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With the advent of Earth observation satellites, the remote
sensing (RS) dataset has experienced exponential growth, signifi-
cantly enhancing scientific research and applications. By early
2024, the global Earth observation constellation comprises 1,379
satellites, with projections indicating an increase to 5,500 by
2033. On a daily basis, these satellites produce more than 20 TB
of raw data, leading to an accumulation exceeding 500 PB [1].
The surge in data volume poses challenges in storage, analysis,
and management within the remote sensing domain. Foundation
models like ChatGPT, SAM, and CLIP [2], present novel approaches
that improve efficiency and drive innovation in remote sensing
data processing. Leveraging extensive training datasets, these
models demonstrate promise across a range of remote sensing
tasks [3-5].

Foundation models feature extensive parameters, ranging from
tens of millions to hundreds of billions. These models adopt large-
scale Transformer [6] networks in a self-supervised manner,
demonstrating proficiency in language comprehension, vision-
language interaction, and multi-modal interpretation. The most
popular foundation models for remote sensing are summarized
in Table S1 (online). The typical architecture of these models can
be standardized as follows: (1) Modal-specific encoding and tok-
enization; (2) alignment and fusion of multi-modal representa-
tions; (3) incorporation of additional Transformer layers to
facilitate cross-modal connectivity and integration; (4) implemen-
tation of task-specific decoders for pretraining or downstream
tasks (Fig. S1 online). FMs are generally pretrained in a self-
supervised manner using extensive datasets and subsequently
fine-tuned in a supervised manner on domain-specific datasets
for downstream tasks. While many approaches involve adapting
models from pretrained weights, their effectiveness is primarily
constrained to tasks focused on images. This limitation stems from
the absence of timely feedback based on prompts, indicating a defi-
ciency in context-aware learning capabilities. Hence, the swift rise
of knowledge encoding and human-in-the-loop schema has
demonstrated substantial potential in advancing intelligent inter-
pretation within remote sensing applications.
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In the realm of generalist remote sensing intelligence, founda-
tion models have the potential to provide valuable assistance in
environmental monitoring, offering crucial insights into shifts in
habitats, as well as contributing to urban development and plan-
ning efforts. Through cross-domain transfer learning and general-
ization, foundation models have instigated a paradigm shift
within remote sensing communities [7], garnering significant
interest in exploring the realm of comprehensive remote sensing
intelligence.

To date, a limited number of studies have explored the applica-
tion of FMs in RS-related fields like earth, climate, and environ-
mental science [8,9]. As shown in Fig. 1, our focus lies on the
utilization of foundation models in common remote sensing tasks
including scene classification, object detection, land-use classifica-
tion, change detection and video-related interpretation. Several
studies [10] have delved into these tasks, emphasizing the varied
applications of vision-language models. We delve deeper into the
challenges and future initiatives aimed at advancing comprehen-
sive remote sensing intelligence.

Specifically, we characterize comprehensive remote sensing
intelligence as a versatile foundation model capable of seamlessly
integrating multi-modal geospatial data to perform a wide range of
static and dynamic remote sensing tasks. This foundation model
contains enormous parameters, is trained on extensive datasets,
facilitates multi-modal collaboration, particularly in the realm of
vision-language tasks, enables iterative improvement through
human feedback, and has the potential to evolve into a self-
operating artificial intelligence (Al) agent.

Static remote sensing interpretation. Static interpretation of
remote sensing data involves extensive aerial and satellite imagery
that necessitates initial geometric preprocessing on the ground.
This process is essential for producing static 4D products like Dig-
ital Orthophoto Maps (DOM), Digital Elevation Models (DEM), Dig-
ital Surface Models (DSM), and Digital Line Graphs (DL),
culminating in static attribute interpretation. The interpretation
process adheres to a coarse-to-fine approach, encompassing key
tasks such as scene classification, object detection, land-use classi-
fication and change detection. Traditional approaches in interpre-
tation mandate the development of deep learning models with
limited parameters tailored to individual tasks, aiming to classify
geospatial features accurately. By employing foundation models
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Typical application for intelligent remote sensing interpretation
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Fig. 1. Overview of potentials and prospects for large-scale remote sensing foundation model.

