DOI: 10.19756/j. issn. 0253-3820.191479

一种快速同位素稀释定量方法及其在示踪方面的应用

方随 李志明 徐江 汪伟 翟利华 邓虎 韦冠一* (西北核技术研究所, 西安 710024)

摘 要 同位素稀释法定量分析中,当待测样品中某一目标同位素的丰度被示踪剂影响而不能保持天然丰度时,需要测量样品中各同位素的丰度比。在待测样品量或测量时间有限时,常规同位素稀释法的应用受到局限。为了降低样品消耗量、简化测量步骤、减小记忆效应影响、提高测量效率,本研究建立了一种可省略待测样品丰度比测量环节的快速同位素稀释定量方法。基于物质的量守恒原理,通过关联的运算,得到待测样品后,只需进行一次添加同位素稀释剂后混合样品的丰度比测量即可完成目标同位素的定量分析。以天然丰度 Xe 标准气体作为模拟样品,6 次测量值与标称值的相对偏差均小于 1%,相对标准偏差(RSD)为 0.4%,与使用常规同位素稀释法得到的测量结果完全相符。此外,以¹²⁸ Xe 作为示踪同位素,得到的示踪同位素扩散曲线符合气体在封闭空间的扩散规律。本方法适用于有 3 种或更多稳定同位素的元素,既保证了测量结果的准确性,又可缩短分析时间,减少样品消耗量。

关键词 同位素稀释;定量;快速;示踪

1 引言

同位素稀释法是一种计量学认可的、可溯源的痕量核素分析方法^[1],已被广泛应用于地质、核工业、环境、生物、医学、农业和材料等领域^[2-6],如血清中钾、钙、镁含量和蛋白质等无机元素及有机物的痕量分析^[7-9]。同位素稀释法主要分为单同位素稀释法和双同位素稀释法两种方法。利用单同位素稀释法可绝对定量蛋白质组成、估算放射性废物中长寿命裂变产物⁹³ Zr、测定人血浆和血清中生育酚及其代谢产物等^[10-12]。在双同位素稀释法方面,可利用双同位素稀释剂进行地质定年研究^[13-19];利用⁴² Ca-⁴³ Ca双稀释剂作为热电离质谱测量钙同位素的首选方法^[20];利用无机碳稳定同位素和有机碳稳定同位素两种方法,成功计算出了微藻利用不同碳源的份额^[21]。但上述测量方法测定样品中目标元素或同位素时,在稀释剂加入量、稀释剂同位素丰度比可准确标定的前提下,仍需对样品中的同位素丰度比和加入稀释剂后混合样品的同位素丰度比分别测量,导致对样品的需求量增大。同时,在测量不同种类样品中的痕量元素或同位素时,仪器的记忆效应对测量结果也存在明显影响。

上述过程中,若样品为天然丰度样品,则样品中同位素丰度比的测量可用天然丰度比代替,此时可略过待测样品的丰度比测量,仅需一次测量混合样品中同位素丰度比,即可实现待测样品中目标同位素的测量。但是,若在待测样品中添加了某一种示踪同位素,改变了样品中该同位素丰度,则必须测量样品中同位素丰度比,此时至少需要测量两次同位素丰度比才能完成目标同位素的定量分析。上述同位素稀释定量法存在以下缺点或限制:(1)两次同位素丰度比测量使分析时间延长,效率降低;(2)当待测样品量有限时,难以完成两次同位素丰度比的测量;(3)待测样品与加入稀释剂后的混合样品中同位素丰度相差较大,须采取必要措施克服记忆效应,避免不同样品间的测量影响。

为解决上述问题,本研究对常规同位素稀释方法进行优化和改进,以氙(Xe)作为研究对象,开发并建立了非天然丰度样品中同位素含量的快速测量方法。本方法可省略待测样品同位素丰度比的测量,最终实现待测样品中目标同位素的快速准确分析,为同位素示踪、溯源、污染泄漏及扩散等方面的示踪研究提供可靠高效的分析方法。

2 原理与方法

本方法利用添加稀释剂前后同位素之间比值的变化与物质的量守恒原理,通过关联运算,省略待测样品中同位素丰度比的测量,实现样品中目标同位素的定量分析。主要分以下3种情况进行讨论。

2.1 单一同位素受影响时的同位素稀释定量方法

假设某元素至少有 3 种同位素 $A \setminus B \setminus C$,其中 B 为待测同位素, A 作为稀释剂,且稀释剂中 A 的添加量准确已知。若待测样品中除含有该元素的天然同位素 $A \setminus B \setminus C$ 外,人工添加了仅含同位素 B 的示踪剂,首先讨论此条件下分别来自于天然同位素和示踪剂中同位素 B 的含量测定方法。

为便于讨论,稀释剂及待测样品中的同位素原子数用 N 表示,其同位素种类用上标" A "、" B "或" C "表示,其来源用下标表示(" $_{s}$ "代表样品," $_{D}$ "代表稀释剂)。例如, $^{A}N_{s}$ 表示待测样品中同位素 A 的原子数;同位素丰度之比(即原子数之比)用 R 表示,所有的丰度比均以同位素 A 为参照, R_{B} 即表示同位素 A 与同位素 B 之比,下标" $_{D}$ "、" $_{s}$ "、" $_{M}$ "分别表示稀释剂、待测样品以及稀释剂与待测样品混合后的同位素丰度之比。例如, R_{BM} 表示添加稀释剂后混匀样品中同位素 A、B 的丰度比。

