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Enhancers and super-enhancers exert indispensable roles in maintaining cell identity through spatiotemporally regulating gene
transcription. Meanwhile, active enhancers and super-enhancers also produce transcripts termed enhancer RNAs (eRNAs) from
their DNA elements. Although enhancers have been identified for more than 30 years, widespread transcription from enhancers
are just discovered by genome-wide sequencing and considered as the key to understand longstanding questions in gene
transcription. RNA-transcribed enhancers are marked by histone modifications such as H3K4m1/2 and H3K27Ac, and enriched
with transcription regulatory factors such as LDTFs, P300, CBP, BRD4 and MED1. Those regulatory factors might constitute a
Mega-Trans-like complex to potently activate enhancers. Compared to mRNAs, eRNAs are quite unstable and play roles at local.
Functionally, it has been shown that eRNAs promote formation of enhancer-promoter loops. Several studies also demonstrated
that eRNAs help the binding of RNA polymerase II (RNAPII) or transition of paused RNAPII by de-association of the negative
elongation factor (NELF) complex. Nevertheless, these proposed mechanisms are not universally accepted and still under
controversy. Here, we comprehensively summarize the reported findings and make perspectives for future exploration. We also

believe that super-enhancer derived RNAs (seRNAs) might be informative to understand the nature of super-enhancers.
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Introduction teraction, it is still largely unknown how enhancers exactly

As one of the outstanding mysteries in modern biology, the
dynamic communication between enhancers and their tar-
geted promoters determines the specification of cellular
identity (Levine et al., 2014). It has been more than 35 years
since that the enhancer was experimentally demonstrated.
Scientists around the world then made extensive efforts to
understand the functional interaction between two DNA
fragments (i.e., enhancer and promoter) (Bales, 1990;
Banerji et al.,, 1981; Henley et al., 1990). Although sig-
nificant progress has been made in understanding such in-
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regulate remote promoters very likely due to unidentified
entities (Plank and Dean, 2014; Zabidi and Stark, 2016).
Therefore, recently identified enhancer RNAs (eRNAs) be-
come one of the most interesting candidates in the regulation
of functional interaction between enhancers and promoters
(Kim et al., 2010; Koch et al., 2011). Appreciated with
several keynote findings, it becomes clear that enhancers not
only regulate the transcription of targeted gene(s) but also
actively transcript into eRNAs (Kim et al., 2010; Lam et al.,
2014; Liu, 2017). eRNAs, as the name indicates, are tran-
scribed from putative enhancer regions characterized by high
levels of H3K4mel, H3K4me?2 and H3K27Ac (Djebali et al.,
2012; Heintzman et al., 2009; Kaikkonen et al., 2013). They
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exhibit a 5’ cap but are generally not spliced or poly-
adenylated (Djebali et al., 2012; Lam et al., 2014) (Figure 1).
The majority of reports have demonstrated the critical role of
eRNAs in transcription of targeted genes. However, the
molecular mechanisms are controversial (Li et al., 2013;
Melo et al., 2013; Rahman et al., 2017).

In a given status, there are thousands of active enhancers,
of which only a very small fraction can be subdivided into a
distinguished group (called super-enhancers, SEs) based on
the intensity of H3K27Ac or BRD4 binding (Chapuy et al.,
2013; Whyte et al., 2013). To date, it is still unclear whether
SEs represent a new entity or just clusters of conventional
enhancers (Cheng et al., 2016; Dukler et al., 2017; Li et al.,
2018; Pott and Lieb, 2015). Like enhancers, super-enhancers
also transcribe into RNA which is named as super-enhancer
RNAs (seRNAs). It is unclear whether seRNAs represent a
new entity or is just a subtype of conventional eRNAs (Al-
varez-Dominguez et al., 2017; Micheletti et al., 2017). In this
review, we make a comprehensive summary of the reported
literature, and provide several perspectives for future studies
as well as the potential unique features of super-enhancers
and seRNAs. The implications for correlative diseases are
also discussed.

