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The nature of the quantum trajectories, described by stochastic master equations, may be jump-like
or diffusive, depending upon different measurement processes. There are many different unravelings
corresponding to different types of stochastic master equations for a given master equation. In this
paper, we study the relationship between the quantum stochastic master equations and the quantum
master equations in the Markovian case under feedback control. We show that the corresponding un-
raveling no longer exists when we further consider feedback control besides measurement. It is due
to the fact that the information gained by the measurement plays an important role in the control pro-
cess. The master equation governing the evolution of ensemble average cannot be restored simply by
eliminating the noise term unlike the case without a control term. By establishing a fundamental limit
on performance of the master equation with feedback control, we demonstrate the differences between
the stochastic master equation and the master equation via theoretical proof and simulation, and show
the superiority of the stochastic master equation for feedback control.
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1 Introduction

The quantum master equation governing the evolu-

tion of a density matrix plays an important role in

relaxation and decoherence theory[1,2]. In contrast

to closed quantum systems, we cannot describe a

system interacting with its environment by a state

vector, since the system state is still entangled with

its environment (or bath)[3]. Hence, for an open

quantum system, we use a density matrix to de-

scribe the system state which can be considered

as an ensemble of the state vector. Here we have

assumed that other systems interacting with the

system of interest can be well treated as a bath.

This is a good approximation in many cases[3]. In

many important situations a complete solution to

the total system’s dynamics is rather complicated.

Even though the solution is known, one is con-

fronted with the task of determining the dynam-

ics of the system of interest by averaging irrelevant

degrees. Even worse, sometimes we do not know

exactly all the degrees interacting with the system

of interest. According to whether or not the bath

can quickly dissipate the information of the sys-

tem, one can derive a Markovian or non-Markovian

evolution equation. The non-Markovian equation,
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which is characterized by strong memory effects, fi-

nite revival times and non-exponential damping or

decoherence time, plays an important role in many

fields of physics, such as quantum optics[4], solid

state physics[5], and quantum information[6]. How-

ever, it may be a difficult task to deal with the non-

Markovian master equation theoretically[7]. Even

the numerical simulation of such a process turns

out to be very difficult and time-consuming[8,9]. In

the following we will focus on the Markovian evolu-

tion equation. Quantum Markovian process repre-

sents the simplest evolution of open systems. It can

be derived from various microscopic models[3], such

as weak-coupling interaction of radiation with mat-

ter, the Caldeira-Leggett model, nonlinear master

equation in open many-body systems. We will only

focus on the master equation of Lindblad form in

the following.

Given a master equation, its unraveling is not

unique. Different unravelings corresponding to dif-

ferent types of stochastic master equations may de-

pend upon different measurement processes. For

example, in quantum optics, when a direct or ho-

modyne detection is performed, the trajectories

may be jump-like or diffusive-like[10]. To the best

of the authors’ knowledge, in all of the unravelings,

the stochastic master equations and master equa-

tions do not involve any control term[10−15]. We

will show that even when a stochastic master equa-

tion is a specific unraveling of a master equation

without a control term, it is no longer the unrav-

eling of the corresponding master equation in the

case with a control term. This is due to the im-

portant effect of the information gained from the

measurement in the control process. By establish-

ing a fundamental limit on performance of a control

master equation, we will demonstrate via theoret-

ical proof and simulation differences between the

control master equation and the control stochastic

master equation.

The paper is organized as follows. In section

2, we first introduce the coherent control model.

Then we demonstrate that we cannot easily unravel

a master equation into stochastic master equations

when considering feedback control. In section 3,

we further compare differences between the con-

trol master equation and control stochastic master

equation. Section 4 concludes the paper with some

remarks.

2 The unraveling problem

We will use a model system in the field of quan-

tum optics (see e.g., ref. [16] for more details).

A cold atomic ensemble consisting of N atoms is

put into a cavity. We assume that the atomic

transitions are far detuned from the cavity reso-

nance. We further consider the atomic Hamilto-

nian HA = ~∆Fz +~u(t)Fy, where ∆ is the atomic

detuning and u(t) is the strength of a magnetic

field in the y-direction, Fz and Fy are the spin-

N/2 collective dipole moments of the ensemble. In

the feedback control case, the spins interact with

an optical mode in the z-direction, which is ulti-

mately detected by an optical detector. The cavity

is used to increase the interaction strength between

the light and the atoms. We further consider the

decoherence due to the spontaneous emission which

is included phenomenologically.