对于有不同来源的同位素 B,以下标"_T"、"_x"分别表示其天然丰度来源和示踪剂来源。根据物质的量守恒原理,将^B N_s 拆分为^B N_{sT} 和^B N_{sx} ,稀释剂与待测样品混合后测量得到的同位素 A、B 丰度比 R_{BM} 与各同位素来源量之间的关系满足:

$$R_{\rm BM} = \frac{{}^{\rm A}N_{\rm D} + {}^{\rm A}N_{\rm S}}{{}^{\rm B}N_{\rm D} + {}^{\rm B}N_{\rm ST} + {}^{\rm B}N_{\rm SY}} \tag{1}$$

其中, $^{A}N_{D}$ 为稀释剂中同位素 A 原子数,可提前标定,将其视之为已知量; $^{A}N_{S}$ 为待测样品中同位素 A 原子数,为未知量; $^{B}N_{D}$ 为稀释剂中同位素 B 原子数,在稀释剂丰度已测定的条件下可视为已知量; $^{B}N_{ST}$ 为待测样品中来源于天然丰度的同位素 B 原子数,为未知量; $^{B}N_{SX}$ 为待测样品中来源于示踪剂的同位素 B 原子数,为未知量。

经过上述分析可知,公式(1)中存在 3 个未知量,分别为 $^{\Lambda}N_{\rm S}$ 、 $^{\rm B}N_{\rm ST}$ 和 $^{\rm B}N_{\rm SX}$, 其中,前两者与天然同位素丰度呈线性关系,可视为一个未知量,因此只需要再找到一个约束条件即可求解上述方程。因此,本研究考察该元素的另一种未受影响的天然同位素 C 作为参照同位素,在每次测量中增加同位素 A 与同位素 C 丰度比的测量,由于样品中同位素 A 和 C 未受示踪剂添加的影响,故待测样品中同位素 A 和 C 丰度比 $R_{\rm CS}$ 为天然丰度值,可视为已知量。根据已标定的稀释剂 A 的添加量 $^{\Lambda}N_{\rm D}$ 、稀释剂 A 中同位素 A 和 C 丰度比 $R_{\rm CD}$,将待测样品与稀释剂混合均匀后,测量混合样品中同位素 A 和 C 丰度比 $R_{\rm CM}$,根据物质的量守恒原理,稀释剂与待测样品混合后测量得到的 $R_{\rm CM}$ 与各同位素来源量之间的关系满足公式(2):

$$R_{\rm CM} = \frac{{}^{\rm A}N_{\rm D} + {}^{\rm A}N_{\rm S}}{{}^{\rm C}N_{\rm D} + {}^{\rm C}N_{\rm S}} \tag{2}$$

将公式(2)中的 $^{c}N_{D}$ 用 $^{A}N_{D}/R_{CD}$ 代替, $^{c}N_{S}$ 用 $^{A}N_{S}/R_{CS}$ 代替,进而可推导出待测样品中同位素 C 的原子数 $^{c}N_{S}$,如下式:

$${}^{C}N_{S} = \frac{{}^{A}N_{D}}{R_{CD}} \cdot \frac{R_{CD} - R_{CM}}{R_{CM} - R_{CS}}$$
 (3)

其中, R_{CD} 为稀释剂中同位素 A 与同位素 C 的丰度比; R_{CS} 为待测样品中同位素 A 与同位素 C 的丰度比; R_{CM} 为待测样品与稀释剂混合后样品中同位素 A 与同位素 C 的丰度比。

由公式(3)得到待测样品中 $^{c}N_{s}$ 后,即可根据天然丰度同位素之间的关系求得 $^{A}N_{s}$ 与 $^{B}N_{sr}$,此时公式(1)中仅有一个未知量和一个测量量,表明可通过一次测量计算出公式(1)中的未知量 $^{B}N_{sx}$ 。推导得到待测样品中来源于示踪剂的同位素 B 的原子数 $^{B}N_{sx}$:

$${}^{B}N_{SX} = {}^{A}N_{D} \left[\frac{R_{BD} - R_{BM}}{R_{RM} \cdot R_{RD}} - \frac{R_{CS}}{R_{CD}} \cdot \frac{R_{CD} - R_{CM}}{R_{CM} - R_{CS}} \cdot \frac{R_{BM} - R_{BST}}{R_{RM} \cdot R_{RST}} \right]$$
(4)

简言之,在稀释剂添加量 $^{A}N_{D}$ 已知的条件下,根据公式(4)即可计算出待测样品中来源于示踪剂的同位素 B 的原子数。6 个所需的同位素丰度比中, R_{CS} 与 R_{BS} 均为天然丰度值,无需测量; R_{BD} 与 R_{CD} 为稀释剂中的 A、B、C 3 种同位素的比值,可在样品测量前一次标定;公式(4)中需要测量的值仅是稀释剂与待测样品混合后的 R_{BM} 、 R_{CM} ,这两个比值仅需一次进样测量即可得到,减少了测量次数,缩短了时间。

