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ABSTRACT
Modern control systems are featured by their hierarchical structure composed of cyber, physical and human
layers. The intricate dependencies among multiple layers and units of modern control systems require an
integrated framework to address cross-layer design issues related to security and resilience challenges.
To this end, game theory provides a bottom-up modeling paradigm to capture the strategic interactions
among multiple components of the complex system and enables a holistic view to understand and design
cyber-physical-human control systems. In this review, we first provide a multi-layer perspective toward
increasingly complex and integrated control systems and then introduce several variants of dynamic games
for modeling different layers of control systems. We present game-theoretic methods for understanding the
fundamental tradeoffs of robustness, security and resilience and developing a cross-layer approach to
enhance the system performance in various adversarial environments. This review also includes three
quintessential research problems that represent three research directions where dynamic game approaches
can bridge between multiple research areas and make significant contributions to the design of modern
control systems. The paper is concluded with a discussion on emerging areas of research that crosscut
dynamic games and control systems.
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INTRODUCTION
Recent advances in information and communi-
cations technologies (ICTs) such as the Internet
of Things (IoT) and 5G high-speed networks
have witnessed increasing connectivity between
control systems and cyber networks.The integration
between the cyber and physical worlds has made
significant advances in many industrial sectors and
critical infrastructures, including electric power,
manufacturing and transportation, heralding the
fourth industrial revolution that transforms the op-
eration of industrial control systems. To understand
and design such systems would require a global and
hierarchical perspective toward modern control
systems as shown in Fig. 1.The classical view toward
control systems consists of sensing, control and
plant dynamics integrated in a feedback loop.

A multitude of control design methods including
robust control, adaptive control and stochastic con-

trol have focused on how to deal with uncertainties
and physical disturbances [1]. Modern control sys-
tems, due to their exposure to open networks and
integration with complex software, require new
methodologies that gobeyond the classical ones that
have focused on the interface between the control
layer and the plant at the physical layer. The clas-
sical control system is extended by interconnect-
ing it with the cyber and human layers. The cyber
layer consists of the communication and network-
ing issues that arise from the communications be-
tween sensors and actuators as well as the connec-
tivity among multiple distributed agents.The human
layer consists of the supervisory and the manage-
ment layers that deal with the issues that include co-
ordination, operation, planning and investment.

As the modern control system design benefits
from the growing connectivity, the innate vulner-
abilities at the cyber layer and the human layer in
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Figure 1. The hierarchical structure of modern control sys-
tems is composed of six layers. The physical layer consists

of a physical plant embedded with actuators and sensors.

The control system receives orders, observations and sends

commands to actuators to achieve desired system perfor-

mance. The communication layer provides wired or wireless

data communications that enable advanced monitoring and

intelligent control. The network layer allocates network re-

sources for routing and provides interconnections between

system units. The supervisory layer serves as the executive

brain of the entire system, provides human–machine inter-

actions, and coordinates and manages lower layers through

centralized command and control. The management layer re-

sides at the highest echelon. It deals with social and eco-

nomic issues, such as market regulation, pricing, incentive

and environmental affairs.

modern control systems can bring concomitant
threats and hazards from adversaries [2]. Many in-
cidents have been reported as a result of attacker’s
exploitation of these vulnerabilities [3,4]. Stuxnet,
reported in Refs [5,6], is one of the well-known Ad-
vanced Persistent Threats (APTs) to control sys-
tems that can persist for a long period, behave
stealthily and specifically target industrial control
systemsby taking advantage of the Supervisory Con-
trol And Data Acquisition (SCADA) systems. This
type of attack can also be launched by an insider.
One example is the Maroochy water breach inci-
dent launched by a disgruntled former employee.
The attack surface of control systems is exponen-
tially growing.Adversaries can exploit multiple zero-

day vulnerabilities and launch unanticipated attacks.
One example is the recent hacking of the self-driving
vehicles, where the attacker has remotely manipu-
lated, through the cellular connection of the vehicle,
various electronic control units, from wiper to brake
and engine system [7]. Apart from self-driving vehi-
cles, many other autonomous systems can face simi-
lar threats. Failure to defend against such threats can
inflict huge financial losses and fatal damages.

The adversarial behaviors at the human and the
cyber layers are often hard to anticipate and prepare
for. They can cause a significant amount of catas-
trophic damage to control systems in terms of their
high impact and low effort. The classical approach
that regards abnormal behaviors as a result of un-
certainties and perturbations to physical plants is in-
sufficient to address these emerging threats. To this
end, a new design paradigm is needed to develop
frameworks to safeguard the control systems from
cyber threats and mitigate the damage that can be
caused by attacks. In other words, it is indispens-
able to consider system properties beyond stability
and establish a holistic framework to incorporate the
study of robustness, security and resilience of control
systems.

This reviewaims topresent an extensive overview
of recent research directions on using game-
theoretic approaches to address robust, secure and
resilient design problems of modern control sys-
tems. The first objective of this review is to provide a
layering perspective toward modern control systems
that consist of cyber, physical and human compo-
nents across the layers. Game-theoretic methods
play an important role in interconnecting different
aspects of a control system and providing a holistic
and integrated framework to address the cross-layer
design of robust, secure and resilient systems. The
second objective of this review is to bridge the
classical system design approaches and the modern
system design through game-theoretic methods.
We can view the secure and resilient control design
as an extension of the classical robust control design
by integrating multiple game-theoretic frameworks.
Last but not least, the third objective of this work is
to introduce the emerging research topics related to
game-theoreticmethods for secure and resilient con-
trol system design. Namely, we present three major
application areas including secure and resilient con-
trol of heterogeneous autonomous systems, defen-
sive deception games for industrial control systems
and risk management of cyber-physical networks. In
this review,we focus on game-theoreticmethods for
a robust, secure and resilient control system design
with an emphasis on dynamic games. For game-
theoretic security surveys in general Cyber-Physical
Systems (CPSs), one can refer to Refs [8–10].
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The triplet: robustness, security and
resilience
Robustness, security and resilience are three major
control system properties for modern control sys-
tems. The notion of robustness describes a system’s
ability to maintain itsperformance in thepresence of
regular and singular perturbations [11], whereas se-
curity refers to the system’s ability to withstand and
be protected from malicious behaviors and unantic-
ipated events [1]. Robustness and security are two
system properties that are achieved offline by fore-
seeing the perturbations and the attacks before they
happen. Thus, these two system properties are clas-
sified as pre-event concepts. Despite many endeav-
ors toward designing robust and secure systems, it
is impractical and economically inefficient, if it is
possible, to achieve perfect robustness and security
against all possible perturbations, attacks and events.
This concern calls for the notion of resilience, a post-
event concept referring to the system’s ability to re-
cover online after adversarial events occur. Hence,
resilient control systems have performance guaran-
tees so that even when robustness and security fail
under unanticipated attacks and failures, the systems
can self-recover from deterioration.