Suppose that the initial state of the system is

ρ0 =
∑n

i=1 piρi, where the state ρi has the corre-

sponding probability pi,
∑n

i=1 pi = 1, n > 2. In

the control case, our goal is to prepare a desired

eigenstate ρf of Fz with a high fidelity.

In this section we first consider the unraveling

problem in the case without a control term. In

this case there are many different unravelings de-

pending upon different types of measurement pro-

cesses. We will give two typical kinds of unravel-

ings: jump-like and diffusive corresponding to di-

rect and homodyne detection, respectively. In con-

trast to the case without a control term, we will

demonstrate that the unraveling form is no longer

true if we further consider feedback control besides

measurement. In this case, the master equation

governing the evolution of the average ensemble

cannot simply be restored by averaging the noise

term.

2.1 Case without a control term

If we neglect the spontaneous emission and do not

perform any measurement and control (i.e., u(t)
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≡ 0 in the atomic Hamiltonian HA), the dynam-

ics of the system is described by the Schrödinger

equation
dρt

dt
= −i[∆Fz, ρt]. (1)

Now we consider the spontaneous emission. Since

we have no access to measure all the emission

photons, this phenomenon describes the effect of

noise of the bath, and can be described phenomen-

ologically[16]. As a consequence, a Lindblad term

is added to (1):

dρt

dt
= −i[∆Fz, ρt] + γD[σ]ρt, (2)

where γ is the decoherence strength, σ is the atomic

decay operator and the superoperator D is defined

by

D[Λ]ρ = −
1

2
[Λ, [Λ, ρ]].

If we perform a continuous measurement on the op-

tical mode which interacts with the atoms in the

z-direction but throw away the information (the

measurement records), the effect of the measure-

ment may be included by adding another Lindblad

term to the master equation (2):

dρt

dt
= −i[sFz, ρt] + γD[σ]ρt +MD[Fz]ρt, (3)

where s is determined by some experimental pa-

rameters, such as the coupling strength between

the atoms and the cavity, ∆ and so on; M is the

effective interaction strength[16].

Now we consider the unraveling of the master

equation (3). We will give two specific kinds of

unravelings.

If we perform a direct photodetection on the op-

tical mode, the conditioned state matrix obeys the

explicit stochastic master equation[10]

dρc(t) = γD[σ]ρc(t)dt +

{

dNc(t)G[Fz ]

− dtH

[

isFz +
M

2
F 2

z

]}

ρc(t). (4)

Here the nonlinear superoperators G and H are de-

fined by

G[r]ρ =
rρr†

Tr[rρr†]
− ρ,

H[r]ρ = rρ+ ρr† − Tr[rρ+ ρr†]ρ.

The infinitesimal process dNc(t) represents the in-

crement in the photon count in the time interval

[t, t+ dt], and is defined by

E[dNc(t)] = MTr[Fzρc(t)F
†
z ]dt.

We can obtain the master equation (3) from

ρ(t) = E[ρc(t)] simply by replacing dNc(t) by its

ensemble average value E[dNc(t)]. Actually, as we

have mentioned, in the master equation (3), we

have thrown away the information gained from the

measurement, and ρ(t + dt) is derived by averag-

ing all possible evolutions during the time [t, t+dt]

from ρ(t).

If we perform a homodyne photodetection on the

optical mode, the conditioned density matrix obeys

a diffusive type of stochastic master equation[16−18]

dρc(t) = − is[Fz, ρc(t)]dt + γD[σ]ρc(t)dt

+MD[Fz]ρc(t)dt

+
√

MηH[Fz]ρc(t)dWt, (5)

where η is the detection efficiency and the innova-

tion process Wt satisfies

dWt = dYt − 2
√

Mη Tr (Fzρc(t))dt,

where Yt is the observation process. An important

result is that the innovation process Wt is in fact a

Wiener process[19,20]. It is clear that the ensemble

average evolution equation (3) can be restored by

eliminating the noise term.

2.2 Case with a control term

However, if we add a control term in the Hamilto-

nian HA, where u(t) 6= 0, and u(·) may depend

upon ρc(t) in the evolution equation (4) or (5),

the stochastic master equations (4) and (5) are no

longer the unravelings of the master equation (3)

with an additional control term. This is due to the

fact that the term u(ρc) · [Fy, ρc] is essentially non-

linear about ρc in this case. As a result, the prod-

uct operation and average operation are not inter-

changeable. We will give a detailed explanation

by focusing on the example of the diffusive type.