2.2 两种同位素受影响时的同位素稀释定量方法

在 2.1 节中, 若待测样品中添加的示踪剂不纯, 除主要成分同位素 B 外, 还混有少量的同位素 A, 但 两者的比例 R_{BX} 已知。此时待测样品中用作稀释剂的同位素 A 丰度也受到影响, 待测样品中同位素 A 和 B 丰度之比 R_{BS} 、样品中同位素 A 和 C 丰度之比 R_{CS} 均为未知量,则公式(2)不成立,即上述计算方法 不适用此种情况。为解决上述问题, 整个计算过程需要重新推导, 根据物质的量守恒原理以及上述条件, 可列出以下 5 个公式:

$$R_{\rm BM} = \frac{{}^{\Lambda}N_{\rm D} + {}^{\Lambda}N_{\rm ST} + {}^{\Lambda}N_{\rm SX}}{{}^{\rm B}N_{\rm D} + {}^{\rm B}N_{\rm ST} + {}^{\rm B}N_{\rm SY}}$$
(5)

$$R_{\rm CM} = \frac{{}^{A}N_{\rm D} + {}^{A}N_{\rm ST} + {}^{A}N_{\rm SX}}{{}^{C}N_{\rm D} + {}^{C}N_{\rm S}}$$
 (6)

$$R_{\rm CS} = \frac{{}^{\rm A}N_{\rm ST}}{{}^{\rm C}N_{\rm S}} \tag{7}$$

$$R_{\rm BST} = \frac{{}^{\rm A}N_{\rm ST}}{{}^{\rm B}N_{\rm ST}} \tag{8}$$

$$R_{\rm BX} = \frac{{}^{\Lambda}N_{\rm SX}}{{}^{\rm B}N_{\rm SX}} \tag{9}$$

上述公式中, $R_{\rm BM}$ 为待测样品与稀释剂混合均匀后混合样品中同位素 A 与同位素 B 的丰度比; $R_{\rm CM}$ 为待测样品与稀释剂混合均匀后混合样品中同位素 A 与同位素 C 的丰度比; $^{A}N_{\rm ST}$ 为样品中来自天然丰度的同位素 A 原子数; $^{A}N_{\rm SX}$ 为样品中来自示踪剂的同位素 A 原子数; $^{C}N_{\rm D}$ 为稀释剂中同位素 C 的原子数; $^{C}N_{\rm S}$ 为待测样品中同位素 C 的原子数; $^{R}N_{\rm SX}$ 为未受影响前待测样品中同位素 A 与 B、同位素 A 与 C 的丰度比(即天然丰度比); $R_{\rm BX}$ 表示示踪剂中同位素 A、B 丰度比,其它量的含义同前。

将公式(5)和(6)中的 BN_D 用 $^AN_D/R_{BD}$ 代替, CN_D 用 $^AN_D/R_{CD}$ 代替, AN_D 可提前标定, R_{BD} 、 R_{CD} 可提前测定, R_{BST} 、 R_{CS} 可使用天然丰度值代替,则上述各量均可视为已知量;此外, R_{BM} 、 R_{CM} 待测,也可视为已知量;上述 5 个公式中仅有 5 个未知量: $^AN_{ST}$ 、 $^AN_{SX}$ 、 $^BN_{SX}$ 、 EN_S ,则由上述各式联立的方程组存在唯一解,从中解出待测样品中来源于示踪剂的同位素 A 和 B 的原子数 $^AN_{SX}$ 和 $^BN_{SX}$,计算公式见电子版文后支持信息公式(S1) – (S3)。

上述方程的求解表明,如果稀释剂 A 的添加量已知,稀释剂中各同位素丰度比已经测定,且示踪剂中同位素 B 和同位素 A 间的丰度比已知或已测定,根据公式中所使用的同位素丰度比,只需稀释剂与待测样品混合后一次进样测量各同位素丰度比,即可完成待测样品中来源于示踪剂中 A 和 B 两种同位素的原子数测量,同时可定量测定待测样品中同位素 C 的原子数。

2.3 样品中同位素全部受影响时的同位素稀释定量方法

在 2.2 节中, 若待测样品中添加的示踪剂纯度更差, 除主要成分同位素 B 外, 还混有少量的同位素 A 和同位素 C, 但同位素 A 与 B 的丰度比 R_{BX} 、同位素 A 与 C 的丰度比、 R_{CX} 已知, 即待测样品中同位素 A、B、C 的天然丰度全部被影响, 此时根据物质的量守恒原理以及上述条件, 可列出以下 6 个公式:

$$R_{\rm BM} = \frac{{}^{\rm A}N_{\rm D} + {}^{\rm A}N_{\rm ST} + {}^{\rm A}N_{\rm SX}}{{}^{\rm B}N_{\rm D} + {}^{\rm B}N_{\rm ST} + {}^{\rm B}N_{\rm SX}}$$
(10)

$$R_{\rm CM} = \frac{{}^{\rm A}N_{\rm D} + {}^{\rm A}N_{\rm ST} + {}^{\rm A}N_{\rm SX}}{{}^{\rm C}N_{\rm D} + {}^{\rm C}N_{\rm ST} + {}^{\rm C}N_{\rm SX}}$$
(11)