It is imperative to be aware that robustness, se-
curity and resilience are three interdependent con-
cepts. These three system properties should be
jointly considered in the design of modern control
systems. Since a robust control system canwithstand
a certain range of uncertain parameters and distur-
bances, the system stays safe under the malicious at-
tacks if the design of security can limit the impact
of the malicious attacks within an acceptable range.
Additionally, the design of resilient control systems
pivots on the fundamental system tradeoffs between
robustness, security and resilience. Perfect security
could be attained by making the system unusable
and likewise, perfect robustness could be reached by
considerably degenerating the control performance.
The fact that no desirable control systems exhibit
perfect robustness or security creates a serious need
for resilience. Hence, the three system properties
should be jointly designed. It is of vital importance
to know, on the one hand, what type of uncertain-
ties or adversarial events need to be considered for
enhancing robustness and security, and on the other
hand,what uncertainties or malicious events need to
be considered for post-event resilience.

Metrics for robustness in control systems have
been well established in the literature [11,12]. A
game-theoretic approach hasbeen introduced to ob-
tain the H∞ optimal, disturbance-attenuating mini-
max controllers by viewing the controller as the cost
minimizer and the disturbance as the maximizer.

Likewise, game-theoretic frameworks have been es-
tablished to capture the conflict of goals between an
attacker who seeks to escalate the damage inflicted
on the system and a defender who aims to mitigate
it [13]. There is a rich literature on defining metrics
for the security [13–15]. However, metrics for secu-
rity, unlike those for robustness, are problem depen-
dent as the attack model varies and the security de-
sign parameters depend on the defense mechanisms
such as cryptography, detection, network architec-
ture and communication protocols. Examples of re-
cent security metrics can be found in Refs [16–20].
Metrics for resilience naturally require a compari-
son between the pre-event and the post-event per-
formance as resilience is a system property defined
as the ability to recover from severe stresses induced
by natural disasters or malicious attacks. Figure 2 il-
lustrates the notion of resilience with respect to an
attack that is launched at time t1. Shortly after the at-
tack, the system performance starts to degrade to its
maximum degree M1 and M2 for the high-resiliency
system (S2) and the low-resiliency system (S1), re-
spectively. Recovery mechanisms are used to restore
the system to its original performance or a steady-
state degraded performance for system S2 and S1, re-
spectively. A system is said to be more resilient if the
system is capable of recovering after an attack with a
lower loss of performance and a faster recovery time.
The most commonly used mathematical definition
of resilience is provided in Refs [16,21].

Game-theoretic methods
Game theory [22,23], in a nutshell, studies the
strategic interaction between two or multiple
decision-makers, called players, where each player
aims to optimize his respective objective function,
which depends on the choices of other players in the
game. Hence, the optimal decisions of the players
are coupled when they aim to achieve the best
for themselves. Game theory provides a powerful
modeling tool to describe strategic interactions
among players. Based on objectives of the players,
games can be divided into two categories: zero-sum
games and non-zero-sum games.

A zero-sum game refers to a two-player game
where the sum of the two players’ objective func-
tions is zero or can be made zero by appropri-
ate positive scaling and/or translation that do not
depend on the decision variables of the player. Zero-
sum games are often used to describe conflicting ob-
jectives between two playerswhere one player’s gain
is the other player’s loss. Security games often take
the form of zero-sum games as in Blotto games [24]
and adversarial machine learning problems [25]. A
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Figure 2. System performance evolves as different events happen. The solid line repre-

sents system S1 while the dashed line represents system S2. Before t1, a known small

range of disturbances w hits the system. At t2, an attack or rare event a happens. At

t3, system S1 finishes full recovery; later at t4, system S2 finishes recovery. System S2
fails to accomplish full recovery and suffers from a steady-state functionality degrada-

tion D. The maximum functionality degradation of system S1 (or resp. S2) induced by

the event is denoted byM1 (or resp.M2).

non-cooperative game is non-zero-sum if the sum
of the players’ objective functions cannot be made
zero. If each player in a game has only a finite num-
ber of alternatives, this game is finite, or a matrix
game; otherwise, it is an infinite game.Acontinuous-
kernel game is an infinite gamewhere the action sets
of the players are subsets of finite-dimensional vec-
tor spaces, and the players’ objective functions are
continuous with respect to the action variables of
all players. A game is dynamic when players inter-
act multiple rounds sequentially. A game is of com-
plete information if the structure of the game be-
ing played is of common information to all players,
including the number of players, the objective func-
tions of the players, the underlying dynamics, the in-
formation structure, etc.; it is of incomplete informa-
tion otherwise.

The concepts of equilibrium play a vital role in
game theory which refers to a joint strategy pro-
file from which no player has a unilateral incen-
tive to change his strategy within the rules of the
game. Based on the types of game, we have vari-
ous notions of equilibrium including the Nash equi-
librium, Stackelberg equilibrium, saddle-point equi-
librium (SPE), Bayesian equilibrium, etc. They are
useful to describe the outcomes of different types
of interactions among players. For a detailed expo-
sition of basic concepts of equilibrium solutions, we
refer the reader to Refs [22,23]; and for a review of
game-theoretic applications to cyber security,we re-
fer readers to Refs [13,26–28].

Dynamic games are useful to model multi-layer
interactions in control systems as the system dy-
namics evolve, and different components across the
players contribute to the path of the dynamics. For

example, the adversary who disrupts the communi-
cation channels can create a denial-of-service attack
that makes sensor data unavailable and hence leads
the plant dynamics toward an unstable trajectory.
The negligence of a human operator can expose the
control system network to malware, which aims to
disrupt the normal operations of a nuclear power
plant. In dynamic games, the information structure
of the game, the form of dynamical systems, and the
constraints on the strategy space determine differ-
ent classes of dynamic game models that are useful
to describe a rich class of scenarios of interactions
for control systems. For example, the design of ro-
bust control systems has been successfully formu-
lated as a continuous-time differential gamebetween
disturbance and controller, which are regarded as
two players [11,12,17,23]. The controller seeks to
minimize the control cost criterion by choosing a
controller that adapts to a given information struc-
ture while the disturbance aims to maximize it.

The design of security mechanisms against APT
attacks can be viewed as a multi-stage game where
an attacker aims to find a path toward the control
system network from its initial entry point while the
network defender aims to detect and deter the at-
tack from reaching the targeted asset [29–31]. If
the attacker is prevented from reaching the objec-
tive or removed from the system, the system is suc-
cessfully defended. However, when the network de-
fender fails to safeguard the control system from the
attack, the resilience strategies need to be planned to
restore the attacked control system to its original op-
eration. Resiliency should be built on the robustness
and the security of the system as the post-event re-
siliency relies on the pre-event designs [32–37].

Hence, the pre-event secure strategy and the
post-event resilience strategy are designed as a re-
sult of the game between the defender and the at-
tacker.Despite the fact that security games are struc-
turally different from robust control games and may
take different forms depending on attack models
[1,13,20,24,38–48],both security/resilience and ro-
bustness of control systems can be studied using
dynamic game frameworks. Thus, dynamic games
provide a holistic approach to create an integrated
framework to design robust, secure and resilient
control systems by composing different types of
games together, as shown in recent literature [e.g.
1,16–20,39,49,50].