with an extensive parameter count derived from masked pretrain-
ing, and employing cross-modal alignment to integrate the geo-
metric and attribute information of 4D products, it becomes
feasible to attain a ‘one model, multiple uses’ objective. This
approach helps streamline the network design complexity in
downstream tasks [4,5]. Furthermore, foundation models offer
cross-modal perception capabilities, effectively capturing the com-
plex semantic categories and spatial contextual relationships of
geospatial features through language models [4,8]. For example,
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leveraging large language model (LLM) instruction tuning can har-
monize diverse RS visual tasks into a Visual Question Answer
(VQA) format [4].

Dynamic remote sensing interpretation. Dynamic interpretation
in remote sensing has evolved with the introduction of portable
drones and numerous video satellites, enabling real-time monitor-
ing of specific targets through continuous video frames, a crucial
method in earth observation. Conventional deep learning methods
with a small number of parameters, such as YOLO [11], SSD [12],
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etc., necessitate specialized architectures to address challenges like
target occlusions, varying illumination conditions, and high-
dynamic scenes. The limited parameter capacity of these models
also restricts their generalization capabilities. In such contexts,
expansive foundation models, particularly those utilizing Trans-
former architectures, can exploit attention mechanisms and
multi-task learning strategies to adapt efficiently with minimal
labeled data. This approach enhances the model’s ability to capture
nuanced variations and intricate patterns within video frames,
consequently improving the generalization capacity and accuracy
in interpreting dynamic video data [5]. Unlike static scenario,
dynamic videos are more adept at capturing movement informa-
tion and behavioral patterns of targets, consequently enhancing
the efficacy of object detection and tracking.

In these context, large foundation models play a rule for intelli-
gent remote sensing interpretation in the following ways:

(1) Scene classification. Foundation models can be utilized to
automatically classify intricate and varied scenes into predeter-
mined categories, thereby improving the comprehension of exten-
sive geographical regions. By harnessing the extensive learning
abilities of these models, scene classification (Table S2 online)
can be accomplished with increased accuracy and efficiency, even
in demanding scenarios such as overlapping classes or ambiguous
landscapes. For instance, the straightforward adaptation of two
prominent vision-language models (VLM) CLIP [2] and Blip [13]
can surpass single- modal model in the few-shot RS image scene
classification task.

(2) Object Detection. Foundation models excel at accurately
identifying and locating specific objects within aerial and satellite
imagery. Certain foundation models, such as RingMo and SkySense,
develop and train task-specific decoders for object detection,
whereas others, like EarthGPT and GeoChat, perform these tasks
through VQA with instruction-tuned LLM decoders. With a wealth
of parameters at their disposal, these models are adept at handling
the challenges associated with detecting small or partially
obscured objects, leading to notable enhancements in object detec-
tion rates across diverse environments (Table S3 online)..

(3) Land-use classification. Foundation models could be utilized
to distinguish between various types of land use, including urban
areas, agricultural lands, forests, and water bodies, with enhanced
accuracy. By conducting extensive multi-modal analysis, these
models can interpret intricate patterns and variations in imagery,
resulting in more precise and dynamic land-use mapping
(Table S4 online). In remote sensing FMs, this task is typically
implemented as semantic segmentation.

(4) Change detection. Foundation models could be utilized to
track changes over time, identifying modifications (Table S5
online) in landscapes, urban development, or environmental
degradation. Their ability to process and analyze temporal data
allows for the detection of subtle changes that may go unnoticed
by conventional approaches, offering valuable insights for urban
planning, environmental monitoring, and disaster management.
Most RS foundation models approach the change detection task
by predicting change segmentation masks, while some utilize the
vision-language model framework for change detection captioning.

(5) Video object tracking. Foundation models play a crucial role
in tracking the movement of objects across a series of satellite or
drone video frames, enhancing both accuracy and speed. These
models effectively address the complexities of dynamic scenes,
including swift movements, occlusions, and changing lighting con-
ditions, making them well-suited for applications in surveillance,
wildlife monitoring, and traffic management.