The discovery, definition and characteristics of
eRNAs

In 2010, two independent studies using RNA-sequencing
demonstrated the existence of widespread transcription at
active enhancers (De Santa et al., 2010; Kim et al., 2010).
Although the technique of RNA-sequencing was widely
used, eRNA was missed due to low sequencing depth and
focusing on polyadenylated RNAs. In the following few
years, a number of groups not only confirmed the existence
of eRNAs, but also showed the critical role of eRNAs in gene
transcription (Koch et al., 2011; Kowalczyk et al., 2012;
Wang et al., 2011). The production of eRNAs is a bona fide
reflection of enhancer activation and its signature can be
used to predict tissue-specific enhancers independent of any
known epigenomic enhancer markers (Cheng et al., 2015;
Wu et al., 2014; Yao et al., 2015). When looking back, ac-
tually there are several indicators showing the existence of
eRNAs decades ago. For example, RNA labeling showed
that a large fraction of nascent RNA retains in the nucleus
and this nuclear RNA is very unstable compared to cyto-
plasmic RNA (Harris, 1959). Furthermore, several ex-
tensively studied enhancers such as LCR of beta-globin
region and enhancers between DLX5/6 genes show the ex-
istence of transcripts(Collis et al., 1990; Feng et al., 20006),
but these few examples at that time were insufficient to
distinguish eRNAs as a new subset from long non-coding
RNA. The ENCODE consortium (2012) has identified

Sci China Life Sci  July (2019) Vol.62 No.7

400,000 putative enhancers in human genome, and this
number will very likely increase to as many as a million,
which is largely extended to the number of 25,000 genes
encoding by same human genome. Due to the widespread
transcription of enhancers, the number of eRNAs will be
very impressive accordingly. Unlike promoters of long non-
coding RNAs (IncRNAs) and genes, enhancers show little
biasness in the direction of transcription initiation and is
frequently bi-directional transcribed (Djebali et al., 2012;
Kochetal.,2011; Lam et al., 2014; Natoli and Andrau, 2012)
(Figure 1). After transcription, generally, eRNAs do not
undergo full maturation processes, they are with 5’ cap but
without splicing and polyadenylation (Djebali et al., 2012;
Koch et al., 2011; Lam et al., 2014; Natoli and Andrau,
2012). In addition, eRNA is retained in nuclei and is very
unstable and can be degraded within minutes (Figure 1).
These features indicate that it might only play roles from a
limited distance.

The transcriptional regulation of eRNAs

The eRNAs are widely transcribed from enhancers and these
enhancers have following features: (i) characterized by high
level of H3K4mel, H3K4me2, H3K27Ac but with low level
of H3K4me3 and H3K27me3; (ii) bound by lineage-de-
termining transcription factors (LDTFs); (iii) associated with
transcriptional co-regulators including subunits of Mediator,
histone acetyltransferase P300 and cAMP response element-
binding protein (CREB) binding protein (CBP); (iv) occu-
pied by transcriptional initiation complex and phosphory-
lated RNAPII at serine 5 but not serine 2; (v) binding with
condensing complex including enhancer-associated coacti-
vators/corepressors to permit eRNA transcription (Li et al.,
2015); (vi) upon stimulation, enhancers are occupied by
DNA topoisomerase I (TOP1) within minutes and the DNA
nicking activity of TOP1 is a prerequisite for robust eRNA
synthesis (Puc et al., 2015) (Figure 1). Collectively, the en-
riched transcriptional regulatory factors at enhancer might
constitute a Mega-Trans-like complex to potently activate
enhancers (Liu et al., 2014) (Figure 1). Furthermore, the
enhancer DNA that produces eRNA exhibits low DNA
methylation and enrichment of DNA hydroxylase Tetl (Pu-
lakanti et al., 2013).

It was believed that H3K4meland H3K27ac are markers
of active enhancers. However, it is surprising to see minor
effects on eRNA transcription after losing H3K4mel and
partially reducing H3K27ac in CRISPR-CAS9 engined
MI113/4 catalytically deficient cells (Dorighi et al., 2017). In
contrast, loss of M113/4 proteins leads to strong depletion of
enhancer RNAPII occupancy and eRNA synthesis. Thus,
MI113/4 protein but not their enzymatic activity is critical for
eRNA synthesis at enhancer. The observed enrichment of
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Figure 1 Transcriptional regulation of eRNA production. The eRNA producing enhancers show high level of histone modification of H3K4mel,
H3K4me2, H3K27Ac and are enriched with transcription regulators such as LDTFs, P300, CBP, BRD4, MED1 and TOP1. These enhancer-binding factors
collectively comprise a Mega-Trans like complex, which can potently induce the expression of eRNAs. Induced eRNA is unstable due to lack of

polyadenylated tails and they might only play roles at local.