DYNAMIC GAMES FOR ROBUSTNESS,
SECURITY AND RESILIENCE
Modern control systems primarily consist of six
layers: physical, control, communication, network,
supervisory and management, as illustrated in
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Fig. 1. Sitting at the bottom is the physical world of
the system which serves as a foundation for modern
control systems. The physical world of the system
can be viewed as an integration of the physical plant
to be controlled and the control layer providing
control signals based on the feedback. On top of
these two layers are the communication layer,which
establishes wired or wireless communications, and
the network layer, which allocates resources and
manages routing. The communication and network
layers constitute the cyberworld of the system.Note
that in remote control systems, the control layer can
be sitting above the cyber layer. Systems containing
mainly the cyber layer and the physical layer are
called cyber-physical systems. Serving as the brain
of the system, the supervisory layer coordinates
the cyber and physical layers by designing and
sending appropriate commands. Together with the
supervisory layer, the management layer interfaces
with humans and makes high-level decisions, cre-
ating a human-in-the-loop cyber-physical control
system.

The design of the cyber-physical control system
used to be a compartmentalized process, where the
cyber system engineers design network protocols
and security policies independent from the engi-
neers who design control laws for the underlying
physical or chemical processes. This practice, how-
ever, is not sufficient to meet the integrated system
requirements when the two systems are tightly cou-
pled and strongly interdependent. It is imperative
to take into account cyber security when designing
control laws for the physical systems, and be aware
of the physical impact when designing communica-
tions protocols and configuring network devices.

The cyber-physical-human system
framework
Thebaseline security-aware resilient control systems
are illustrated in Fig. 3, and can be mathemati-
cally describedusing the following dynamical system
model:

ẋ(t) = f (t, x, u,w; θ(t, a, l)), x(t0) = x0, (1)

y(t) = h(t, x, u,w; θ(t, a, l)), (2)

where f and h are continuous functions in (t, x,
u,w); x(t) ∈ R

n is the state of the physical system;
y(t) ∈ R

m is the sensor measurement; x0 is a fixed
(known) initial state of the physical plant at starting
time t0; u(t) ∈ R

r is the control input; w(t) models
the combined disturbances on the plant and the sen-
sors. The effect of higher layers on the physical layer
is encoded in θ which could be a function of time.
The space that θ lies in is problem-dependent. The
evolution of θ depends on the cyber defense action l
and the attacker’s action a,which could also be func-
tions of time. We use θ(t) as a shorthand notation in
place of θ(t, a, l) if the pair of actions (a, l) is fixed.

Cyber attack and defense
For example, given pair (a, l), θ(t), t ∈ [0, tf],
could be a Markov jump process with right-
continuous sample paths, with initial distribution
π 0, and with rate matrix λ = {λi j }i, j ∈S , where
S := {1, 2, · · · , s } is the state space; λi j ∈ R+ are
the transition rates such that for i 	= j, λij ≥ 0 and
λii = 1−∑j 	= iλij for i ∈ S .

The framework can be used to capture different
types of attacks on control systems, such as the the
replay attack [51,52], the false data injection attack
[53], and the sensor attack [54].
(i) In the replay attack, the attacker can record sen-

sor measurements, choose the replay window
size TR > 0 and decide whether to send the
original or modified sensor outputs at each time
step. Let θ = θ1 denote the state of the cyber
state where there is no attack, and the control
system is in a healthy state. Let θ = θ 2 denote
the state where an attack has been successfully
launched in the cyber layer, and the control sys-
tem is compromised. The replay attack can be
captured by letting h(t, x,w; θ2) = y(t − TR)
in Eq. (2), stating that the past measurements
y(t − TR) are taken as the current ones y(t).

(ii) In the false data injection attack where the at-
tacker injects data to a subset of sensors, the
model (2) can be used to capture the attack by
letting h(t, x,w; θ2) = h(t, x,w; θ1) + ya(t),
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Figure 4. The vulnerabilities of control systems to multiple potential attacks. The attacker can compromise various compo-
nents in a control system, including sensors, communication channels, controllers and actuators.

where ya(t) is the data value injected by the at-
tacker. In cases where an attacker can cause dis-
ruptions to the system operation, for example,
by opening a valve in water distribution systems
[55], or turning on a circuit breaker in electric
power systems [56], the dynamics of the con-
trol system will be changed, and they can be
captured in Eq. (1) by specifying the changed
post-attack dynamics. Figure 4 illustrates the
vulnerabilities of control systems to multiple
potential attacks, where the controller-actuator
(C-A) channel and the sensor-controller (S-C)
channels are vulnerable to cyber attacks. A5 rep-
resents direct sensor attacks that can disable a
set of sensors or make them send false informa-
tion to controllers. A3 and A1 represent the de-
nial of service (DoS) attacks that prevent con-
trollers from receiving sensor measurements or
actuators from receiving control signals. A4 and
A2 represent data injection attacks on the com-
munication channels, where the false informa-
tion ỹ 	= y and ũ 	= u is sent from sensors and
controllers.

(iii) In sensor attacks, θ(t) can describe the set of
sensors whose signals cannot be received by the
control center due to network failure or sen-
sor failure caused by DoS attacks. Each sen-
sor has two states: functioning normally or not.
If the number of sensors in the physical plant
is N, then θ(t) ∈ S and S = {1, ..., 2N}. At
time t, the cyber attack action a(t) will be to

choose a set of sensors to attack and the cyber
defense move l(t) will be to recover a chosen
set of sensors. Then, {θ(t)}t∈[0,t f ] becomes a
controlled Markov jump processwith transition
rate λi j (a, l), i, j ∈ S . In this case, the system
dynamics is considered to be independent from
θ , i.e. f (t, x, u,w; θ(t, a, l)) = f (t, x, u,w).
The output y is captured by (2). For linear sys-
tem models,we have y = C (θ(t, a, l))xwhere
matrix C is a function of θ(t) decided by the set
of sensors that functionnormally. With different
θ , the system designer needs to adapt different
schemes to do filtering and control.

The costs of launching attacks and executing
defenses are captured by CA(a, l) and CD(a, l),
respectively. The attacker aims to minimize the cost
of attacking and deteriorating system performance.
Adversely, the system operator aims to minimize the
cost of defending and maintaining system perfor-
mance. If CA(a, l) + CD(a, l) = 0, the attack-and-
defense problem is a zero-sum stochastic game [57]
with a Markov decision process sitting behind. In
general, we have CA(a, l) + CD(a, l) 	= 0. The costs
CA and CD depend on the attacker’s and the sys-
tem’s actions and the system performance encoded
in x while the evolution of x is dependent on u and
θ . Thus, the security and resilience design in the cy-
ber layer is coupled with the system dynamics in the
physical plant which should be jointly considered.
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Robustness and resilience in the physical layer
Given the cyber security strategy pair (a, l), the goal
of robust and resilient control is to design a con-
troller that minimizes the performance loss due to
the attack, which is measured by the shaded area
in Fig. 5. This design problem can be captured by
an H∞ control problem with the performance index
given by the expected cost over the statistics of θ :

inf
u

sup
w

J P (u,w) := Eθ {q f (x(t f ); θ(t f ))

+
∫ t f

t0

g (t, x(t), u(t),w(t); θ(t))d t}, (3)

where qf is continuous in x, and g is jointly continu-
ous in (t, x, u, w). In the infinite-horizon case, qf is
dropped out, and tf → ∞. The H∞-optimal control
problem in the time domain is in fact a minimax op-
timization problem and hence a zero-sum differen-
tial game,where the controlleru canbe viewed as the
minimizing player and the disturbancew as the max-
imizing player [11,23]. The game (3) is referred to
as the physical system game (PSG), and its solution
is characterized by SPE. This framework enables the
design of robustness and resilience within the same
model, and takes into account the security vulnera-
bilities from the cyber systems. A large number of
papers [18,24,40–44,49] has adopted the idea of
deploying dynamic games for the security and re-
silience of modern control systems with interde-
pendent cyber and physical layers. Many physi-
cal systems, including multibody robotic systems,
power network systems and water distribution sys-
tems, are governed by differential-algebraic equa-
tions. To solve game (3) with differential-algebraic
equations, one can refer to Ref. [58]. For specific
systems, one can adopt specific models including
Markovdecisionprocesses, difference equations and
partial differential equations, to describe the dy-
namics in the physical layer and the cyber layer.

