# 飞行器的抗辐射屏蔽方法研究

查元梓 <sup>1</sup> 罗文芸 <sup>1</sup> 王朝壮 <sup>1</sup> 徐加强 <sup>2</sup> 王传珊 <sup>1</sup> (上海大学射线应用研究所 上海 201800) <sup>2</sup> (中国科学院上海应用物理研究所 上海 201800)

摘要 空间辐射环境是飞行器失效的主要原因之一,由于空间辐射环境的复杂性,以及飞行器在空间活动的 轨道和设计的寿命不同,飞行器需要的抗辐射屏蔽也不同。我们以卫星的地球同步轨道上的电子能谱,对卫星简化模型进行了抗辐射屏蔽的 Monte-Carlo 计算,并对计算结果进行了实验验证,在此基础上提出一种新的 抗辐射屏蔽方法。

关键词 电子束,飞行器,抗辐射屏蔽,蒙特卡罗模拟中图分类号 O571.33, V520.6, X34

空间飞行器处于宇宙射线、太阳质子暴发以及 围绕地球的电磁俘获带等辐射环境的包围中,这是 导致飞行器元器件失效乃至飞行器事故的主要原因。

对于地球轨道飞行器构成最大威胁的辐射带, 是位于赤道上空的内外范艾伦辐射带,主要由 10-100MeV 质子与 0.4-7MeV 电子组成,在地球同步 轨道上,卫星的辐射剂量主要由电子贡献。

电子本身较易于屏蔽,但电子与物质相互作用产生的轫致辐射不易屏蔽。轫致辐射通常又称为背景辐射,其辐射能量与靶材料的原子序数的平方和入射粒子的能量成正比,且加厚屏蔽材料不能使轫致辐射明显减弱<sup>[1]</sup>。在空间飞行器辐射屏蔽设计中,主要考虑降低背景辐射的水平,即降低轫致辐射的产额。

为保证空间飞行器的可靠性,必须进行抗辐射加固。在此领域中,我国已开展多年并取得大量成果,包括屏蔽材料和屏蔽方法的不断优化。美国空间电子中心发展了 Rad-pak<sup>TM</sup> 和 Rad-coat<sup>TM</sup> 管壳涂覆技术<sup>[2]</sup>,现已商业化应用。

本工作就屏蔽材料及其排列顺序,用蒙特卡罗 法进行计算研究和实验研究,以期在不增加飞行器 额外重量的情况下,通过调整其屏蔽材料的排列顺 序而增强其屏蔽效果。

#### 1 屏蔽材料

通常用于屏蔽电子的轻材料与重材料各有优缺

点,对于相同的面密度,重材料能更有效的阻止电子,轻材料则产生较少的轫致辐射。图 1 为地球静止轨道环境下等效厚度铝与铅吸收体的剂量-深度分布曲线<sup>[3]</sup>。鉴于两种类型材料的优缺点,往往将两种类型材料结合使用。

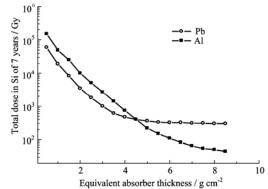



Fig.1 Depth-dose distribution in Al and Pb with electrons in the geosynchronous orbit

为使空间飞行器结构轻型化,常使用轻重材料结合的多层屏蔽结构形式<sup>[4]</sup>,抗辐射涂层即其技术途径之一。飞行器外壳材料为铝,在外壳上涂覆重金属涂层。从其剂量-深度分布曲线(图 2)可知,同样厚度的钨或铅屏蔽电子时,钨的能量沉积更多,屏蔽效果优于铅。而且,钨更易加工成纳米粉末。因此,铝外壳涂覆钨涂层,更为可取,这是本文屏蔽效果计算的主要材料。

国家自然科学基金(10305012)资助

第一作者: 查元梓, 女, 1983 年 11 月出生, 2000 年毕业于北京印刷学院, 现为上海大学环境与化学工程学院射线应用研究 所硕士研究生

收稿日期: 初稿 2006-01-19, 修回 2006-03-06

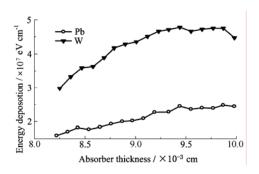



Fig.2 Depth-dose distribution in Pb and W with electrons of 1MeV

# 2 模拟计算与实验验证

基于 Monte-Carlo 方法的 PENELOPE 软件包(Penetration and energy loss of positrons and electrons) $^{[5]}$ ,可有效模拟电子与物质的相互作用。该程序计算结果包括穿过靶材料的剩余电子和二次粒子(包括电子、正电子和光子)的能谱,以及在靶材料中的能量和电荷沉积等参数。本文针对 1mm 铝合金(等效厚度为  $0.27g/cm^2$ )涂覆  $250\mu m$  钨粉聚氨酯涂层材料(等效厚度为  $0.16g/cm^2$ ),用 PENELOPE 模拟其对飞行器的屏蔽效果。