$$R_{\rm BST} = \frac{{}^{\Lambda}N_{\rm ST}}{{}^{B}N_{\rm ST}} \tag{12}$$

$$R_{\rm CST} = \frac{{}^{\Lambda}N_{\rm ST}}{{}^{\rm C}N_{\rm ST}} \tag{13}$$

$$R_{\rm BX} = \frac{{}^{\rm A}N_{\rm SX}}{{}^{\rm B}N_{\rm SX}} \tag{14}$$

$$R_{\rm CX} = \frac{{}^{\Lambda}N_{\rm SX}}{{}^{\rm C}N_{\rm SX}} \tag{15}$$

其中, $^{c}N_{sx}$ 为待测样品中来自天然丰度的同位素 C 原子数, $^{c}N_{sx}$ 为待测样品中来自示踪剂中的同位素 C 原子数,其它量的含义同前。同理,上述 6 个公式中存在 6 个未知数,则由上述各式联立的方程组存在 唯一解,从中分别求解出待测样品中来源于示踪剂的同位素 A、B、C 的原子数 $^{A}N_{sx}$ 、 $^{B}N_{sx}$ 、 $^{C}N_{sx}$ 。计算公式见电子版文后支持信息公式(S4)-(S6)

通过上述方程的求解可知,在提前标定稀释剂量以及稀释剂中各同位素丰度比的前提下,且示踪剂中同位素 A 和 B、C 同位素间的比例已知或已测定,可通过测量待测样品与稀释剂混合后各同位素间的丰度比,定量分析待测样品中来源于示踪剂的 3 种同位素 A、B、C 的原子数。

3 实验部分

3.1 仪器与试剂

GAM400 气体四极杆质谱仪(德国 IPI 公司),配备自研进样系统(内置精度 0.1% 的薄膜压力规)及样品处理系统。MS12002TS 电子天平(梅特勒公司),量程为 12~kg,精度为 0.01~g;AX504 天平,量程为 510~g,精度为 0.1~mg。AI5600 温度计(厦门宇电自动化科技有限公司)。

 129 Xe 稀释剂:已提前标定,其中 129 Xe/ 128 Xe = 28. 37; 129 Xe/ 132 Xe = 911.0。Xe 丰度标准气体 IRMM-PIGS-2000:标称值为 129 Xe/ 128 Xe = 13. 82, 129 Xe/ 132 Xe = 0. 9811。自配 Xe 标准气体 $^{[22]}$:原料气为天然丰度纯 Xe,标准气体中 Xe 的体积比含量为 4. 64×10 $^{-6}$ 。 128 Xe 示踪剂:元素纯度优于 99. 985%,同位素丰度为 99. 933%。

3.2 实验条件

- 3.2.1 质谱条件 电子轰击型离子源,电子能量为70 eV;灯丝电流为0.6 mA;测量方式为跳峰。
- **3.2.2** 实验方法 (1)以同位素¹²⁸ Xe 为测量目标,在线进样 Xe 丰度标准气体,计算¹²⁹ Xe/¹²⁸ Xe、¹²⁹ Xe/¹³² Xe的质量歧视因子;(2)根据测定的质量歧视因子校正测定的¹²⁹ Xe 稀释剂中¹²⁹ Xe/¹²⁸ Xe、¹²⁹ Xe/¹³² Xe 比值;(3)以自配 Xe 标准气体通过同位素稀释法标定¹²⁹ Xe 稀释剂的每次添加量¹²⁹ $N_{\rm D}$ 。

首先,以 Xe 标准气体作为模拟样品,以公式 S1、S2、S3 为基础,将 A、B、C 分别更换为¹²⁹ Xe、¹³² Xe质量数后,得到计算公式(S7)-(S9)(电子版文后支持信息)。利用上述公式(S7)-(S9)和已标定的稀释剂添加量、天然丰度比、丰度比测量值等,可计算出样品中来源于示踪剂中的¹²⁸ Xe 和¹²⁹ Xe 的原子数以及示踪样品中天然丰度同位素¹³² Xe 的原子数,根据¹³² Xe 的原子数以及丰度、温度、压强、体积等参数,计算得到天然丰度 Xe 标准气体的体积比含量,验证本研究所开发的同位素稀释测量方法的可靠性,并将本方法应用于测量添加示踪剂¹²⁸ Xe 的示踪样品,进而绘制出示踪剂在封闭空间的扩散曲线。

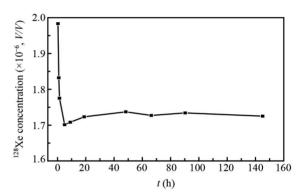
4 结果与讨论

4.1 以 Xe 标准气体为模拟样品验证方法准确性

以不同进样压强在线进样 Xe 标准气体,质谱仪测出 Xe 标准气体与 129 Xe 稀释剂混合后的样品中 129 Xe 128 Xe 129 Xe 132 Xe 丰度比,根据电子版文后支持信息中公式(S7)、(S9)计算出进样体积中非天然 128 Xe和天然 128 Xe的原子数,再根据理想气体状态方程式 pV=nRT,计算非天然 128 Xe 体积比含量和天然 Xe 体积比含量。其中,进样体积 V 提前标定为 5.833 mL,温度 T 由温度计精确测量并换算成开尔文单位(K),压强 p 由薄膜压力规测量,R 取 8.315 $J/(\text{mol} \cdot \text{K})$ 。不同压强进样时的测量结果见表 1。由表 1 可知,模拟样品为天然丰度 Xe 标准气体(体积比含量标称值为 4.64×10 6)时,示踪剂添加量为 0,即 $R_{128X}=0$,计算出的天然 Xe 含量与标称值的相对偏差均小于 1%,且 6 次平行测量结果的相对标准偏