The choice of dynamic models is dependent on the
systems one is looking into.

Cyber-physical co-design and tradeoffs among
robustness, security and resilience
The cyber-physical nature of modern control sys-
tems requires a cross-layer approach for designing
secure and resilient systems. Independent designs
of the cyber and the physical layers of the system
without knowing their interdependencies often lead
to unintended performance degradation. Thus, a co-
design process that coordinates between cyber and
physical layers of the system is pivotal for the con-
trol system. As illustrated in Fig. 3, the two design
processes can be composed together and reach an
iterative process for cyber-physical co-design. The
resilient control design pair (u,w) will be used by
the cyber system for the design of defense strategy
pair (a, l), and likewise, the strategy pair (a, l) is
also used by the physical system for the design of
the control pair (u,w). The coupled system leads to
a holistic design framework that enables robust, se-
cure and resilient design of infrastructural systems.
The fundamental tradeoffs between robustness, se-
curity and resilience can be quantitatively analyzed
and designed:

(i) Tradeoff between robustness and resilience.
Perfect robustness of control systems is not
achievable for all types of disturbances and
events. However, resilience can be used as a
post-event measure to recover the system from
the impact of the disturbances and events that are
not accounted for in the model. This tradeoff is
captured by PSG for the security-aware resilient
system design.

(ii) Tradeoff between security and resilience. Perfect
security that is capable of defending against all
types of attacks is not realistic for control systems.
However, the resilient cyber systems can be de-
signed to quickly bring a compromised state to
their normal operations. This tradeoff is captured
by the cyber system game (CSG) for the impact-
aware proactive cyber defense.

(iii) Tradeoff between robustness and security. The
two tradeoffs above lead to a relation between the
robustness of the physical system and the secu-
rity of the cyber system. The high demand for ro-
bustness requires a strong level of security. Given
limited resources, they cannot be achieved at the
same time.This tradeoff is capturedby the coupled
PSG and CSG frameworks.

Human factors in control systems
The human factors arise from the interactions be-
tween the control systemswith the supervisory layer
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and the management layer. The supervisory layer
provides human–machine interactions and coordi-
nates and manages lower layers through centralized
command and control as illustrated in Fig. 1. The
behaviors of human designers and human operators
are often less predictable and difficult to describe.
They are often viewed as the weakest link in the
control system. Attackers can leverage human vul-
nerabilities to enter and penetrate the multi-layer
control system network. For example, in the Stuxnet
attack [5,6], the maintenance engineer connected an
infected USB to his maintenance laptop from which
the malware entered the private network and caused
a SCADA infection. And in the Maroochy breach
[59], a former employee installed a SCADA config-
uration program on his own laptop and took control
of 150 sewage pumping stations resulting in severe
environmental damage.

The human factors have been studied extensively
in the game theory literature with the objective to
describe the cognitive, memory, computational and
psychological aspects of the humandecision-making
process [60,61]. One important area of research is
the bounded rationality which captures the behav-
ioral and imperfect decision-making ofhumans. Sev-
eral elements in the game-theoretic framework in
CSG and PSG can be revised to capture human er-
rors in decision making due to limited memory, at-
tention or reasoning power. For example, by lever-
aging the concept of hyperbolic discounting, we
canmodel the time-inconsistent humanpreferences,
which havebeendemonstrated [62] to show that the
human makes irrational choices at different times.
Prospect theory [63,64] incorporates loss-aversion
inhumandecisions and differentiates theperception
of losses from the utility of the gains. It can be used
to extend the risk-neutral decision-making in CSG
and PSG to their risk-averse counterparts to under-
stand the consequence of the cognitive bias in the
decision-making.

Attention is another important human factor that
can be incorporated in the decision making to cap-
ture the limited cognition of the human when they
make online decisions [65]. Authors in Ref. [66]
have presented an attention-constrained risk anal-
ysis model to assess risks over interdependent risk
networks. The management layer at the highest ech-
elon deals with social and economic issues, such as
market regulation, pricing and incentives. Players in
this layer deal with socio-economic issues involv-
ing many stakeholders related to the control systems
and make service-level contracts to reduce cyber-
physical risks. For example, cyber insurance is an ex-
ample of financial products to transfer the risk from
the control system and mitigate the losses due to cy-
ber threats. Authors in Refs [67,68] have designed
incentive-compatible attack-aware cyber insurance

policies to maximize the social welfare and alleviate
the impact of moral hazard. In Ref. [69], the authors
have designed service contracts for security services
in the cloud-enabled autonomous systems.

As the modern control system scales to billions
of connected devices and is increasingly complex, it
is not always possible for an entity to own and man-
age all cyber and physical components of the con-
trol system. For example, in cloud-enabled systems
[34,70,71], smart homeowners use the services pro-
vided by the cloud service provider (SP) who fuses
data and optimizes control decisions for real-time
systems. Small business owners may not own the
sensorsbut subscribe to serviceproviders (SPs)who
collect data that allow users to develop control sys-
tem applications instead of making a costly invest-
ment in their own sensing infrastructure [72].

The decentralized ownership and the provision
of control system services provide an effective shar-
ing andutilizationof the resources of computational,
communication and sensing infrastructures. In this
paradigm, the SP owns the cyber infrastructure and
determines defense strategy lwhile theuser owns the
physical infrastructure and designs control u. How-
ever, a user cannot directly control or manage the
security risk. If the SP is negligent in assuring cy-
bersecurity, then users who rely on these services
will be subject to high-security risks. It is essential
to develop appropriate incentive-compatible service
mechanisms for the SPs to offer high quality of ser-
vices (QoS) while making efforts to mitigate secu-
rity risks at the service level of control systems. SPs
should be incentivized to deploy adequate security
mechanisms to ensure the reliability and the depend-
ability of the services for control system users. It not
only enables the implementation and investment of
security but also prevents the cyber risks from fur-
ther propagating at the socio-economic scale.

Challenges in the design of the cyber-physical
contract come from incomplete information and
adversarial behaviors. The incomplete information
can arise from the hidden type and the hidden ac-
tion of the SP. In Refs [71,73], the authors have
used contract design principles to develop a holis-
tic incentive-compatible and cost-efficient security-
aware service mechanism for real-time operation
of cloud-enabled Internet of Controlled Things
(IoCTs) under APTs.