H3K4mel at active enhancer might be noise and their bone
fide role in eRNA production needs further investigation.
Besides these commonly regulated mechanisms, several
proteins favor to bind at enhancer regions and subsequently
regulate the transcription of enhancers. A recent study
showed that a part of p53 binds at enhancer regions, which is
required for eRNA production at such regions (Allen et al.,
2014; Léveillé et al., 2015; Melo et al., 2013). Actually, p53
actives LED (IncRNA activator of Enhancer Domains) to
turn on enhancers, which could amplify a subset of p53-
dependent eRNA production. It also has been shown that
stimulation triggered integrator binds to enhancers and is
required for eRNA production(Allen et al., 2014; Léveillé et
al., 2015; Melo et al., 2013). Upon pro-inflammatory sti-
mulation, TEAD/P65 complex could induce eRNA at
MnSOD locus (Chokas et al., 2014). What’s more, tran-
scription factor FOXO3 selectively binds to enhancer re-
gions and promotes enhancer transcription. Although these
above factors have shown to enhance eRNA production,
their molecular mechanisms are largely unclear. Comparing
to positive regulators, the negative regulators are even less
determined. The 7SK-BAF axis has shown to inhibit eERNA
production (Flynn et al., 2016). Several nuclear receptors
such as Rev-Erb-a and Rev-Erb-b could recruit nuclear re-
ceptor co-repressor (NCoR)-HDAC3 complexes to turn off
eRNA production (Lam et al., 2014) (Figure 1). In addition,
compared to transcription regulation of promoter upon sig-

naling induction, the transcriptional regulation of eRNA
upon stimulation is largely unknown. The understanding of
eRNA transcription at molecular level will help us to un-
derstand how does enhancers’ function precisely regulated.

The functions and molecular mechanisms of eRNAs

Generally, the expression level of eRNAs is correlated with
expression of their nearby genes, which suggests their po-
tential important role in gene transcription. The first evi-
dence to prove the important function of eRNA was from the
studies of p53. P53 binds to both promoter and enhancer
regions. P53 binding enhancers actively transcribed eRNA
which are required for stress-induced p53 function (Allen et
al., 2014; Leveille et al., 2015; Melo et al., 2013). Using
estrogen (or androgen)/ER system, the detailed molecular
mechanism of eRNA was probed (Li et al., 2013). Estrogen-
induced eRNA exerts important roles in estrogen-upregu-
lated coding genes via cohesion-dependent mechanism to
increase the strength of specific enhancer-promoter looping
(Hah et al., 2013; Li et al., 2015) (Figure 2A). The androgen
induced eRNAs such as KLK3e, transcribed from upstream
enhancers of AR-regulate gene KLK3, not only facilitate the
spatial interaction between KLK3 enhancer and KLK3 pro-
moter but also increase long-distance KLK2 transcriptional
activation (Hsieh et al., 2014). Depending on the integrity of
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core enhancer elements, KLK3e processes RNA-dependent
enhancer activity and is required for the interaction of AR
and Mediator 1 (Medl) (Hsieh et al., 2014). Androgen in-
duced prostate-specific antigen (PSA) eRNA binds to CY-
CLIN T1, activates P-TEFb and promotes cis and trans target
gene transcription by increasing serine-2 phosphorylation of
RNA polymerase 11 (Zhao et al., 2016). The CDK?9 inhibitor
flavopiridol blocks eRNA synthesis but does not affect other
markers of enhancer activity, suggesting ¢eRNA systhesis
after assembly of active enhancers (Hah et al., 2013) (Figure
2).

In a similar system at single cell level, eRNAs rarely co-
express with their target loci (Rahman et al., 2017), which
indicates that active gene transcription does not require the
continuous transcription of eRNA or their accumulation at
enhancers. It suggests, eRNAs engage at very early phase of
gene transcription after enhancer assembly, which is con-
sistent with a genomic study indicated that eRNA tran-
scription is the earliest response, even prior to transcription
of messenger RNAs encoding transcription factors (Arner et
al., 2015)