差为0.4%,结果表明,此定量分析方法可信。

表 1 6 次测量 Xe 标准气体体积比含量


Table 1 Six measured values of Xe standard gas

序号 No.	进样压强 Pressure (kPa)	温度 Temperature (K)	非天然 ¹²⁸ Xe 体积比含量 Concentration (V/V)	天然 Xe 体积比含量 Concentration (V/V)	相对偏差 Relative deviation (%)
1	163.7	295.4	6.54×10 ⁻⁹	4.64×10 ⁻⁶	-0.04
2	159.4	296.6	8.15×10^{-10}	4.60×10^{-6}	-0.92
3	156.8	296.6	4.64×10^{-12}	4.64×10^{-6}	0.08
4	149.3	296.3	-7.38×10^{-9}	4.63×10^{-6}	-0.20
5	147.1	296.6	-7.32×10^{-9}	4.65×10^{-6}	0.13
6	144.9	296.7	-6.92×10^{-9}	4.64×10^{-6}	0.07
平均值 Average	_	_	_	4.63×10^{-6}	_
RSD (%)	_	_	-	0.4	_

4.2 添加示踪同位素¹²⁸Xe 实验

在某次扩散实验中,向封闭空间内添加 5 mL 示踪剂128 Xe,示踪剂中129 Xe/128 Xe 为 1×10⁻⁵(已提前标

定)。实验中,在不同的时间点从实验空间内取 样,共获得10批次样品。添加稀释剂后,测量混 合样品中的¹²⁹Xe/¹²⁸Xe 与¹²⁹Xe/¹³²Xe 比值,根据上 述方法可计算出示踪样品中来源于天然和示踪剂 的 128 Xe原子数 $^{128}N_{ST}$ 和 $^{128}N_{SX}$,根据 $^{128}N_{SX}$ 原子数及 理想气体状态方程计算得出示踪样品中来源于示 踪剂的¹²⁸ Xe 体积比含量,测量结果见图 1。由图 1 可知,第一个时间点(0.27 h)取样样品中来源于 示踪剂的128 Xe 浓度最高,之后随着时间的推移,浓 度逐渐降低, 达到稳定后在1%以内有微小变化。 第一个取样样品中¹²⁸ Xe 浓度高,这种现象归因于 刚将示踪剂添加到封闭空间内,示踪剂还未扩散 均匀;而随着时间推移,示踪剂向全部封闭空间扩

不同时间点样品中示踪同位素¹²⁸ Xe 体积比含量 Volume concentration of 128 Xe in sample from Fig. 1 different time

散,使得¹²⁸ Xe 浓度逐渐降低,直至示踪剂扩散均匀后,整个封闭空间中¹²⁸ Xe 浓度趋于稳定。本研究获 得的¹²⁸ Xe 扩散规律与气体扩散规律相符。

4.3 与常规同位素稀释定量法比较验证

为验证快速同位素稀释法定量分析的准确性,用常规同位素稀释法对该批数据重新处理,补充测量 了原始样品中¹²⁹Xe/¹²⁸Xe 与¹²⁹Xe/¹³²Xe 比值。根据示踪样品和混合样品中¹²⁹Xe/¹²⁸Xe 与¹²⁹Xe/¹³²Xe 比 值,以及提前标定好的稀释剂量和稀释剂中同位素比值,重新计算示踪样品中132 Xe 和128 Xe 含量。其 中,132 Xe 仅来源于空气,128 Xe 来源于空气和示踪剂。根据样品中132 Xe 含量和天然丰度比可计算出示踪 样品中来源于空气的¹²⁸ Xe 含量,进而可获得样品中来源于示踪剂的¹²⁸ Xe 含量。两种分析方法的定量 测量结果见表 2。在表 2 中, $R_{S129/132}$ 、 $R_{S129/128}$ 为示踪样品中同位素 129 Xe 与 132 Xe 比值, $R_{M129/132}$ 、 $R_{\text{MI29/128}}$ 为混合样品中同位素¹²⁹ Xe 与¹³² Xe 、¹²⁸ Xe 比值, ¹²⁸ N_{SX} 表示快速同位素稀释法定量分析结果, ¹²⁸N_{sx*}表示常规同位素稀释法定量分析结果。

由表 2 可知,针对不同样品,运用常规同位素稀释法和本法计算来源于示踪剂的¹²⁸ Xe 含量,相对偏 差<0.056%,在仪器的测量值波动范围之内,表明本方法与常规同位素稀释法的测量结果一致,说明本 定量测量方法准确可靠。

4.4 快速同位素稀释法不确定度评定

通过 Xe 同位素添加实验,对示踪样品中来源于示踪剂的128 Xe 的不确定度进行评估。若不考虑示 踪剂纯度等外部因素,可将电子版文后支持信息公式(S7)化简为溯源到已知浓度标准气体的定量公式