RECENT ADVANCES
With the hierarchical perspective toward robust, se-
cure and resilient control systems, this section aims
to introduce several recent dynamic applications
to cross-layer control design in adversarial envi-
ronments. Game-theoretic approaches have been
natural frameworks to model conflicts between
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an attacker and a defender in various scenarios
at the communication and networking layers
including intrusion detection [44,74–78], jam-
ming and eavesdropping [79–82], and honeypot/
deception [83–87]. Apart from those at the cyber
layers, game theory has also successfully addressed
risk management [67,88] and security investment
problems [66,89] at the human layers and the prob-
lem of adversarial consensus [90–92] and resilient
infrastructures [93–98] at the control layers.

This section presents three quintessential re-
search problems that represent three distinct di-
rections where dynamic game approaches can be
useful to bridge between multiple research areas
and make significant contributions to the design of
modern control systems. The first one leverages a
moving-horizon dynamic game technique to secure
the heterogeneous autonomous vehicles and enable
self-healing after attacks. The second research direc-
tion investigates an impact-aware multi-stage cyber
deception game where the defender proactively de-
ters the stealthy APT attacks from reaching the crit-
ical asset of industrial control systems. Adversar-
ial and defensive deceptions across the entire in-
trusion process introduce the games of incomplete
information, thus both players need to make ju-
dicious actions under persistent uncertainty. The
third direction focuses on the risk management
of networked systems by incentivizing agents to
comply with security guidelines with maximum
effort.

Games for secure control of
heterogeneous autonomous systems
Multi-layer networks or network-of-networks have
been seen in a number of critical applications,
such as energy and water networks [99], power
and transportation networks [100] and multi-layer
robotic systems [49]. Traditional defensive mech-
anisms for single networked systems are no longer
sufficient for this network-of-networks paradigm.
To design secure and resilient control strategies for
the multi-layer autonomous systems, it is imperative
to analyze three types of games resulting from
the strategic interactions: (i) interactions among
agents in individual network layers, (ii) interactions
between agents from different layers, and (iii)
interactions between agents and adversaries. To
address this challenge, the authors in Refs [39,101]
have proposed a ‘games-in-games’ model which is
able to understand the network performance, het-
erogeneous agents’ functionalities and the network
operators’ decisions holistically.

For clarity, a pictorial illustration of the games-
in-games framework is shown in Fig. 5. The system

composes two layers of networks. In each sub-layer,
agents make decisions based on not only the behav-
iors of the agents at the same layer but the ones at
the other layer. At each step of decision making, the
agents also learn and respond to the unanticipated
events in an agile fashion, such as natural disruptions
and adversarial attacks. Leveraging the framework,
one can compose the distinct games together to ob-
tain the Gestalt Nash equilibrium (GNE) [66,70].
The GNE describes an equilibrium solution concept
at which no agent has incentives to deviate away
from not only each modular game, which captures
the local agent–agent level interactions, but also the
integrated game,which considers the global system–
system level interactions.

Based on Ref. [101], we next present an exam-
ple of controlling two-layer mobile autonomous sys-
tems in the adversarial environment. There are three
players in the game: two network operators and an
attacker. The focused objective in Ref. [101] is the
algebraic connectivity of the global network. This
performance metric quantifies how well connected
is the network. If the algebraic connectivity is zero,
then the system is disconnected, indicating that at
least one agent in the network is separated from
the rest of the agents. Furthermore, a larger value
of algebraic connectivity leads to faster information
spreading between agents, resulting in a higher level
of situational awareness. Thus, maximizing the alge-
braic connectivity is important for the operators, es-
pecially when the autonomous systems are adopted
in the mission critical applications in the adversarial
environment. To this end, the attacker’s problem at
time k is formulated as follows:

Qk
A : min

e
λ2(e , x(k)), (4)

where λ2(e , x(k)) is the connectivity of the global
network, with e representing the attacker’s strategy
and x(k) := [x1(k); x2(k)] the network configura-
tion at time k. On the other hand, the network
operator γ ’s problem is, for γ ∈ {1, 2}:

Qk
γ : max

xγ (k+cγ )
min

e
λ2(e , x(k + c γ ))

s.t. physical dynamics of autonomous systems, (5)

where xγ (k + c γ ) is the configuration of the mo-
bile network controlled by operator γ at time k
+ cγ and cγ is a positive integer indicating update
frequency. Note that the network operator’s prob-
lem falls into the general framework formulated in
the earlier section on ‘Dynamic games for robust-
ness, security and resilience’, where the dynamics
of autonomous systems can be captured by Eqs (1)
and (2), and the parameter θ is regarded as fixed.
The objective function of the operator remains to
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Figure 6. (a) The dynamic and secure configuration of a two-layer robotic network. The GPS spoofing attack is introduced at time step 9 and lasts for
five steps. (b) The corresponding network connectivity.

be algebraic connectivity at every time step, which
is different from the one in Eq. (3). However, the
dynamic feature is also incorporated in this exam-
ple scenario, as the operator needs to reconfigure
the autonomous network through considering the
adversarial behavior at each time step. The pro-
posed games-in-games model also extends the sin-
gle layer attacker–defender framework in the sec-
tion ‘The cyber-physical-human system framework’
to address the secure control of heterogeneous au-
tonomous networks. Specifically, each network op-
erator needs to prepare for the worst case attacks
(Stackelberg game) as well as the action taken by
the other operator (Nash game) during the network
reconfiguration.

This games-in-games framework has been
corroborated to be effective in obtaining the
self-adaptability, self-healing and agile resilience of
heterogeneous autonomous systems. In the Internet
of battlefield things, the unmanned ground vehicle
network coordinates its actions with the unmanned
aerial vehicle network and the soldier network to
achieve a highly connected global network [102].
The designed decentralized algorithm in Ref. [101]
yields an intelligent control of each agent to respond
to others to optimize real-time network connectivity
under adversaries. Figure 6 shows the results of a
two-layer autonomous system on the battlefield
where two operators prepare for potential jamming
attacks. Furthermore, the agents can respond to
the spoofing attack quickly which shows the agile
resilience of the control strategy. The developed
games-in-games model can be further extended to
address the ‘mosaic control design’ as the framework

provides built-in security and resilience for each
component in the system,which guarantees the per-
formance of the integrated system.

Multi-stage Bayesian games: security
under adversarial and defensive
deception
APT attacks originated from a cyber network (the
middle layer of Fig. 1) can stealthily escalate privi-
lege, move laterally and lead to damage in the phys-
ical control system (the bottom layer of Fig. 1). The
entire intrusion process can be divided into multiple
phases in sequence, as denoted by the black boxes in
the middle layer ofFig. 7.Eachphase serves as a step-
ping stone for the next phase and plays an indispens-
able role in the success of APTs. Based on the multi-
stage and stealthy characteristics of APTs, Ref. [103]
has suggested a ‘Defense-in-Depth’ (DiD) paradigm
to counter them ‘proactively’. DiD as the first aspect
means that a control system defender should adopt
defensive countermeasures at allphases of APTs and
holistically consider interconnections and interde-
pendencies among these stages. For example, a priv-
ilege restriction at the escalation phase can result in
a failure or an additional cost for theAPT attacker to
take control of the targeted sensor at the final stage.
Proactive actions and precautions as the second as-
pect mean that the defender needs to act before an
attack is revealed. On one hand, these precautions
can mitigate the loss induced by the APT attack at
the final phase and deter attacks at their early stages.
On the other hand, they can also impair the user
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Figure 7. A block diagram of the proposed proactive defense-in-depth paradigm against multi-stage stealthy APTs. As denoted in black, each stage

describes a local interaction between the user and the defender where the outcome leads to the next stage of interactions. Dashed arrows represent

the information available to each player, which can be used to update the belief and decide the cross-stage behavioral strategy based on the PBNE.