Notice that the master equation and the stochas-

tic master equation corresponding to (3) and (5)

become
dρt

dt
= − i[sFz + u(t)Fy, ρt]

+ γD[σ]ρt +MD[Fz]ρt, (6)
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dρc(t) = − i[sFz + u(t)Fy, ρc(t)]dt

+ γD[σ]ρc(t)dt +MD[Fz]ρc(t)dt

+
√

MηH[Fz]ρc(t)dWt. (7)

Without loss of generality, we consider the case of

a spin which may be used as a qubit for simplicity,

i.e., the two-dimensional case. Denote by |0〉 = (1
0
)

and |1〉 = (0
1
) the two eigenvectors of Fz. Under

this vector representation, we have

Fz =
1

2
(|1〉〈1| − |0〉〈0|) = −

1

2

(

1 0

0 −1

)

,

Fy =
1

2
(i|0〉〈1| − i|1〉〈0|) = −

1

2

(

0 −i

i 0

)

,

σ = |0〉〈1| =

(

0 1

0 0

)

.

Suppose ρ = 1
2
( 1+z

x+iy

x−iy

1−z
). Corresponding to (6)

and (7) respectively, we have the following evolu-

tion equations:

dxt

dt
= −

γ +M

2
xt − utzt + syt,

dyt

dt
= −

γ +M

2
yt − sxt, (8)

dzt

dt
= γ(1 − zt) + utxt,

dxc(t) = −
γ +M

2
xc(t)dt − utzc(t)dt

+ syc(t)dt +
√

Mηxc(t)zc(t)dWt,

dyc(t) = −
γ +M

2
yc(t)dt − sxc(t)dt (9)

+
√

Mηyc(t)zc(t)dWt,

dzc(t) = γ(1 − zc(t))dt + utxc(t)dt

−
√

Mη(1 − z2
c (t))dWt.

From (9), it is clear that the density matrix

ρ(t) = Eρc(t) of the ensemble average obeys the

following equation:

dxt

dt
= −

γ +M

2
xt − Eutzc(t) + syt,

dyt

dt
= −

γ +M

2
yt − sxt, (10)

dzt

dt
= γ(1 − zt) +Eutxc(t).

Here we notice that, generally, Eutzc(t) 6= ztEut

and Eutxc(t) 6= xtEut since u may be a function

of xc, yc and zc. Hence, the stochastic master equa-

tion (7) is not an unraveling of the master equation

(6) in the case with a feedback control term. We

argue that if u(t) in the Hamiltonian HA is only

time-varying but not based on the measurement

information, the stochastic master equation (7) is

still an unraveling of the master equation (6).

3 The control problem

In this section, we further emphasize the impor-

tance of the information gained from the measure-

ment by comparing performance of (8) and (9)

through a control task. Our task is to prepare a

desired eigenstate |ψf 〉 (|ψf 〉 = |0〉 or |1〉) of Fz

with a high fidelity1). We use F (ρ) = 〈ψf |ρ|ψf 〉

as the fidelity of the state ρ with the target state

ρf=|ψf 〉〈ψf |.

3.1 Case without decoherence

First we consider the simplest case: γ = 0; i.e., the

effect of decoherence can be neglected. We have

the following evolution equations corresponding to

(8) and (9), respectively

dxt

dt
= −

M

2
xt − utzt + syt,

dyt

dt
= −

M

2
yt − sxt, (11)

dzt

dt
= utxt,

dxc(t) = −
M

2
xc(t)dt− utzc(t)dt + syc(t)dt

+
√

Mηxc(t)zc(t)dWt,

dyc(t) = −
M

2
yc(t)dt − sxc(t)dt (12)

+
√

Mηyc(t)zc(t)dWt,

dzc(t) = utxc(t)dt −
√

Mη(1 − z2
c (t))dWt.

A straightforward calculation shows that x, y,

z = 0 is an equilibrium point of eq. (11), and

once the state is x, y, z = 0 (corresponding to a

completely mixed state), it will be stuck at this

point no matter what admissible control law is per-

formed. Hence we cannot prepare the target state

(corresponding to z = 1 or −1) from an arbitrary

initial state by using the ensemble control model

(11). In contrast to this, Theorem 4.2 of ref. [21]

1) This control task may be considered as robustly preparing a qubit.
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proposes an explicit control law which can globally

stabilize (12) around ρf ; i.e., in this case, we can

approximately prepare the target state from an ar-

bitrary initial state with probability 1. Hence, in

this sense, we have shown the superiority of the

trajectory control model where the measurement

information is used for feedback control.