表 2 两种方法定量分析来源于示踪剂 ¹²⁸ Xe 同位	台素原子数
---	--------------

Γable 2 Atomicity of ¹²⁸Xe from tracer in sample by two analytical methods

样品批次 No.	$R_{\rm S129/132}$	$R_{\rm S129/128}$	$R_{\rm M129/132}$	$R_{ m M129/128}$	$^{128}N_{\rm SX} \\ (\times 10^{-10} \ {\rm mol})$	$^{128}N_{ m SX~*} \ (imes 10^{-10} \ { m mol})$	相对偏差 Relative deviation (%)
1	1.07	0.01	526.70	6.82	6.776	6.776	0.008
2	1.06	0.01	447.92	6.02	7.876	7.875	-0.012
3	1.06	0.01	383.71	4.74	10.48	10.47	-0.010
4	1.04	0.01	360.68	5.03	8.633	8.633	-0.005
5	1.03	0.01	353.43	4.91	8.679	8.680	0.011
6	1.02	0.01	317.15	4.67	8.783	9.785	0.025
7	1.02	0.01	313.06	4.69	8.546	8.547	0.005
8	1.01	0.01	297.07	4.60	8.658	8.662	0.056
9	1.02	0.01	303.60	4.59	8.634	8.634	0.002
10	1.00	0.01	305.22	4.54	8.651	8.657	0.068

(为方便书写,下列所有未标明比值的都为同位素¹²⁹Xe 与同位素¹³²Xe 的比值):

$${}^{128}N_{\rm s} = \frac{A}{R} \cdot \underset{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}{\rho} \cdot \underbrace{\frac{P_{\rm 9}}{T} \cdot V_{\rm 5} \cdot \frac{V_{\rm 9} + V_{\rm 3}}{V_{\rm 3}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}} \cdot \underbrace{\frac{R_{\rm D}}{R_{\rm D}} \cdot (R_{\rm MC} - R_{\rm T})}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}} \cdot \underbrace{\frac{(1 - \eta_{\rm D})^{m-i}}{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}} \cdot \underbrace{\frac{R_{\rm MS}}{R_{\rm MS129/128} - R_{\rm D}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}} - \underbrace{\frac{1}{R_{\rm D129/128}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}$$

$$= \frac{A}{R} \cdot \underset{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}{\rho} \cdot \underbrace{\frac{P_{\rm 9}}{R_{\rm MS129/128}} - \frac{1}{R_{\rm D129/128}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}} \cdot \underbrace{\frac{R_{\rm MS}}{R_{\rm MS129/128}} - \frac{1}{R_{\rm D129/128}}}_{\mathfrak{H} \stackrel{\sim}{=} \mathfrak{g}}$$

其中,R 为常数,A 为样品中同位素¹³² Xe 天然丰度,近似认为其为常数,两者的不确定度极小,因此评定时可不考虑。将公式(16)中其余部分划分为 6 项,虽然第三项和第五项都含有 $R_{D129/132}$,但测量时第三项中 $R_{D129/132}$ 通常远大于 $R_{MC129/132}$,且 $R_D/(R_D-R_{MC})$ 一般接近于 1,故第三项受 $R_{D129/132}$ 影响极小,因此可忽略第三项和第五项的相关性。依据不确定度传递规律,分别推导如下:

第一项是标准气体标称浓度的不确定度,本次使用的自配标准气体标准不确定度为 0.33%,则第一项的合成标准不确定度平方为 1.09×10⁻⁵。

第二项是温度、压强、体积的不确定度,压强探头标称的测量不确定度为 0.01%,因计量站设备只能检定测量结果好于 0.1%,取其不确定度为 0.1%;温度测量的不确定度一般为 0.1℃,则室温下相对不确定度为 0.03%;每个系统体积的测量不确定度取 0.12%,则第二项的合成标准不确定度平方为:

$$\left[\frac{u(R_2)}{R_2}\right]^2 = \frac{u^2(P_9)}{P_9^2} + \frac{u^2(T)}{T^2} + \frac{u^2(V_5)}{V_5^2} + \frac{V_9^2 \cdot u^2(V_3)}{V_3^2 \cdot (V_9 + V_3)^2} + \frac{u^2(V_9)}{(V_9 + V_3)^2} = 4.98 \times 10^{-6}$$
 (17)

第四项评估中,需先对公式(16)中未追溯到原始量的参数 η_{D} 的不确定度进行评估。 η_{D} 的测量方法为多次从稀释剂容器中取样,通过测量不同取样次数间压强变化情况并进行公式拟合获得,拟合参数的统计不确定度约为 0.4%,测量不确定度按 1% 计算。一般在测量中,样品取样次数不超过 2%,最多测量 5% 个样品即需要插入一个标准气体进行测量验证,在不确定度评估时,将 m-i 取最大值 5,则第四项的不确定度平方为:

$$\frac{u^2((1-\eta_{\rm D})^5)}{((1-\eta_{\rm D})^5)^2} = 25 \cdot \frac{u^2(\eta_{\rm D})}{(1-\eta_{\rm D})^2} = 7.65 \times 10^{-8}$$
 (18)

第三项、第五项、第六项评估都需要原始测量数据,抽取一次标准气体和上述第一批次样品的测量数据及统计不确定度见表 3。表 3 中 $R_{MS129/132}$ 的测量不确定度较大,是由于样品中 132 Xe 的含量较低所致。利用表 3 的数据,第三项不确定度的平方为 4. 17×10^{-5} ,第五项不确定度的平方为 1. 11×10^{-4} ,第六项不确定度的平方为 5. 40×10^{-3} 。利用相同方法求得来自于环境本底中 132 $N_{\rm s}$ 的不确定度为 12. 6%,将以上各项不确定度进行合成,得到来自于示踪剂的 128 Xe 的不确定度为 1. 6%,测量值为 6. 776×10^{-10} mol。