Then, each player takes an action at each stage according to the strategy, as denoted in solid arrows.

experience and reduce the utility of legitimate users.
Hence, the defender has to take judicious actions at
each stage to balance usability versus security.

The lower and upper layers of Fig. 7 illustrate
a K-stage strategic interaction between the proac-
tive defender and the user in blue and red, respec-
tively. The type of a user θ 2 can be either adversar-
ial or legitimate. Since an APT attacker can pretend
to be a legitimate user throughout stages, the de-
fender does not know the user’s type. The defender
can observe suspicious user actions at each stage.
However, these suspicious actions donot directly re-
veal the user’s type because a legitimate user may
also take them. For example, both the Tor network
connection [104] and the code obfuscation [74]
can be used legitimately or illegally. Similarly, a de-
fender can also be classified into different types θ 1
based on factors such as their level of security aware-
ness, detection techniques they have adopted, and
the completeness of their virus signature database.
To tilt the information asymmetry that the user has
a private type, the defender can also introduce de-
fensive deception and make their type unknown to
the user. The defender takes proactive actions at
each stage and the user can observe them at the

next stage. Therefore, each stage describes a local in-
teraction between the attacker and the defender (a
two-player game) where the outcome leads to the
next stage of interactions. The system state transi-
tion is described by a controlled Markov game (6)
and belongs to the dynamics Eq.(1) with a static
θ := {θ 1, θ 2}, i.e. for k = 0, 1, ···, K − 1,

x(k + 1) = f (x(k), {u1(k, θ1), u 2(k, θ2)}),

x(0) = x0, (6)

where u1(k, θ 1) and u2(k, θ 2) represent the ac-
tion of the defender and the user at stage k,
respectively. Participants receive different stageutili-
ties from each local interaction (a non-zero-sum dis-
crete counterpart of Eq. (3)) and each player aims
to find a behavioral strategy for this dynamic game
to maximize his expected utility accumulated over
K stages. The behavioral strategy means that each
playerneeds to decidewhich action to take or take an
action with what probability based on the available
information at each stage k ∈ {0, 1, ···, K}, i.e. I k

i :=
{x(0), · · · , x(k − 1), θi },∀i ∈ {1, 2}. Each player
i introduces a belief bk

i at each stage k to quantify
the uncertainty of the opponent’s type and adopts
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the Bayesian update in (7) to correlate the infor-
mation revealed at each stage and reduce the type
uncertainty, i.e. for i, j ∈ {1, 2}, j 	= i,

bk
i (θ j |I k+1

i )

= Pr(x(k + 1)|x(k), θ1, θ2)bk
i (θ j |I k

i )∑
θ̄ j ∈
 j

Pr(x(k + 1)|x(k), θi , θ̄ j )bk
i (θ̄ j |I k

i )
.

(7)

The solution concept ofPerfectBayesianNashEqui-
librium (PBNE) is introduced where ‘perfect’ cap-
tures the cross-stage cumulative utility, ‘Bayesian’
captures the type uncertainty, and ‘Nash Equilib-
rium’ captures the strategic interaction between two
players. The PBNE provides a creditable predica-
tion of both players’ behaviors over K stages because
no players benefit from unilateral deviations at the
equilibrium. The term Pr(x(k + 1)|x(k), θ1, θ2) in
the forward belief update Eq. (7) depends on the
behavioral strategy of both players. In the mean-
time, the strategy computation in a backward fash-
ion depends on the belief. To solve this coupling,
Ref. [103] has proposed a sequence of nested algo-
rithms and Refs [31,105] have adopted conjugate
priors to enable parametric learning. The authors
in Ref. [103] have also provided an elaborate case
study of APT attacks on the TennesseeEastmanpro-
cess (a specific example of Eqs (1) and (2)) and
obtained the following insights. First, one ounce of
proactive actionswhen the attack remains ‘under the
radar’ is worth a pound of post-attack response. Sec-
ond, the online learning capability of the defender
reveals hidden information from observable behav-
iors and threatens the stealthy attacker to take more
conservative actions. Third, defensive deception in-
troduces uncertainty to attackers, increases their
learning costs, and hence reduces the probability of
successful attacks.

Comparison and discussion
To provide a broad view of applying dynamic games
for APT defense, we review other dynamic game
models for APT detection and response and com-
pare them with the benchmark model introduced
above. Although APTs are stealthy and customized,
their interactions with the system introduce infor-
mation flows of data- and control- commands.An al-
ternative perspective for APT defense is to respond
to and mitigate the effect of APTs under perfect or
imperfect APT detection. The authors in Ref. [29]
have identified a sequence of heterogeneous game
phases, i.e. a static Bayesian game for spear phishing,
a nested game for penetration, and a finite zero-sum
game for the final stage of physical-layer infrastruc-
ture protection. On the other hand, Ref. [106] has

proposed a differential game approach to repair the
system efficiently from anAPT incident.Both frame-
works consider the dynamic feature of APTs, yet
they both assume complete information, which re-
lies on a perfect detection of APTs. The FlipIt game
[107] considers the APT response problem under
imperfect detection, i.e. the defender does not know
when stealthy APT attackers take control of the sys-
tem until he takes a takeover action with additional
cost. The FlipIt has described a high-level abstrac-
tion of the attackers’ stealthy takeover behavior to
understand optimal timing for resource allocations.
On the other hand, in Ref. [108], the model is based
on a sequence of nested finite two-person zero-sum
games, in which the APT is modeled as the attempt
to get through multiple protective shells of a system
towards conquering the target located in the center
of the infrastructure.Besides, the model proposed in
Ref. [103] provides a finer-grained model that can
capture heterogeneous adversarial and defensive be-
haviors at multiple stages, allowing the prediction of
attack moves and the estimation of losses using the
equilibrium analysis.

Dynamic games for risk management of
networked systems
Game theory is widely adopted in the risk manage-
ment of complex engineering systems [66,67]. Mit-
igating the risk of multi-agent systems is critical for
their secure and efficient operations. However, due
to complex interdependencies between nodes and
the fast-evolving nature of threats, controlling the
risks of multi-agent systems is not a trivial task and
requires expert knowledge.Hence, one approach for
the system owners is to delegate tasks of risk mitiga-
tion to security professionals, creating security as a
service paradigm [73].

