粘土矿物的组合与铀矿化关系

徐家伦 刘艳平

(中南地勘局二三〇所)

炭质泥状岩是一种特殊的岩石,过去曾称为富炭泥岩,产于"江南台隆"边缘的早寒武世含铀层炭质板岩中,具颜色黑、体重轻、孔隙大、成分杂及软泥状等特点,与铀矿化关系密切。按其成因,可分为沉积成岩型、构造淋滤型、风化型三种。通过在该区七个矿床(点)的粘土矿物的X光衍射分析,结合透射电镜和差热分析研究表明,不同的岩石类型,有着各自的粘土矿物组合,可分为四种组合类型(表1),即A类型为伊利石、斜绿泥石、高岭石、埃洛石的组合,B类型为高岭石、纤磷钙铝石的组合;C类型为斜绿泥石、伊利石、高岭石、埃洛石、纤磷钙铝石的组合,D类型为伊利石、埃洛石、高岭石的组合。研究它的不同类型及其围岩的矿物成分、粘土矿物组合、粘土矿物组合与铀矿化关系,对于了解矿床的成因特点,识别找矿标志,是有一定的意义。

1. 炭质泥状岩粘土矿物的稳定性: 炭质 泥 状 岩 的 围 岩,即Eixì、Eix²、Eix²Eix各层炭板岩的粘土矿物组合,均为A类组合类型,为伊利石、斜绿泥石、高岭石、埃洛石的组合,以伊利石为主,这一点在上述炭质泥状岩的不同层位都是相同的,显示了相当 的 稳 定性,"江南台隆"西南缘的震旦系留茶坡组泥板岩中几个矿床,亦是以伊利石为主的粘土矿物组合特征,可以说,该区从中震旦到早寒武的地层同处于近似的沉积成岩地球化学环境。此外,位于那些层位中的17号矿床等地区,出现透闪石、滑石以及伊利石、绿泥石的矿物组合,是受接触变质作用的影响所致,即使某些地区没有见到花岗岩的出露,但仍然受着类似接触变质作用影响而存在新的矿物组合。

2.不同类型炭质泥状岩的粘土矿物组合: 沉积成岩型的粘土矿物组合为B类的高 岭石、纤磷钙铝石的组合,高岭石以细小等轴状为主,自形程度较差,假六方形少见,X光衍射图谱中3.5一7 Å范围内有四个峰值,为有序结构,属于沉积成岩成因。

构造淋滤型的粘土矿物为C类的斜绿泥石、高岭石、埃洛石以及纤磷钙 铝石 等 矿 物 组 合,其中,在接触变质带的炭质泥状岩中,仍有滑石、透闪石等变质的矿物成分。从这个组合特点可以看出,除残留原岩(包括变质矿物)的粘土矿物以及混入表生矿物外,突出的特点是存在较多的斜绿泥石,甚至有的几乎全变为斜绿泥石。斜绿泥石发育在构造带内,而在围岩中尚未见到以它为主的组合形式。斜绿泥石在镜下呈鳞片变晶结构,重折射率较大,波状消光,有的形成组结条带,并伴随有石英的波状消光和压力影结构。重结晶的石英晶粒洁净、透明、晶洞状纤磷钙铝石颗粒错位,这些应力矿物现象与构造破碎带的分布是一致的,是应力作用的结果,斜绿泥石是应力矿物。它的产生,可能与伊利石有关。根据Velde等人的意见"大部分10点伊利石中有绿泥石层存在,占量20—29%,由于破碎带的压应力的影响,使伊