# 2.1 单能条件下屏蔽效果模拟

采用 1MeV 单能电子入射时,模拟粒子数为 10 万个,模拟了在铝壳+外涂层(Outside-coated Al)、铝壳+内涂层(Inside-coated Al)以及等效厚度铝壳(0.43g/cm²,厚 1.6mm)的屏蔽效果(见图 3)。1.6mm 纯铝壳的透射电子数为入射电子数的 3.5%;铝壳+外涂层的透射电子数为入射电子数的 0.62%;铝壳+内涂层的透射电子为零,可见涂层有明显的屏蔽效果,而铝壳+内涂层的屏蔽效果更佳。

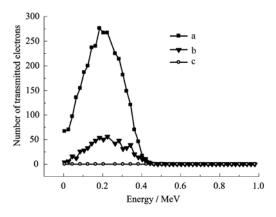
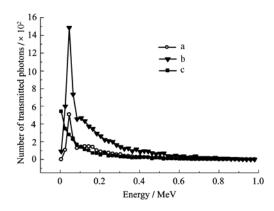
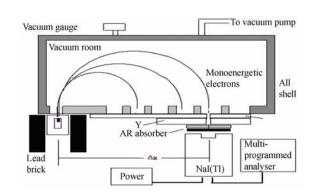



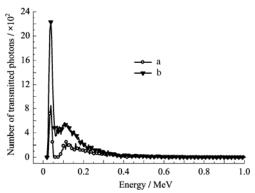

Fig.3 Calculated energy spectra of 1MeV electrons transmitted from different Al shieldings a: 0.43g/cm<sup>2</sup> Al, b: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> outside coatings (W + polyurethane), c: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> inside coatings (W + polyurethane)

图 4 轫致辐射透射光子的计算结果,铝壳+外涂层的透射光子较多,平均为 0.079 个光子/入射电子;铝壳+内涂层则为 0.026 个光子/入射电子,约为前者的 1/3;等效厚度铝层为 0.024 个光子/入射电子。

由单能光子的透射电子与透射光子模拟计算, 涂层铝比等效厚度铝屏蔽效果好,且不同涂层面位 置的屏蔽效果有显著差异,铝壳+内涂层的屏蔽效 果更好。此结果可由下述实验验证。




**Fig.4** Calculated energy spectra of the 1MeV electrons- induced photons transmitted from different Al shieldings a: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> inside coatings (W + polyurethane), b: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> outside coatings (W + polyurethane), c: 0.43g/cm<sup>2</sup> Al


#### 2.2 单能条件下的实验验证

验证实验在  $\beta$  磁谱仪上进行,装置图如图 5。 采用的  $\beta$  放射源为  $^{90}$ Sr- $^{90}$ Y 同位素源,其电子能谱是连续谱(<2.7MeV),可由均匀磁场获得单一能量电子。该  $\beta$  源的半衰期为 30a,本实验期间衰变引起的源强变化可忽略不计。对于铝壳+外涂层或铝壳+内涂层,1MeV 电子的透射光子谱如图 6。

上述模拟与实验均基于单一电子能量条件,下 文将以空间能谱为基础进行屏蔽效果模拟。



**Fig.5** Schematics of the magnetic β spectrometer for experimental study of the shielding effect



**Fig.6** Energy spectra of the 1MeV electrons-induced photons transmitted from different Al shieldings a: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> inside coatings (W + polyurethane), b: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> outside coatings (W + polyurethane)

## 2.3 能谱条件下屏蔽效果

模拟飞行器为地球同步轨道卫星,采用地球同步轨道中的 AE8 (美国宇航局提供的俘获带电子环境模型) 电子能谱 (见图 7)。该能谱的电子在上述铝壳+外涂层和铝壳+内涂层中产生光子的透射谱如图 8,模拟的粒子数为 100 万个。它们的屏蔽效果与采用单能电子模拟得到的结果趋势一致。

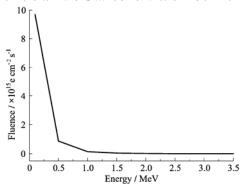
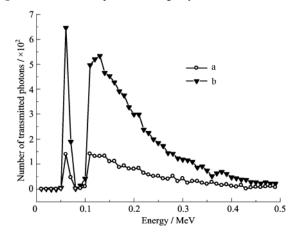




Fig.7 AE8 electron spectra of the geosynchronous orbit



**Fig.8** Calculated energy spectra of the AE8 electrons-induced photons transmitted from different Al shieldings a: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> inside coatings (W + polyurethane), b: 0.27 g/cm<sup>2</sup> Al with 0.16 g/cm<sup>2</sup> outside coatings (W + polyurethane)