As shown in Fig. 8, the owner can be seen as a
principal who employs a security professional to ful-
fill risk management tasks, and the security profes-
sional (risk manager) can be regarded as an agent
whose efforts are dynamically compensated by the
principal. This type of two-sided service relationship
can be captured by a principal–agent framework.
One unique feature of the framework is that the
principal cannot directly observe the efforts adopted
by the agent. Thus, the principal needs to design a
contract that specifies the compensation rules only
based on observable risk outcomes. Specifically, the
cyber risk evolution can be described by the follow-
ing dynamic systems (which belongs to the general
dynamics Eq. (1)):

dx(t) = f (x(t), u(t), t)d t + �(x(t), t)db(t),

x(0) = x0, (8)
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asset owner (principal) delegates the risk management tasks to security professional

(agent) by designing a contract that specifies the dynamic remuneration schemes. The

agent’s effort is hidden to the principal. The amount of remuneration depends on the

observed risk of the system. The contract mechanism design can be formulated as a

stochastic Stackelberg differential game under non-standard information.

where f : R
N × R

N
+ × [0, T] → R

N , � : R
N ×

[0, T] → R
N with x(t) ∈ R

N represents the riskof
nodes in the system, u(t) ∈ R

N
+ the hidden effort of

the agent, b(t) is an N-dimensional standard Brow-
nian motion, and x0 is a known N-dimensional con-
stant vector indicating the initial risk. The dynamic
contract designed by the principal is p(t), t ∈ [0, T],
reflecting the payment delivered to the agent at time
t. First, the principal’s goal is to minimize the risk
x(t) by providing an appropriate amount of incen-
tives p(t) over the time horizon.

Second, the contract should capture the agent’s
behavior including the incentive compatibility (IC)
and the individual rationality (IR). The principal’s
cost function is

J P ({p(t)}0≤t≤T ) = E

∫ T

0
fP (t, x(t), p(t))d t,

(9)
and the agent’s cost function is

J A ({u(t)}0≤t≤T ; {p(t)}0≤t≤T )

= E

∫ T

0
fA(t, p(t), u(t))d t, (10)

where E is the expectationoperator, and fP and fA are
the running costs of two players. Furthermore, the
IC constraint is J A ({u(t)∗}0≤t≤T ; {p(t)}0≤t≤T )
≤ J A ({u(t)}0≤t≤T ; {p(t)}0≤t≤T ) , ∀u(t), t ∈
[0, T], and the IR constraint is
infu(t) J A ({u(t)}0≤t≤T ; {p(t)}0≤t≤T ) ≤ J A,

where J A is a predetermined non-positive constant.
This contract design for a riskmanagement prob-

lem can be formulated as a ‘stochastic Stackelberg
differential game under non-standard informa-
tion’. To design the optimal contract, the authors

in Refs [88,109] have developed a three-step
approach including the estimation, verification and
control phases, which transformed the principal’s
non-classical control problem into a standard
stochastic control program. For example, when
the dynamics in Eq. (8) admit a linear form and
the players’ cost functions are quadratic, then the
optimal contract can be obtained through solving
a matrix Riccati equation [88]. Under mild con-
ditions on the structure of cost functions of two
players, the authors have revealed a ‘separation
principle’ where the estimation and control phases
can be addressed separately. The authors have also
discovered a ‘certainty equivalence principle’ for a
class of dynamicmechanism design problemswhere
the contracts designed under incomplete case and
full information scenario (the principal can directly
observe the agent’s action) coincide. The contract
mechanism has been corroborated effective in
mitigating the risks.

The developed framework for risk management
can be applied broadly, such as industrial control
systems, enterprise networks, and critical infrastruc-
tures. Furthermore, the dynamic mechanism design
problem can be extended extensively, which is of
great interest to the control community. For exam-
ple, the underlying system could have jump param-
eters, the risk could be governed by mean-field dy-
namics in large networks, the risk cannot be directly
observable to the players, and the risk observation is
intermittent, etc.

CONCLUSION AND FUTURE
DEVELOPMENT
In this review, we have discussed recent advances
and applications of dynamic games to the robust,
secure and resilient design of modern control sys-
tems. We have introduced the hierarchical structure
ofmodern control systems, offering aholistic viewof
control systems that leads to an integrated dynamic
game framework. The dynamic games approach has
successfully captured the multi-layer cyber, physical
and human interactions in control systems as well
as their behaviors in adversarial environments. The
game-theoretic modeling has provided a fundamen-
talunderstanding of the tradeoffs among robustness,
security and resilience, leading to a new system sci-
ence and design paradigm.

The application of dynamic games to control sys-
tems is still in its infancy despite a rich literature
in game and control theory. The bridging between
these two fields would require addressing many re-
search challenges. Computational complexity is one
important research direction. Analysis of large-scale
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game-theoretic models is often difficult. It would be
essential to develop efficient algorithms to compose
distinct models, compute equilibrium solutions,
and solve mechanism design problems. These tools
would lead to the core of thenext-generation control
system technologies that have the capabilities of au-
tomated defense, self-organizing and fast recovery.

Another key challenge arises from dealing with
human factors at the supervisory and management
layers. It has been observed that many security
breaches are due to human cognitive errors, limited
reasoning capabilities, and mismatched perception
of risk. Integrating humanmodeling into control sys-
tems is critical to enable a scientific framework for
human-centered design. Recent advances in behav-
ioral game theory and epistemic game theory have
laid necessary theoretical foundations for the mod-
eling of bounded rationality and human behaviors.
Hence game theory provides an unprecedented op-
portunity to understand human factors in control
systems by bridging game theory and control system
theory.
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23. Başar T and Olsder GJ.Dynamic Noncooperative Game Theory.

Philadelphia: SIAM, 1999.

24. Ferdowsi A, Saad W and Mandayam NB. Colonel blotto game

for secure state estimation in interdependent critical infras-

tructure. arXiv:170909768.

25. Goodfellow I, Pouget-Abadie J and Mirza M et al. Generative

adversarial nets. In: Advances in Neural Information Process-

ing Systems. ACM, 2014, 2672–80.



REVIEW Huang et al. 1139

26. Zhu Q. Game theory for cyber deception: a tutorial. In: Proceedings of the 6th

Annual Symposium on Hot Topics in the Science of Security. ACM, 2019, 8.

27. Zhu Q and Rass S. Game theorymeets network security: a tutorial. In: Proceed-

ings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2018, 2163–5.

28. Pawlick J, Colbert E and Zhu Q. A game-theoretic taxonomy and survey of

defensive deception for cybersecurity and privacy. ACM Comput Surv 2019;

52: 82.
29. Zhu Q and Rass S. On multi-phase and multi-stage game-theoretic modeling

of advanced persistent threats. IEEE Access 2018; 6: 13958–71.
30. Rass S, Alshawish A and Abid MA et al. Physical intrusion games–

optimizing surveillance by simulation and game theory. IEEE Access 2017; 5:
8394–407.

31. Huang L and Zhu Q. Adaptive strategic cyber defense for advanced persistent

threats in critical infrastructure networks. Perform Eval Rev 2019; 46: 52–6.
32. Xu Z and Zhu Q. Cross-layer secure cyber-physical control system design for

networked 3D printers. In: 2016 American Control Conference (ACC). New

York: IEEE, 2016, 1191–6.

33. Xu Z and Zhu Q. Cross-layer secure and resilient control of delay-sensitive net-

worked robot operating systems. In: 2018 IEEE Conference on Control Tech-

nology and Applications (CCTA). New York: IEEE, 2018, 1712–7.

34. Xu Z and Zhu Q. Secure and resilient control design for cloud enabled net-

worked control systems. In: Proceedings of the First ACMWorkshop on Cyber-

Physical Systems-Security and/or PrivaCy. ACM, 2015, 31–42.

35. Xu Z and Zhu Q. Secure and practical output feedback control for cloud-

enabled cyber-physical systems. In: 2017 IEEE Conference on Communications

and Network Security (CNS). New York: IEEE, 2017, 416–20.