3.2 Case with decoherence

In contrast to the case without decoherence, it is

easy to see that when u ≡ 0, the state of (8) and

(9) will approximate to the eigenstate |0〉 of Fz cor-

responding to z = 1 (with probability 1 for (9)).

Hence, we only consider the case of ρf = |1〉〈1| in

the following. In this case, F (ρ) = 〈1|ρ|1〉 = 1−z
2

.

First, we obtain the following proposition.

Proposition 3.1. For model (8), for an

arbitrary initial state and an arbitrary admis-

sible control law (such that model (8) has a

unique solution), we have lim supt→∞ zt > 0; i.e.,

lim inft→∞ Ft 6 50%.

Proof. Denote Vt = x2
t + y2

t + z2
t . From (8), it

is easy to get

dVt

dt
= −γVt −M(x2

t + y2
t ) − γz2

t + 2γzt.

Hence

Vt = e−γtV0 −Me−γt

∫ t

0

eγs(x2
s + y2

s)ds

+ e−γt

∫ t

0

eγs(−γz2
s + 2γzs)ds.

We use a contradiction argument. If there ex-

ists ε > 0 and an admissible control law u(·), to-

gether with T (ε, u), such that zt < −ε whenever

t > T (ε, u), we have

Vt = e−γtV0 −Me−γt

∫ t

0

eγs(x2
s + y2

s)ds

+ e−γt

∫ t

0

eγs(−γz2
s + 2γzs)ds,

= e−γtV0 −Me−γt

∫ t

0

eγs(x2
s + y2

s)ds

+ e−γt

∫ T

0

eγs(−γz2
s + 2γzs)ds

+ e−γt

∫ t

T

eγs(−γz2
s + 2γzs)ds

< ε2 as t→ ∞.

However, when t > T (ε, u), we have

V (t) = x2
t + y2

t + z2
t > ε2.

This is a contradiction.

This proposition shows that we cannot always

prepare the target state with a high fidelity (at

least greater than 50%) after some limited time no

matter what admissible control law is performed if

we only use the information of the ensemble aver-

age for feedback control.

In the following we turn to (9). We will demon-

strate by simulation that in this case we can always

prepare the target state with a high fidelity after

some limited time by a simple control law with ap-

propriate parameters.

We consider a simple control law u = −B(xc+δ),

where B is the control strength and δ is an ad-

justable parameter which avoids the trajectory of

zc sticking at 12). The simulation results are shown

in Figures 1–3. Here we choose the parameters

s = 0, δ = 0.01, the step size of the simulations is

5× 10−4, and we average 300 sample paths for ev-

ery curve in Figures 1–3. In order to compare the

results of different parameters, we choose γ = 1 in

Figures 1 and 2, γ = 0.1 in Figure 3; η = 1 in Fig-

ures 1 and 3; M = 10, B = 25 in Figure 1, M = 5,

B = 15 in Figure 3. The other parameters for the

curves are shown in the legend, where eta means

η.

In contrast to the case of (8), by the simula-

tions we learn that Ezc(t) decreases as the control

strength B increases or the decoherence strength

γ decreases, and we can prepare the target state

always with a high fidelity after some limited time.

This is because in this case the feedback acts im-

mediately after a detection unlike the case in (8),

where the control law is based on the informa-

tion of the ensemble average since the measurement

records have been thrown away.

4 Concluding remarks

In this paper, we have discussed the question of

unraveling a master equation into stochastic mas-

2) It is not difficult to see that, the “worst” case z = 1 implies x = 0 and hence u = 0 if δ = 0. Thus, zc will stick at 1 since it is a

stable point of eq. (9).
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Figure 1 Function Ezc(t) of t with different initial states.
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Figure 3 Function Ezc(t) of t.

ter equations in the Markovian case. We explicitly

show that the stochastic master equation cannot

be replaced by a master equation when we consider

feedback control. This is because information plays

an important role in the feedback control process.

We explicitly demonstrate that the ensemble aver-

age and feedback control are not interchangeable

using a coherent control model. This result clari-

fies the differences between the two types of con-

trol modes: ensemble control and trajectory con-

trol corresponding to the control master equation

and the control stochastic master equation, respec-

tively, and shows the superiority of the trajectory

control mode in feedback control.
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11 Kondov I, Kleinekathöfer U, Schreiber M. Stochastic unravel-

ing of Redfield master equations and its application to electron

transfer problems. J Chem Phys, 2003, 119: 6635–6646

12 Breuer H -P, Kappler B, Petruccione F. Stochastic wave-

function method for non-Markovian quantum master equa-

tions. Phys Rev A, 1999, 59: 1633–1643
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