表 1 炭质泥状岩及其围岩在不同地区的粘土矿物及其他矿物组合

						5的粘工。		1		
ļ	地	<u>z</u>	贺庵寨	零二	奎西坪	楠木坪	西家冲	十七号	白土	简义
		<u> </u>	矿点	矿床	矿 床	矿 点	矿 点	矿 床	矿 床	
1		$\in \frac{1-3}{1x}$	主要		 	I,Cc,	I、Cc含			以伊利
碳质扳岩			I,次K		主要Ⅰ	K,H	Ja, Cr		,	
板岩		c 1-3					I	主要[。	主要]次	伊利石为主的组合
	$\in \frac{1-3}{1-x}$		1	ı				Cc含Ad	K.H.Cc	万 主
(围岩)		2		主要「次		: :	Ta次To			的组
ļ	4	$\in ^2_{1-\mathbf{x}}$		 H含Ad	i		Cc,H,			合
<u> </u>	 	沉积	======	 			K含Cr	H,Cc,	 	
				_			K含Cr	I含Ad		沉风
		成岩型				. 0 15		(围岩) Cc、Ta、		积成岩型以一种
炭	1-2 E I x	构 造		Cc,K,H	Cc,K,	Cc、K、 H含Ta	Cc,Cr	I次To、		岩岩
9 X	i x	淋滤型			H含Ta	Ja, To	含I	H、K含 Cr、Ad		登りま
		风化型	主要「次				 	H、次Ad	主要I次 H、K含	高科力
质			含H、Ja		!			含1、Cc	Ja, Cc	一为 似
		沉积成	1				 			主的组
,		岩 型		ļ			i i		ļ	组合;
泥	1-3	构造淋				<u> </u>	<u> </u>	<u> </u>		1
	€ 1 x						Cc,Cr		<u> </u> 	造冰
状			<u> </u> 	<u>'</u>		1		1		淀刑
	ļ	风化型								构造淋滤型以斜绿
	<u></u> !	构	<u> </u>	· 下部:①) 	<u> </u>	! Н,К,1		<u> </u>	绿泥
岩	2 E 1 x			主I、H、	1	:	含Ja		l	石
!		造	<i>,</i> :	含Ja、Ad			! 	1		为主的组合:
		淋		②主Cc、						的
j		滤 型	} }	I次Ja上		i İ				· 组 · 合
			i .	部:I、H、					1	<i>'</i> ;
		_	!	: K含Ja、	•		1		l I	i I
	<u> </u>			' Ad				!		<u> </u>
注			〔 序按前多 〕、滑石(∑		」; 2.矿物			•		

171

利石-绿泥石混层矿物产生'斜绿泥石化而形成的。"。

风化型炭质泥状岩,以D类矿物的伊利石、埃洛石、高岭石、斜绿泥石的矿物组合,其中仍然可见残留原岩的矿物特征,因此,原岩成分部分遭风化作用后而形成的这些混合性矿物组合。

3.粘土矿物组合与铀矿化关系: "江南台隆"早寒武世含铀层铀的克拉克值均在2Cppm以上,核乳胶干板照相和电子探针扫描研究表明,铀主要以分散吸附状态存在,为粘土矿物(伊利石、斜绿泥石、高岭石、埃洛石、水铝英石)、磷酸 盐 矿 物(胶 磷 矿、纤 磷 钙 铝石)、炭质物(沥青质、有机炭)所吸附,少数呈沥青铀矿、铀黑及超显微矿物存在。纤磷钙铝石是发现的含铀矿物,呈微粒状、肾状、纤维状,透射电镜下为中长纤维状。原生的与胶磷矿等共生,次生的沿孔隙壁生长。从某些泥炭分离后的样品作铀的简单配分计算来看,岩(矿)石中大部分铀与粘土矿物吸附,占总量65%左右,有机炭的占铀量近13%(表 2),且U与Pb、Cu、Ba以及Ni、Mo关系密切。铀矿石为星点状构造,浸染状构造、微裂隙状构造和角砾状构造。

	表 2 派	友分	岛后的铀	配 分		
样	:	全.	泥 炭	分离后的	组分	
号	项 目	岩	有 机 炭	按化学分析资料 计算的粘土矿物	杂 质	
	重量百分比%	100	17.72	68.65	19.63	
837037	铀含量 (ppm)	3810	2700	3600	3200	
837037	铀分额 (ppm)	381000	47844	247140	62816	
	占总铀量的百分比%	93.96	12.6	64.87	16.49	

表 2 泥炭分离后的铀配分

沉积成岩型的B类粘土矿物组合,含铀量较高,高出围岩的数十倍以上,如837016号样品,经泥炭分离后的粘土含铀量0.37%,但由于岩层薄,不稳定,构不成工业矿体,只是为铀的淋滤迁移,提供了铀源条件。

构造淋滤型的C类粘土矿物组合,该组合以应力矿物斜绿泥石为主,并混入淋滤所致的表生矿物,在接触变质带加入变质矿物,这种组合,与层间构造带(含铀矿带)的分布是一致的,属再造矿体的粘土矿物特点。这些矿物不同程度地吸附着铀,以斜绿泥石为主的不少样品,铀含量从万分之几到千分之几,显然比围岩以伊利石为主的组合铀量要高得多。铀主要仍为吸附状态,少数可见到微裂隙状的沥青铀矿。该组合所赋存铀的品位比较高,所蕴藏铀的储量比较大,可视为最有利成矿远景的组合类型。铀矿化主要受层间构造带所控制。

风化型的D类粘土矿物组合,该组合与围岩的组合相似,风化强的以埃洛石为主,还有黄钾铁矾和胆矾等表生矿物。含铀量比围岩偏高,或达到表外矿化,无工业意义。