36. Xu Z and Zhu Q. A game-theoretic approach to secure control of

communication-based train control systems under jamming attacks. In: Pro-

ceedings of the 1st International Workshop on Safe Control of Connected and

Autonomous Vehicles. ACM, 2017, 27–34.

37. Xu Z and Zhu Q. Security in Robotic Operating Systems. New York: IEEE Press,

2020.

38. Pirani M, Nekouei E and Sandberg H et al. A game-theoretic framework for

security-aware sensor placement problem in networked control systems. In:

American Control Conference (ACC). New York: IEEE, 2019, 114–9.

39. Chen J and Zhu Q. A games-in-games approach to mosaic command and con-

trol design of dynamic network-of-networks for secure and resilient multi-

domain operations. In: Sensors and Systems for Space Applications XII. SPIE,

2019, 189–95.

40. Amin S, Schwartz GA and Sastry SS. Security of interdependent and identical

networked control systems. Automatica 2013; 49: 186–92.
41. Clark A, Zhu Q and Poovendran R et al. An impact-aware defense against

Stuxnet. In: American Control Conference (ACC). New York: IEEE, 2013, 4140–

7.

42. La RJ. Estimation of externalities in interdependent security: a case study of

large systems. In: IEEE Conference on Decision and Control (CDC). New York:

IEEE, 2017, 3961–6.

43. Sanjab A and Saad W. On bounded rationality in cyber-physical systems se-

curity: game-theoretic analysis with application to smart grid protection. In:

Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-

SG). New York: IEEE, 2016, 1–6.
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48. Gao X, Akyol E and Başar T. Communication scheduling and remote estimation

with adversarial intervention. IEEE/CAA J Autom Sinica 2019; 6: 32–44.
49. Chen J and Zhu Q. Resilient and decentralized control of multi-level coopera-

tive mobile networks to maintain connectivity under adversarial environment.

In: IEEE Conference on Decision and Control (CDC). New York: IEEE, 2016,

5183–8.

50. Pajic M, Tabuada P and Lee I et al. Attack-resilient state estimation in the

presence of noise. In: IEEE Conference on Decision and Control (CDC). New

York: IEEE, 2015, 5827–32.

51. Aura T. Strategies against replay attacks. In: Proceedings 10th Computer Se-

curity Foundations Workshop. New York: IEEE, 1997, 59–68.

52. Miao F, Pajic M and Pappas GJ. Stochastic game approach for replay attack

detection. In: IEEE Conference on Decision and Control. New York: IEEE, 2013,

1854–9.

53. Bobba RB, Rogers KM and Wang Q et al. Detecting false data injection at-

tacks on dc state estimation. In: First Workshop on Secure Control Systems,

CPSWEEK, 2010.

54. Mitra A and Sundaram S. Byzantine-resilient distributed observers for LTI sys-

tems. Automatica 2019; 108: 108487.
55. The U.S. Department of Homeland Security. Roadmap to Secure Control

System in the Water Sector. https://www.n-dimension.com/wp-content/

uploads/NDSI-WATER-CybersecurityRoadmap08-1.pdf (28 December 2019,

date last accessed).

56. The U.S. Department of Homeland Security. Roadmap to Achieve Energy

Delivery Systems Cybersecurity. https://www.energy.gov/sites/prod/files/

Energy%20Delivery%20Systems%20Cybersecurity%20Roadmap finalweb.

pdf (28 December 2019, date last accessed).

57. Shapley LS. Stochastic games. Proc Natl Acad Sci USA 1953; 39: 1095–
100.

58. Tanwani A and Zhu Q. Feedback Nash equilibrium for randomly switch-

ing differential-algebraic games. IEEE Trans Autom Control 2019; doi:

10.1109/TAC.2019.2943577.

59. Slay J and Miller M. Lessons learned from the maroochy water breach.

In: International Conference on Critical Infrastructure Protection. New York:

Springer, 2007, 73–82.

60. Dhami S. The Foundations of Behavioral Economic Analysis. Oxford: Oxford

University Press, 2016.

61. Sanders MS and McCormick EJ. Human factors in engineering and design.

Ind Robot 1998; 25: 153.
62. Thaler R. Some empirical evidence on dynamic inconsistency. Econ Lett 1981;

8: 201–7.
63. Tversky A and Kahneman D. Advances in prospect theory: cumulative repre-

sentation of uncertainty. J Risk Uncertain 1992; 5: 297–323.
64. Kahneman D and Tversky A. Prospect theory: an analysis of decision under

risk. In: Handbook of the Fundamentals of Financial Decision Making: Part I.

Singapore: World Scientific, 2013, 99–127.

65. Sims CA. Rational inattention and monetary economics. In: Handbook ofMon-

etary Economics. Amsterdam: Elsevier, 2010, 155–81.



1140 Natl Sci Rev, 2020, Vol. 7, No. 7 REVIEW

66. Chen J and Zhu Q. Interdependent strategic security risk management with

bounded rationality in the Internet of things. IEEE Trans Inf Forensics Secur

2019; 14: 2958–71.
67. Zhang R, Zhu Q and Hayel Y. A bi-level game approach to attack-aware cyber

insurance of computer networks. IEEE J Sel Areas Commun 2017; 35: 779–94.
68. Hayel Y and Zhu Q. Attack-aware cyber insurance for risk sharing in computer

networks. In: International Conference on Decision and Game Theory for Se-

curity. New York: Springer, 2015, 22–34.

69. Chen J and Zhu Q. Security as a service for cloud-enabled internet of con-

trolled things under advanced persistent threats: a contract design approach.

IEEE Trans Inf Forensics Secur 2017; 12: 2736–50.
70. Pawlick J, Chen J and Zhu Q. iSTRICT: an interdependent strategic trust mech-

anism for the cloud-enabled Internet of controlled things. IEEE Trans Inf Foren-

sics Secur 2018; 14: 1654–69.
71. Chen J and Zhu Q. Optimal contract design under asymmetric information for

cloud-enabled internet of controlled things. In: International Conference on

Decision and Game Theory for Security. New York: Springer, 2016, 329–48.

72. Craciunas SS, Haas A and Kirsch CM et al. Information-acquisition-as-a-

service for cyber-physical cloud computing. In: Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing. USENIX Association, 2010,

14–20.

73. Chen J and Zhu Q. Security as a service for cloud-enabled internet of con-

trolled things under advanced persistent threats: a contract design approach.

IEEE Trans Inf Forensics Secur 2017; 12: 2736–50.
74. Nissim N, Cohen A and Glezer C et al. Detection of malicious PDF files and

directions for enhancements: a state-of-the art survey. Comput Secur 2015;

48: 246–66.
75. Farhang S,Manshaei MH and Esfahani MN et al. A dynamic bayesian security

game framework for strategic defense mechanism design. In: International

Conference on Decision and Game Theory for Security. New York: Springer,

2014, 319–28.

76. Ghafouri A, Abbas W and Laszka A et al. Optimal thresholds for anomaly-

based intrusion detection in dynamical environments. In: International Con-

ference on Decision and Game Theory for Security. New York: Springer, 2016,

415–34.

77. Sayin MO, Hosseini H and Poovendran R et al. A game theoretical framework

for inter-process adversarial intervention detection. In: International Confer-

ence on Decision and Game Theory for Security. New York: Springer, 2018,

486–507.
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