Although some evidences suggest that eRNAs affect en-
hancer-promoter looping, their putative role in gene tran-
scription is still under debate. One study shows that eERNAs
do not affect chromatin looping, but act as a decoy for the
negative elongation factor (NELF) complex and thus facil-
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Figure 2 Models to show how eRNAs regulate the transcription of tar-
geted genes. A, After signal induced transcription of eRNAs, they facilitate
functional interaction between enhancers and promoters, then further hold
and stable the chromatin loop via cohensin dependent or independent
pathways. B, Enhancer RNAs initiate the transcription of targets by
opening chromatin directly or indirectly via recruitment of chromatin re-
modelers. C, Enhancer RNAs promote targets transcription by enhancing
the binding of RNAPII or leasing negative regulator NELF.
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itate the transition of paused RNA polymerase II into pro-
ductive elongation (Schaukowitch et al., 2014) (Figure 2C).
Another study demonstrates that eRNAs increase pol 11
binding (Maruyama et al., 2014) (Figure 2C). Besides these
restricted effect, several other studies have showed that eR-
NAs owe broad effect on chromatin states (Liang et al.,
2016; Pnueli et al., 2015; Yang et al., 2016). Knockdown
eRNA results in an increase in total histone H3 occupancy at
enhancer region and a virtual loss of H3K4m3 at promoter
region (Liang et al., 2016 ; Pnueli et al., 2015; Yang et al.,
2016) (Figure 2B). eRNA could also open chromatin directly
or through recruitment of chromatin remodelers (Mousavi et
al., 2013) (Figure 2B). A recent study demonstrates that the
eRNA, ThymoD, could reposition its targeted Bclllb en-
hancer from the lamina to the nuclear interior (Isoda et al.,
2017). However, models proposed above are not universally
accepted, by using different stimulation system, the me-
chanism by which eRNA regulates targeted gene expression
might be quite different. The underlying nature of eRNA in
the regulation of gene expression is still unclear, which needs
further investigation.

eRNA in diseases

Following the discovery of eRNA, extensive efforts have
been made to understand the function of eRNAs and their
molecular mechanism in regulation of gene transcription.
However, their potential pathologic roles in diseases remain
obscure. Genome wide association studies revealed that
majority of diseases associated with single nucleotide poly-
morphisms (SNPs) locate outside of protein coding regions
of the human genome (Maurano et al., 2012). Epigenomic
profiling further showed that many of non-coding risk SNPs
fall within the tissue specific enhancers (Akhtar-Zaidi et al.,
2012; Andersson et al., 2014; Corradin et al., 2014; Ernst et
al., 2011). Besides SNPs, somatic mutations in noncoding
intergenic elements introduce new super-enhancers to drive
the expression of oncogenes in cancer (Mansour et al., 2014).
Likewise, small genomic insertions in noncoding regions
also form new enhancers or super-enhancers to upregulate
expression of key oncogenes in different cancers (Abraham
et al., 2017). Due to the fact that eRNAs are widely tran-
scribed at enhancers, a part of enhancer-risk SNPs could
change the sequence of eRNAs and subsequently affect its
function, which then cause diseases. The altered genomic
regions through somatic mutations or insertions also very
likely affect their transcripts. In patients with non-medullary
thyroid carcinoma (NMTC), an eRNA is greatly down-
regulated because of a single-nucleotide mutation in the
enhancer region (He et al., 2013). In mouse models of
Huntington’s disease, the expression of eRNAs also largely
reduces (Le Gras et al., 2017). Enhancer RNAs might also
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contribute to hematopoiesis, carcinogenesis and drug-re-
sistance (Jeong and Goodell, 2016; Smith and Shilatifard,
2014; Zhao et al., 2016). As the prominent function of en-
hancers in both physiological and pathological conditions,
we hypothesize that eRNAs contribute largely in a wide
spectrum of diseases which deserve further investigation.
The knowledge of eRNAs not only provide new insight to
understand gene transcription but also light up a new way in
understanding diseases. The challenge is how we can dis-
tinguish the causal roles between enhancer and eRNA. Some
of genetic alternation might affect both enhancer and eRNA
function, but some of them might only affect eRNA but not
enhancer function.