对比常规同位素稀释法中 10⁻⁷ mol 量级氪氙定量的相对标准不确定度为 1%^[23,24],本研究所建立的方法呈现明显的优越性。因此,本方法在样品含量大幅度降低的条件下,仍可保证较高的测量准确性。

5 结论

本研究依据物质的量守恒原理建立了一种快速同位素稀释定量方法,适用于有3种或更多稳定同位素的元素。此方法通过关联的运算,省去了常规同位素稀释定量方法中对待测样品中同位素丰度比的测量,在待测样品某一同位素的丰度并非天然丰度时,得到样品后只需进行一次测量,即待测样品与稀释剂混合后的同位素丰度比测量,即可完成目标同位素的定量分析。若添加示踪剂中含有多种同位素,此情况下待测样品中多

表 3 标准气体和样品的同位素稀释法原始测量值 Table 3 Original measurements of isotope dilution method for standard gas and sample

	· · · · · · · · · · · · · · · · · · ·	
同位素比值 Isotope ratio	平均值 Average	不确定度 Uncertainty (%)
$R_{\rm D129/132}$	911.0	1.60
$R_{ m D129/128}$	28.37	0.17
$R_{ m T129/132}$	0.9811	0.10
$R_{ m T129/128}$	13.82	0.10
$R_{ m MC129/132}$	19.60	0.60
$R_{ m MS129/132}$	526.70	7.30
$R_{ m MS129/128}$	6.82	0.80

种同位素的丰度也会受到影响,此时如果可预先测定示踪剂中的各同位素的丰度比,仍可通过一次测量,准确地得到待测样品中来源于天然本底和示踪剂中目标同位素的含量。对比了本方法与常规同位素稀释法的测量结果,两种方法得到的测量结果几乎完全一致,采用实验证明了本方法的可行性与准确性。本方法对于提高测量效率、降低测量难度、减小样品需求及消耗量等方面具有显著效果。

References

- 1 Jarvis K E, Gray A L, Houk R S. Handbook of Inductively Coupled Plasma Mass Spectrometry, Translated by YIN Ming, LI Bing. Beijing: Atomic Energy Press, 1997: 194
 - Jarvis K E, Gray A L, Houk R S. 电感耦合等离子体质谱手册. 尹 明, 李 冰译. 北京: 原子能出版社, **1997**: 194
- 2 HUANG Da-Feng, LUO Xiu-Quan, LI Xi-Bin, DENG Zhong-Guo. Technology and Application of Isotope Mass. Beijing: Chemical Industry Press, 2006: 311
 - 黄达峰, 罗修泉, 李喜斌, 邓中国. 同位素质谱技术与应用. 北京: 化学工业出版社, 2006: 311
- 3 ZHAO Mo-Tian, CAO Yong-Ming, CHEN Gang, JIANG Shan. Conspectus of Inorganic Mass. Beijing: Chemical Industry Press, 2006: 322
 - 赵墨田,曹永明,陈刚,姜山. 无机质谱概论. 北京: 化学工业出版社, 2006: 322
- 4 YANG Chao-Yong, ZHUANG Zhi-Sha, GU Sheng, CHEN Fa-Rong, WU Xi-Hong, WANG Xiao-Ru. Journal of Instrumental Analysis, 2001, 20(2): 87-92
 - 杨朝勇, 庄峙厦, 谷胜, 陈发荣, 吴熙鸿, 王小如. 分析测试学报, 2001, 20(2): 87-92
- 5 LIU Qing-Kai, XU Meng-Tian, MA Xian, LIU Tao, WANG Yun. Scientific and Technological Innovation, 2019, (10): 13-14
 - 刘庆凯,徐梦恬,马贤,刘涛,王筠. 科学技术创新,2019、(10):13-14
- 6 TANG Suo-Han, LI Jin, MA Jian-Xiong, ZHAO Xin-Miao, ZHU Xiang-Kun. Chinese J. Anal. Chem., 2018, 46(10): 1618–1627
 - 唐索寒,李津,马健雄,赵新苗,朱祥坤. 分析化学, 2018, 46(10): 1618-1627
- 7 CHEN Xue, WANG Jun, FENG Liu-Xing, YANG Xiao-Jing. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 31-36
 - 陈雪,王军,冯流星,杨晓进.质谱学报,2016,37(1):31-36
- 8 LU Ya-Li, SUN Ai-Hua, HE Fu-Chu, JIANG Ying. *Progress in Biochemistry and Biophysics*, **2013**, 40(12): 1201-1208 陆亚丽, 孙爱华, 贺福初, 姜 颖. 生物化学与生物物理进展, **2013**, 40(12): 1201-1208
- 9 HUO Zhong-Zhong, FENG Liu-Xing, LI Hong-Mei, XIONG Jin-Ping. Chinese J. Anal. Chem., 2019, 47 (12): 1931–1937
 - 霍中中, 冯流星, 李红梅, 熊金平. 分析化学, 2019, 47(12): 1931-1937
- 10 Sebastien G, Elodie D, Bruno D. J. Mass Spectrom., 2011, 46(3): 298-312
- Asai S, Hanzawa Y, Konda M, Suzuki D, Magara M, Kimura T, Ishihara R, Saito K, Yamada S, Hirota H. Talanta, 2018, 185; 98-105
- 12 Giusepponi D, Torquato P, Bartolini D, Piroddi M, Birringer M, Lorkowski S, Libetta C, Cruciani G, Moretti S, Saluti G,

