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Organic solar cells (OSCs) have made fast advance with promi-
nent power conversion efficiencies (PCEs) achieved in non-fuller-
ene OSCs in recent years [1]. Among various types of OSCs, all-
polymer solar cells (APSCs) consisting of a polymer donor and a
polymer acceptor are promising power sources for portable and
wearable electronics due to their intrinsic advantages in device
stability and mechanical flexibility [2]. Duan group [3]| demon-
strated an APSC that maintained 97% of its initial PCE after contin-
uous heating at 65 °C for 300 h, which is much superior to the
small molecular acceptor-based OSCs. Kim group [4] compared
the mechanical properties of the active layers of APSCs and fuller-
ene acceptor-based OSCs containing the same polymer donor. It
was demonstrated that the elongation at the break and toughness
of all-polymer blend were 60 and 470 times, respectively, higher
than those of polymer:fullerene blend. These advantageous
mechanical properties are desirable for practical application of
0SCs [5,6]. However, the development of APSCs lags much behind
that of small molecular acceptor-based OSCs. In particular, there is
a big gap in PCE between APSCs and small molecular acceptor-
based OSCs, which is mainly caused by the lack of polymer accep-
tors with desirable optoelectronic properties and difficulties in
morphology control of the active layer.

The first APSC was reported as early as 1995 [7]. After the first
PDI polymer acceptor being reported [8], the electron acceptors
employed in APSCs were predominated by perylenediimide (PDI)
and naphthalenediimide (NDI) based polymers. Among these poly-
mers, N2200 and NDP-V (Fig. 1) are the representative ones, which
realized PCEs of 11.8% and 8.6%, respectively [9,10]. Notably, the
11.8% PCE realized by N2200 demonstrated that APSCs can com-
pete with fullerene-based OSCs for the first time [9]. The major
drawback of NDI and PDI polymers is their poor light-harvesting
capability due to the large torsion angles between NDI/PDI core
units and the adjacent units, which limited the short-circuit cur-
rent density (Jsc) of the resulting APSCs. Specifically, NDI polymers
usually have very low absorption coefficients (=3 x 10* cm™ ') in
the long wavelength region, and PDI polymers usually exhibit nar-
row absorption range with absorption onset below 700 nm.
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Considerable efforts have been devoted to the development of
new polymer acceptors. A few state-of-the-art polymer acceptors
beyond NDI and PDI were developed, which can afford >8% PCEs
in APSCs (Fig. 1 and Table 1). A fused-ring aromatic diimide poly-
mer, f-BTI3-T, reported by Guo group, gave a PCE of 9.0% in APSCs
[11]. Liu group [12] and Huang group [13] reported two B «— N
coordinate bond-containing polymer acceptors, PBN-12 and BN-
2fT, which offered PCEs of 10.1% and 8.8% in APSCs, respectively.
Nevertheless, these polymers have the same disadvantages as
NDI and PDI polymers, i.e., narrow absorption range or low absorp-
tion coefficients. Specifically, f-BTI3-T and PBN-12 can only absorb
photons below 700 nm [11,12], and BT-2fT suffers from low
absorption coefficient [13]. Based on dicyanobenzothiadiazole, a
strong electron-withdrawing building block, a promising polymer
acceptor DCNBT-IDT was developed by Guo group [14], which
showed a broad absorption spectrum with an absorption onset at
870 nm and a high absorption coefficient of 6.2 x 10* cm™!. Con-
sidering the favorable intrinsic optoelectronic properties of this
polymer, though a moderate PCE of 8.3% was attained in this work,
higher PCE is conceivable via delicate morphology optimization.

Polymerizing small molecular non-fullerene acceptors is
another promising strategy to develop high-performance polymer
acceptors for APSCs, which can yield polymer acceptors with very
high absorption coefficients (>1.0 x 10° cm™'), since strong
intramolecular charge transfer effects exist in the parent small
molecular acceptors. This strategy was first proposed by Zhang
et al. [15,19] along with the synthesis of a IDIC-derived polymer
PZ1 and the demonstration of an efficient APSC with a PCE of
9.2%. After that, a few high-performance polymer acceptors
(PFBDT-IDTIC, PF2-DTSi, and PJ1-H) were developed following this
strategy and APSCs with PCEs exceeding 10% were realized by sev-
eral groups [16-18]. Most remarkably, APSCs with a record PCE of
14.4% were reported very recently by Huang group [18], and they
used a Y6-derived polymer PJ1-H as the acceptor. Though deliver-
ing good PCEs, the photostability of the APSCs with these polymer
acceptors needs further evaluation as the photo-oxidation was
identified in many non-fullerene small molecular acceptors [20].

Overall, significant progresses have been achieved in the field of
APSCs, which are mainly driven by the development of state-of-
the-art polymer acceptors. The PCE of 14.4% reported recently
has greatly reduced the PCE gap between APSCs and small molec-
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Fig. 1. The chemical structures of state-of-the-art polymer acceptors employed in APSCs.

Table 1

Performance data for binary APSCs based on state-of-the-art polymer acceptors.
Acceptor Donor Voe (V) @ Jse (MA cm™2) FF PCE (%) Vioss (V) © Ref.
N2200 PTzBI-Si 0.88 17.6 0.76 11.8 0.57 [9]
NOE10 PBDT-TAZ 0.84 129 0.75 8.1 0.61 [3]
NDP-V PTB7-Th 0.74 171 0.67 8.6 0.85 [10]
f-BTI3-T PTB7-Th 1.03 149 0.58 9.0 0.56 [11]
PBN-12 CD1 117 134 0.64 10.1 0.61 [12]
BN-2T PBDB-T 0.93 13.0 0.70 8.8 0.66 [13]
DCNBT-IDT PBDB-T 0.90 14.2 0.65 8.3 0.53 [14]
PZ1 PBDB-T 0.83 16.1 0.69 9.2 0.72 [15]
PFBDT-IDTIC PM6 0.96 153 0.68 103 0.59 [16]
PF2-DTSi PM6 0.99 16.5 0.66 10.8 0.56 [17]
PJ1-H PBDB-T 0.90 223 0.70 14.4 0.51 [18]

3 QOpen-circuit voltage.
5) Fill factor.

9 Voltage loss, Viss = Eg/q-Vo, where Eg is the bandgap from EQE onset, and q is the elementary charge.

ular acceptor-based OSCs [18]. More importantly, the voltage
losses (Viosss) of 0.51 and 0.53 V observed in the APSCs based on
DCNBT-IDT [14] and PJ1-H [18] (Table 1) are very close to those
observed in high-performance small molecular acceptor-based
0SCs [21], suggesting that the theoretical PCE upper limit of APSCs
is comparable to that of small molecular acceptor-based OSCs.
Therefore, with newly-designed high-performance polymer accep-
tors matching the polymer donors, delicate morphology optimiza-
tion, and interface engineering, much higher PCEs can be expected
in APSCs. With excellent device stability and mechanical flexibility,
APSCs hold bright future in commercialization.
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