# 3 结果与讨论

本文的模拟计算表明,空间飞行器的抗辐射屏 蔽涂层材料应选择钨,即钨纳米粉末与聚氨酯涂层 涂覆在铝层上。

计算表明: 0.27 g/cm² 厚的铝与 0.16 g/cm² 含钨涂层能有效的屏蔽大部分空间轨道的电子。涂层在铝壳外,综合屏蔽效果略好于等效厚度的铝层,对电子的屏蔽效果明显好于等效厚度的铝层,产生的轫致辐射水平相当;涂层在铝壳内,其综合屏蔽效果相当于 3 倍厚度的铝层<sup>[6]</sup> (图 3-图 4)。β 磁谱仪的验证(见图 6)显示了一个标准的轫致辐射谱,连续谱上的叠加峰峰位在 0.03MeV 左右。不同排序的屏蔽层的透射能谱的面积差别很大,即透过屏蔽层的能量沉积差别很大,可用电子在材料中的轫致辐射规律来解释。

用 AE8 地球同步轨道的电子能谱对上述屏蔽层计算,得到的透射光子能谱显示了与 1MeV 电子入射条件下类似的规律。由于有高能电子入射,叠加峰位置为 0.06MeV 左右。不同屏蔽材料排序的透射能谱面积比也差数倍。

在铝质飞行器壳体(或仪器盒)内表面涂覆重金属材料涂层,可更有效地抗辐射。铝层慢化射线时产生较少的轫致辐射;射线进入涂层时,高序原子的背散射系数大,而背散射的能量又被壳体吸收。传统上,抗辐射涂层涂于壳体外表面,但只要将涂层置于壳体内表面,就可在不增加任何成本的基础上,大大提高其抗辐射效果。欧洲宇航局报告[6]中曾提到飞行器屏蔽材料的合理排序能产生3倍的屏蔽效果,而不当的排序则甚至能抵消屏蔽效果。本文研究结果支持这一结论。

在飞行器屏蔽设计中,除考虑空间辐射电离效应外,其非电离的部分在一定条件下也很重要,有必要对空间辐射的非电离能损(NIEL)研究进行深入的探讨。

**致谢** 感谢同济大学陈玲燕教授等对本文实验的帮助。

## 参考文献

- 1 徐加强, 王传珊. 上海大学学报(自然科学版), 2003, **9**(3): 259-263
  - XU Jiaqiang, WANG Chuanshan. Journal of Shanghai University(Science edition), 2003, 9(3): 259-263
- 2 Millward D G, Strtobel D J. The effectiveness of RAD-PAK<sup>TM</sup> IC's for space radiation hardening. Proc. of 40th ECTC conference, Las Vega, May 1990

- 3 于庆奎, 唐民, 赵大鹏, 等. 第五届卫星抗辐射加固技术学术交流文集. 航天科技集团公司. 2004, 70-74 YU Qingkui, TANG Ming, ZHAO Dapeng, *et al.* Fifth session of satellite anti-radiation reinforcement technology academic exchange anthology. China Aerospace Science and Technology Corporation. 2004, 70-74
- 4 Santoro R T, Alsmiller R G, Barnes J M, *et al.* Martin Marietta Michoud Aerospace, New Orleans, LA.1986
- 5 罗文芸, 王传珊, 黄伟. 上海大学学报(自然科学版), 1996, **5**(3): 213-217 LUO Wenyun, WANG Chuanshan, Huangwei. Journal of Shanghai University(Science edition), 1996, **5**(3):
- 6 Clive S Dyer, Gordon R Hopkinson. QinetiQ Space Department and Sira Electro - optics Ltd, document reference DERA/KIS/SPACE/TR010690/1.0, June 2001

# Anti-radiation shielding method of spacecraft

213-217

ZHA Yuanzi<sup>1</sup> LUO Wenyun<sup>1</sup> WANG Chaozhuang<sup>1</sup> XU Jiaqiang<sup>2</sup> WANG Chuanshan<sup>1</sup>

(Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800)

(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800)

**ABSTRACT** The radiation environment of space accounts much for spacecrafts' invalidation. Anti-Radiation shielding methods depend on the environment of space radiation and spacecrafts' orbital altitudes as well as their life expectancy. Energy spectra of the geosynchronous orbit and Monte-Carlo simulation calculation are used in simulating simple satellite model's shielding effects. Our calculation results are supported by experiments. A new view on anti-radiation shield design is then presented.

**KEYWORDS** Electron beam, Spacecraft, Anti-Radiation shield, Monte-Carlo simulation **CLC** O571.33, V520.6, X34