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Abstract: Crop growth period length is closely linked to climate change and technological progress. Even though the extensive
researches conducting on crop growth period length variation and its response to climate change, particularly temperature change,
the response of reproductive growth periods lengths (RGLs) to climate change and technological progress remains unclear. Based
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on the reproductive growth periods and meteorological data of single-cropping rice in the middle and lower reaches of the Yangtze
River (MLYR) during 1981-2010, the trends of the RGLs (including booting to heading (BDHD), heading to milking (HDMS),
milking to maturity (MSMD), and booting to maturity (BDMD)) and climatic variations were analyzed. In addition, to explore the
confounding effects of climate change and technological progress on the RGLs, the sensitivities of the RGLs to mean temperature
(TEM), cumulative precipitation (PRE), and cumulative sunshine duration (SSD) were measured. The results showed that the
BDMD had an extension trend (0.24 d a™'), among which the extension trend in the HDMS (0.16 d a™') was the most obvious in
RGLs, while the extension trends of BDHD (0.03 d a™') and MSMD (0.05 d a ') were not significant. High temperature and low
sunshine duration were unfavorable to the extension of the RGLs. The mean relative contributions of TEM to the BDHD, HDMS,
and MSMD were —50.0%, —50.7%, and —21.9%, which were —47.2%, —48.7%, and —67.6% in terms of SSD, respectively. Tech-
nological progress compensated for the adverse impacts of climate change on the trends of different RGLs. These results sug-
gested that cultivar selection and agronomic management were the effective adaptation strategies benefiting for the stable and high
yield of single-cropping rice. Single-cropping rice cultivar with longer RGLs and heat-tolerant may be suitable to cope with the
continuous climate change in the future.

Keywords: single-cropping rice; climate change; reproductive growth period lengths; technological progress
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Fig.1 Locations of the 10 meteorological stations used in the study
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: (https://www.webmap.cn/)
JXH, JZJ, HGS, HXY, HFX, HZX, SDZ, SGP, CFD, and CYY represent Xinghua station, Zhenjiang station, Gushi station, Xinyang station,
Fangxian station, Zhongxiang station, Dazhu station, Gaoping station, Fengdu station, and Youyang station, respectively. The above vector
map is from the National Catalogue Service for Geographic Information (https://www.webmap.cn/).
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Fig. 2 Trends in reproductive growth periods and lengths of single-cropping rice in the middle and lower reaches of the Yangtze

River during 1981-2010

a b c de f g h i j - -
- - 1981-2010 ) *

0.05 , o : (https://www.webmap.cn/)

a, b, c,d, e, f, g h, i, and j represent tillering stage, booting stage, heading stage, milking stage, maturity stage, tillering-booting, boot-

ing-heading, heading-milking, milking-maturity, and booting-maturity, respectively. Trends of indexes were calculated according to formula

(1) for each reproductive growth period observed from 1981 to 2010. *: P < 0.05; no: no significant difference. The above vector map is from

the National Catalogue Service for Geographic Information (https://www.webmap.cn/).
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Fig. 3 Characteristics of climatic factors change at different reproductive growth stages
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a, b, and ¢ represent mean temperature, cumulative precipitation, and cumulative sunshine duration of different reproductive growth periods
lengths, respectively. d, e, and f represent trends of mean temperature, cumulative precipitation, and cumulative sunshine duration, respec-
tively. TEM, PRE, and SSD represent mean temperature, cumulative precipitation, and cumulative sunshine duration, respectively. TDBD,
BDHD, HDMS, MSMD, and BDMD represent tillering to booting, booting to heading, heading to milking, milking to maturity, and booting to
maturity, respectively. The change trends of indexes were calculated by the time sequence of meteorological data observed from 1981 to 2010

based on formula (1).

F1 ERERPFREEEKMNEWEE. RiTRAEMRITHRBHEMEXREY

Table 1 Correlation coefficients of different reproductive growth periods lengths on mean temperature (TEM), cumulative precipi-

;d e

tation (PRE), and cumulative sunshine duration (SSD) in the panel regression models

TDBD [BDHD [HDMS|MSMD[BDMD)

TDBD BDHD HDMS MSMD
1981-2010

BDMD

Cumulative precipitation
sensitivity (B,)

Cumulative sunshine
duration sensitivity (B3)

Determination
coefficient (R?)

Reproductive growth periods Mean temperature
lengths (RGLs) sensitivity (B;)

- -3.74"
Tillering—Booting (TDBD)

- -0.77"
Booting—Heading (BDHD)

- -1.00"
Heading—Milking (HDMS)

- -1.17"
Milking—Maturity (MSMD)

- -2.08"

Booting—Maturity (BDMD)

0.010™

0.010™

0.008™"

0.007"

0.008™"

0.09" 0.65
0.07" 0.59
0.08™ 0.50
0.07"" 0.80
0.04™ 0.72

" P<0.05": P<0.01.
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Table 2 Correlation coefficients of different reproductive growth periods lengths on mean temperature (TEM), cumulative precipi-
tation (PRE), and cumulative sunshine duration (SSD) in the standardized panel regression models

Mean temperature

Reproductive growth periods lengths (RGLs) .
sensitivity ()

Cumulative precipitation Cumulative sunshine duration

sensitivity (B,) sensitivity (B;)

- Tillering—Booting (TDBD) —0.40" 0.08" 0.74"
- Booting—Heading (BDHD) —0.47" 0.16" 0.65"
- Heading—Milking (HDMS) —0.43" 0.10° 0.65"
- Milking—Maturity (MSMD) -0.52"" 0.09" 0.55"
- Booting—Maturity (BDMD) —0.54" 0.12" 0.32"
0.05 0.01 " P<0.05": P<0.01.
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Fig. 4 Effects of climate change and technological progress on
trends in the RGLs of single-cropping rice
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lengths, respectively. Abbreviations of different reproductive
growth periods lengths are the same as those given in Fig. 3.
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Fig. 5 Mean contributions of climate change and technological progress to RGLs of single-cropping rice
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3

a: the mean contributions of climate change and technological progress to different reproductive growth periods lengths; b: the mean relative
contributions of climatic factors to different reproductive growth periods lengths. Crgr cii and CrgL o indicate mean contribution of climatic
factors and technological progress to different reproductive growth periods lengths, respectively; RCraL tem, RCraL pre, and RCrar ssp indi-
cate mean relative contribution of mean temperature, cumulative precipitation, and cumulative sunshine duration to different reproductive
growth periods lengths, respectively. Abbreviations of different reproductive growth periods lengths are the same as those given in Fig. 3.
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