Myocar

dium as Biological Ventricular 
Assist Tissue in Terminal Heart 

Failure (BioVAT-HF) 

Heart failure 

Implantation of EHM on  
dysfunctional left or right 

ventricular myocardium in 
patients with HFrEF 

(EF<35%) 

53 Feb. 2020 German 

a) AC, ARVD/C, arrhythmogenic cardiomyopathy. BrS, Brugada Syndrome. CPVT, catecholaminergic polymorphic ventricular tachycardia. DCM, dilated 
cardiomyopathy. EHM, engineered human myocardium. ERS, early repolarization syndrome. HCM, Hypertrophic cardiomyopathy. hESC, human embryonic stem cell. 
HFrEF, heart failure with reduced ejection fraction. hPSC, human pluripotent stem cell. LQTS, long QT syndrome.   
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expand their study to include 20 patients to further investigate 
the safety and efficacy of this protocol (CYGID: NCT03763136) 
(Zhang et al., 2022). 

Help Therapeutics, the company that supplied the iPSC-CMs 
for Wang’s study, subsequently collaborated with several 
Chinese hospitals. They conducted a series of trials involving 
the injection of different doses of iPSC-CMs into the endocardium 
and epicardium to determine the optimal treatment for HF 
(CYGID: NCT05223894, CYGID: NCT04982081, CYGID: 
NCT05566600). However, none of these trials have published 
their results so far. 

In a study led by Timothy et al., researchers conducted a 
clinical trial using iPSC-CMs injection to treat CHDs (CYGID: 
NCT05647213). Nevertheless, no results from this trial have 
been published thus far. 

Clinical trials of engineered heart tissue transplantation  

In 2013, the earliest clinical trial involving EHT was conducted. 
In Philippe et al.’s study, 6 patients received a median dose of 8.2 
million hESC-derived cardiovascular progenitors embedded in a 
fibrin patch. This patch was delivered epicardially during CABG. 
Although the hESCs were not directly induced into CMs, the 
progenitor cells were expected to continue differentiating into 
CMs, ECs, and SMCs in vivo. While two patients unexpectedly died 
(unrelated to the treatment), the remaining four patients assessed 
in a 1-year follow-up reported improved heart function. No 
teratomas, arrhythmias, or severe immune rejection were 
observed in these patients (Menasché et al., 2015; Menasché et 
al., 2018; Miller, 2018). 

Clinical applications of iPSC-derived EHTs have been spear
headed by Japanese scientists. In January 2020, Sawa’s team 
transplanted 3 allogeneic iPSC-CM patches (with 3.3×10 7 cells/ 
patch) onto the epicardium of the anterior and lateral walls of the 
left ventricle of a patient with ICM. Researchers did not detect 
lethal arrhythmias or tumorigenesis after transplantation in this 
clinical case. Additionally, positron emission tomography (PET) 
revealed improved left ventricular wall motion following patch 
transplantation, accompanied by enhanced coronary flow 
reserve. These tests collectively demonstrated that the transplan
tation of iPSC-CM patches facilitated the functional recovery of 
the patient’s injured heart (Miyagawa et al., 2022). Building on 
this success, a follow-up trial involving 10 patients is currently 
ongoing (CYGID: NCT04696328). In contrast to other clinical 
trials mentioned earlier, in this case, the transplant procedure is 
not performed simultaneously with other treatment methods 
such as CABG. This allows researchers to establish a clear link 
between the improvement in heart function to the transplanta
tion of iPSC-CM patches. 

Hreatseed, a Japanese company, conducted a phase 1/2 trial 
involving 10 patients. They aimed to evaluate the safety and 
efficacy of a type of iPSC-CM spheroids transplanted into patients 
with severe HF caused by underlying ischemic heart disease 
(CYGID: NCT04945018). The trial is still in the recruiting stage. 

Tim et al. conducted a phase 1/2 trial to test an EHT 
constructed from defined mixtures of iPSC-CMs and stromal cells 
in bovine collagen type I hydrogel. The trial targets patients 
suffering from advanced HF with reduced ejection fraction and 
no realistic option for heart transplantation (CYGID: 
NCT04396899). 