eRNA versus super-enhancer RNA

Enhancers are regular segments of DNA that are a few
hundred base pairs in length generally and can be bound by
proteins to increase the likelihood of transcription of parti-
cular genes (Blackwood and Kadonaga, 1998; Pennacchio et
al.,, 2013) (Figure 3). Similar to enhancer, the length of
eRNA, transcribed from enhancer, is also generally a few
hundred base pairs. A recent distinguished subset from en-
hancer is termed super-enhancer based on the intensity of
transcriptional factor binding and histone modification
(Whyte et al., 2013) (Figure 3). Compared to enhancers, they
are more powerful to regulate gene expression (Whyte et al.,
2013) and larger in size with general size of about 8 kb
(Whyte et al., 2013). Besides these known differences be-
tween enhancer and super-enhancers, it is continuing con-
troversy over whether super-enhancers genuinely represent a
new paradigm in transcriptional regulation or just be a cluster
of conventional enhancers (Dukler et al., 2017; Pott and
Lieb, 2015). Such critical question might be addressed by
considering RNA transcription from super-enhancers (seR-
NAs) (Figure 3). Unlike eRNAs, seRNAs are even larger due
to the large size of super-enhancers. Furthermore, when
analyzing the fraction of eRNAs that overlaps with TEs or
SEs, relatively few typical intergenic enhancers overlap with
eRNA (30.6%), whereas nearly all intergenic SEs contain
eRNAs (93.3%) (Hah et al., 2015) (Figure 3). It suggests that
active transcription is another feature of super-enhancers.
More importantly, majority of seRNAs are capped and
polyadenylated RNAs (Alvarez-Dominguez et al., 2017),
indicating that seRNAs are more stable and have more broad
and profound effect in physiological and pathological con-
ditions. Thus, seRNAs are not simply the sum of eRNA
transcribed from corresponding individual enhancers (Figure
3). It is different from eRNA at several aspects such as ex-
pression level, length, modification, or even nucleotide se-
quence (Figure 3). More studies of seRNAs will be able to
understand the nature of seRNAs and SEs. Beyond the cis-

Sci China Life Sci  July (2019) Vol.62 No.7 909

Enhancers

A
S EE TN TN T e
B

T ERN N E TS
C
N NN e S

Super-enhancer seRNAs

SN R E T T -
A B C

Figure 3 A model by using seRNAs to show super-enhancers genuinely
represent a new paradigm in gene transcription but not just be clusters of
conventional enhancers. Although a super-enhancer is composed of a
cluster of enhancers, it is a new functional entity instead of the sum of
individual constitutive enhancers. These super-enhancers comprised en-
hancers are small in size and they are active individually in certain situa-
tion. But these individually active enhancers do not produce eRNAs. When
all enhancers are active, they constitute the super-enhancer and become a
new unit, and subsequently produce lots of large seRNAs to regulate dif-
ferent targeted genes.

acting effect of typical enhancer, super-enhancer might also
have trans-acting effect through transcription of seRNAs
(Alvarez-Dominguez et al., 2017).

Perspectives

Recently, the enhancer RNAs have become one of the most
interesting fields in the understanding of gene transcription
due to their wide transcription in universal conditions. Large
scale genome-wide sequencing has identified thousands of
eRNAs in different conditions. The wide expression in each
condition suggests potential important role of e(RNAs in gene
transcription. Although few studies report that there is no
significant role of eRNA in nearby gene expression, majority
of functional studies have demonstrated critical role of eR-
NAs in nearby gene expression. Nevertheless, when con-
sidering the 3D nuclear structure and DNA architectures in
nucleus, eRNAs may not only play a role in linear nearby
gene expression, but also affect the linear distant but spatial
nearby gene expression. This possibility may explain why
knockdown eRNA expression in few studies has minimal
effect in linear nearby genes. Genome-wide analysis of gene
expression after depletion of individual eRNAs will help to
understand eRNA-regulated genes in genome wide scale and
also provide useful information in understanding 3D nuclear
structure since eRNAs are unstable and affect gene expres-
sion locally. One of prominent question is how eRNAs
regulate gene expression: whether eRNAs affect enhancer-
promoter looping? Whether eRNAs recruit transcription
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regulators to target genes? How eRNAs exert its function
with perfect timing? Whether eRNAs limit targeted gene
expression? Furthermore, as reported eRNAs also regulate
gene splicing through recruiting splicing complex, interac-
tion between eRNAs and enhancers might also introduce
DNA instability. It is therefore important for understanding
carcinogenesis, aging and other diseases that associated with
DNA instability. At last, with our full understanding the
biological function of eRNAs, clinical application using
eRNA as a biomarker might be better than frequently used
biomarkers such as mRNA, DNA or protein. In summary, we
are just beginning to touch the newly identified entity,
eRNA, which is in transient existence, but might affect not
only gene transcription but also RNA metabolism as well as
nuclear architecture.
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