- Galli F, Galarini R. Talanta, 2017, 170: 552-561
- 13 GUO Qing-Jun, YANG Wei-Dong, YU Ya. Bulletin of Mineralogy Petrology and Geochemistry, **2000**, 7(3): 193-196 郭庆军, 杨卫东, 余 娅. 矿物岩石地球化学通报, **2000**, 7(3): 193-196
- 14 QU Wen-Jun, DU An-Dao, ZHAO Dun-Min. *Chinese J. Anal. Chem.*, **2001**, 29(1): 19-22 屈文俊, 杜安道, 赵敦敏. 分析化学, **2001**, 29(1): 19-22
- 15 Bollard J, Connelly J N, Bizzarro M. Meteoritics Planetary Sci., 2015, 50(7): 1197-1216
- 16 Malinovsky D, Rodushkin I, Baxter D, Ohlander B. Anal. Chim. Acta, 2002, 463(1): 111-124
- 17 Junk S A, Pernicka E. Archaeometry, 2003, 45(2): 313-331
- 18 Tartese R, Anand M, Delhaye T. Am. Mineral., 2013, 98(8/9): 1477-1486
- 19 Farley K A, Hurowitz J A, Asimow P D, Jacobson N S, Cartwright J A. Geochim. Cosmochim. Acta, 2013, 110: 1-12
- 20 LIU Fang, ZHU Li-Hong, TAN De-Can, LIU Yu-Fei, KANG Jin-Ting, ZHU Jian-Ming, WANG Gui-Qin, ZHANG Zhao-Feng. Journal of Chinese Mass Spectrometry Society, **2016**, 37(4): 310-317 刘 芳, 祝丽红, 谭德灿, 刘峪菲, 康晋霆, 朱建明, 王桂琴, 张兆峰. 质谱学报, **2016**, 37(4): 310-317
- 21 LI Hai-Tao, WU Yan-You, ZHAO Li-Hua, ZHANG Kai-Yan, HANG Hong-Tao. *Carsologica Sinica*, **2016**, 35(6): 614-618 李海涛, 吴沿友, 赵丽华, 张开艳, 杭红涛. 中国岩溶, **2016**, 35(6): 614-618
- 22 WEI Guan-Yi, Goetz A, ZHANG Zi-Bin, LI Xue-Song, Gerken H. Journal of Chinese Mass Spectrometry Society, 2004, 25 (Suppl.): 11-12 韦冠一, Goetz A, 张子斌, 李雪松, Gerken H. 质谱学报, 2004, 25(Suppl.): 11-12
- 23 ZHU Feng-Rong, DONG Hong-Bo, ZHOU Guo-Qing, LI Zhi-Ming, WAN Ke-You, YU Jiang, LI Mei. *Journal of Chinese Mass Spectrometry Society*, **2004**, 25(Suppl.): 163-165 朱凤蓉,董宏波,周国庆,李志明,万可友,俞江,李梅. 质谱学报, **2004**, 25(Suppl.): 163-165
- 24 ZHANG Zi-Bin, Goetz A, WEI Guan-Yi, LI Xue-Song, Gerken H, CHANG Yong-Fu. *Journal of Chinese Mass Spectrometry Society*, **2004**, 25(Suppl.): 194-204 张子斌, Goetz A, 韦冠一, 李雪松, Gerken H, 常永福. 质谱学报, **2004**, 25(Suppl.): 194-204

An Efficient Isotopic Dilution Method and Its Application in Tracing Technology

FANG Sui, LI Zhi-Ming, XU Jiang, WANG Wei, ZHAI Li-Hua, DENG Hu, WEI Guan-Yi*

(Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract In conventional isotopic dilution method, when target isotope in a sample is influenced by the tracing material, it should be measured includes not only the isotope ratios of the mixture of dilution and sample, but also that of the original sample. In case that sample is insufficient, or measuring time is limited, the isotope dilute method meets its embarrassment. In this study, an efficient quantitative isotopic dilution method was provided, in which the measurement of the isotope ratios in the sample was unnecessary. This method had particularly advantage on reducing sample consumption, simplifying the measurement procedure and decreasing the influence of memory effect, which greatly improved the efficiency of the measurement. The six measurements showed that xenon standard gas was used to verify its applicability, which provided a bias of less than 1% to the nominal value and a relative standard deviation (RSD) of 0.4%. The measurement result was completely consistent with the value of conventional isotope dilution. In tracing experiment with ¹²⁸Xe, despite of the interference of natural xenon, ¹²⁸Xe of tracer was precisely determined. The diffusion curve which was drawn by ¹²⁸Xe, also accorded with the rule of gas diffusion in the closed space. This method was suitable only for elements that with three or more isotopes.

Keywords Isotope dilution; Quantification; Efficient; Tracer