The primary indicators for evaluating the safety of PSC-CM 

transplantation (whether as dispersed PSC-CM or EHT trans
plantation) are the risk of tumorigenesis, immune rejection, and 
the potential to induce arrhythmias. Overall, there is currently 
no standardized protocol for safety assessment. The aforemen
tioned Chinese study conducted the most comprehensive testing, 
with researchers planning a 12-month follow-up for patients. 
This follow-up will assess cardiac function and the incidence of 
arrhythmias through echocardiography, MRI, PET, electrocar
diogram, exercise tolerance tests, and related questionnaires. 
Tumorigenesis will be evaluated through chest, abdominal, and 
pelvic CT scans and PET-CT scans. Immune rejection levels will 
be assessed via donor-specific antibody (DSA) testing and 
serological testing for anti-human leukocyte antigen (anti-HLA) 
antibodies/panel reactive antibodies (PRA) (NCT03763136). 

Discussion  

In recent years, the field of cardiovascular medicine has 
witnessed remarkable advancements driven by stem cell-based 
therapeutics in preclinical and clinical studies (Clavellina et al., 
2023). For instance, the MSC-derived therapy has been shown to 
promote MI recovery (Ala, 2023; Barrère-Lemaire et al., 2024; 
Wang et al., 2021d), and alleviate arterial or pulmonary 
hypertension (Hansmann et al., 2022; Zhang et al., 2024). 
One of the most exciting and promising advancement is the 
application of PSC-CM for cardiac regeneration. The core of this 
approach is the transplantation of PSC-CMs into injured hearts, 
aiming to integrate and remuscularize with the host myocar
dium, replenishing lost adult CMs which are considered non- 
regenerable under physiological conditions, and ultimately 
enhancing cardiac function. Extensive preclinical studies have 
unveiled several challenges of PCT, including immune rejection, 
engraftment arrhythmias, tumorigenicity, and challenges in 
host-graft integration. So far, immune rejection has been 
properly managed by various strategies such as IST and MHC 
engineering. However, EAs still remain a huge challenge, as none 
of the current reports have completely eradicated EAs, even with 
quadruple gene editing (Marchiano et al., 2023). It is worth 
pointing out that individual clinical case reports revealed no 
proarrhythmic behaviors in patients receiving PSC-CM patch 
transplantation (Miyagawa et al., 2022). 

Meanwhile, several current reports of PCTs entail transplant
ing hPSC-CMs into immuno-deficient animals (Cheng et al., 
2023a; Lou et al., 2023; Mattapally et al., 2018b) or animals 
treated with immunosuppressants (Cheng et al., 2023a; Dhahri 
et al., 2022), which is essentially xenogeneic transplantation. 
Therefore, questions have been raised about whether the 
immune response and treatment effects observed in xenogeneic 
transplantation are comparable to allogeneic transplantation, 
which is of greater clinical relevance. So far, there have been no 
studies comparing immune responses and therapeutic effects of 
allogeneic versus xenogeneic transplantation of CMs, but 
relevant studies regarding other tissue transplantation can 
enlighten us on this matter. Erdag and Morgan reported that 
the human neonatal skin allografts were rejected between 5 and 
9 d, whereas xenografts rejection occurred at 5–8 d. Allograft 
rejection was mediated by intense CD3 +, CD4 +, and CD8 + T cell 
infiltration, and similar pathological changes were also observed 
in the xenograft models, suggesting comparable immune 
responses between xenograft and allograft rejection (Erdag and 
Morgan, 2004). Allogeneic and xenogeneic human embryonic 
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stem cell grafts (Grinnemo et al., 2006) and cartilage grafts (Uto 
et al., 2023) also induced similar immune responses. Both 
allogeneic and xenogeneic MSCs showed equal efficacy in acute 
cerebral infarction (Gutiérrez-Fernández et al., 2015), lung 
protection against ischemia-reperfusion injury (Lin et al., 
2020), and soft tissue repair (Dong et al., 2020). However, 
Hwang et al. (2020) discovered that xenogeneic MSCs induced 
greater leukocyte and neutrophil infiltration than allogeneic 
MSCs, yet allogeneic MSCs attracted more microglia and 
macrophages. Shen et al. (1996) reported that neonatal 
intrathymic inoculation in recipients only abrogated allogeneic, 
but not xenogeneic rejection for heart transplantation. Interest
ingly, Choi et al. (2016) observed that human xenogeneic 
adipose tissue-derived MSCs prolonged the life of systemic lupus 
erythematosus mice even more than allogeneic MSCs, although 
inducing a greater humoral immune response. Taken together, 
xenogeneic and allogeneic tissue transplantation is comparable 
to a certain extent in regards to immune response and 
therapeutic efficacies, for which xenograft experiments can 
certainly guide the results and response of allograft transplanta
tion. However, as the results of the comparison may vary from 
one tissue to another, it is still important to conduct comparative 
studies to further illuminate the similarities and differences 

between allogeneic and xenogeneic hPSC-CM transplantation. 
As of now, no FDA-approved PSC-CM-based therapeutics are 

available globally. Nonetheless, many clinical trials have been 
undertaken, with some current reports suggesting that PCT 
demonstrates acceptable safety and efficacy. However, further 
investigations into the interplay between cell sources, transplan
tation methods, and potential risks and benefits are of great 
importance before achieving widespread clinical application. 

Over the past two years, several cases of xenotransplantation of 
the heart (Schmauch et al., 2024), kidney (Montgomery et al., 
2022), and liver (Mallapaty, 2024) have been reported (Fang et 
al., 2024). In these cases, functional organs of genetically 
engineered pigs (mainly α-1,3-galactosyl knockout) were trans
planted into human recipients (Fang et al., 2024). However, 
many challenges remain so far. The first porcine kidney recipient 
died two months after the transplantation, with RNA-seq 
showing signs of antibody-mediated rejection (Pan et al., 
2024). The first porcine heart recipient survived for 60 days, 
whereas the second survived for less than 6 weeks, also 
demonstrating molecular-level rejection and ischemic reperfu
sion injury (Schmauch et al., 2024). More importantly, whole- 
organ transplantation is a major surgery with various risks, and 
recipients are subject to life-long anti-rejection medication. These 

Figure 5. The future of PCT. The future of PCT mainly includes three areas. PCT is expected to expand its implications from MI to all CVDs which is caused by diseased CMs or 
can result in CM loss. Another area of interest is the robust cell source of PSC-CMs, either autologous PSC derived from patients’ own cells, or HIPSCs from stem cell biobanks. 
With minimal immunogenicity, the need for immunosuppressants is avoided. At last, it will also be necessary to optimize the delivery modality and strategy, to achieve optimal 
outcomes, as exemplified by mature graft-host electromechanical integration, improved vascularization, synchronized contraction, and eventually result in improved cardiac 
function without engraftment arrhythmias. CM, cardiomyocyte. CVD, cardiovascular disease. HIPSC, hypoimmune pluripotent stem cell. MI, myocardial infarction. PCT, PSC-CM 
transplantation. PSC-CM, pluripotent stem cell-derived cardiomyocyte.  
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all compose the possibility of complications (Fang et al., 2024; 
Kozlov, 2024). Transplantation of homologous iPSC-CMs, while 
unable to replace the entire diseased organ, can avoid the long- 
term use of anti-rejection medication, as well as the need for a 
major operation (Marchiano et al., 2023; Nakamura et al., 
2021). Therefore, xenotransplantation and iPSC-CM transplan
tation should serve patients under different conditions and 
stages, as xenotransplantation offers patients with end-stage HF 
and waiting for heart transplant more chances, whereas iPSC- 
CM transplantation would serve those who can still benefit from 
partial regeneration of cardiac muscles, preventing them from 
progressing into end-stage HF. Future clinical trials may provide 
more evidence for the comparison and indications of these 
treatment options. 

In the future, the indications of PSC-CMs may broaden from MI 
to cardiomyopathy, HF, CHDs (such as septal defect), and 
arrhythmias. More importantly, the cell sources for PSC-CMs 
ought to be more stable, with minimal immunogenicity. Finally, 
with PSC-CMs of multiple modalities transplanted through 
minimally invasive techniques, patients with CVDs may experi
ence improved cardiac function, based on robust host-graft 
integration (Figure 5). To summarize, PCT continues to represent 
a cutting-edge and promising strategy for cardiac regeneration, 
bringing hope to patients struggling with cardiovascular 
diseases. Despite prevailing challenges and ongoing preclinical 
research and clinical trials, the authors are cautiously optimistic 
regarding the therapeutic prospects of PCT. 
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