(6) Geoscience applications. Foundation models have also revo-
lutionized various tasks within other geoscience disciplines. Their
robust generalization, scalability, and multi-modal capabilities
facilitate the precise capturing, simulation, and prediction of func-
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tions, interconnections, and changes in geospatial components
within the earth system from static and dynamic viewpoints. Typ-
ical applications include climate and weather forecasting, smart
architecture, geospatial localization, hydrology, etc.

Prior Al models used in remote sensing interpretation provided
benefits such as high object detection precision, effective process-
ing of extensive datasets, capability for multi-temporal analysis,
and resilience in diverse environmental conditions. Nevertheless,
these models encountered challenges related to language under-
standing, adaptability to unseen scenarios, capturing complex spa-
tial relationships, and integrating diverse data sources effectively.
Modern remote sensing foundation models utilize language
modality to harmonize the design and execution of various tasks,
fostering adaptability to unseen scenarios with an open-
vocabulary approach. Additionally, they embrace a cross-modal
paradigm to seamlessly integrate globally distributed multi-
source geospatial data and elucidate their interconnections from
the perspectives of time, space, and spectral views. The shift from
earlier Al models to expansive foundation models in remote sens-
ing interpretation signifies a substantial advancement in the capa-
bilities of comprehensive analysis and comprehension.
Nonetheless, the current utilization of foundation models in
remote sensing, particularly in dynamic environmental monitoring
and multi-modal data fusion, continues to encounter several
challenges.

(1) Extensible hardware and training dataset infrastructure. The
training of most foundation models heavily depends on NVIDIA
GPUs, the PyTorch framework, and non-standardized remote sens-
ing datasets, creating dependencies and constraints in the training
process. The significant reliance on particular hardware and soft-
ware may lead to the monopolization of the Al infrastructure mar-
ket by selecting manufacturers. Regarding data infrastructures, the
majority of current remote sensing deep learning datasets are tai-
lored for specific tasks, resulting in insufficient volume size and
storage formats for the requirements of remote sensing foundation
models. This underscores the need to establish infrastructure for
effectively converting the rapidly expanding volume of unpro-
cessed remote sensing data into a state ready for Al utilization,
especially for downstream applications [14].

(2) Domain knowledge integration gap. Current models primar-
ily rely on the visual features extracted from remote sensing ima-
gery and may struggle to provide accurate assessments of
terrestrial targets. For instance, differentiating a river that dries
up in autumn from bare land, roads, and other land features based
solely on image characteristics can be challenging. This under-
scores the challenge that current remote sensing image interpreta-
tion models encounter in distinguishing between closely related or
visually ambiguous land categories. These models often overlook
the seasonal variations in land features and do not fully leverage
available geographic information and expert physical knowledge,
resulting in challenges in accurately identifying the categories.

(3) Human-in-the-loop. Current remote sensing interpretation
models operate unidirectionally and disregard human feedback,
potentially causing discrepancies between interpretation out-
comes and user expectations. By neglecting human input, these
models face challenges in tailoring to specific requirements and
preferences, constraining their accuracy and adaptability in intri-
cate scenarios. The absence of iterative learning hinders the opti-
mization and improvement of foundation models for specific
interpretation tasks.

(4) Quality assessment. In addressing the intricate requirements
of ‘scene- target-pixel’ multi-level remote sensing image interpre-
tation tasks, current models exhibit a deficiency in dynamic quality
assessments and precise error localization. The reliability is com-
monly evaluated through manual selection of accuracy metrics
and their empirical combination. Alternative post-processing
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strategies statically rectify errors and enhance low-quality ele-
ments but do not dynamically expand the initial image interpreta-
tion samples or update model parameters. As a result, this
limitation undermines the reliability of the models’ predictive
outputs.

(5) On-demand fusion. Current models frequently focus on a
single image source or are customized for particular tasks, thereby
restricting their adaptability and overlooking the extensive possi-
bilities offered by multi-modal data. This oversight disregards the
intricate needs of downstream tasks, ultimately constraining the
models’ utility and their capacity for generalization. Hence, to
enhance adaptability and accuracy, it is crucial to employ flexible
fusion strategies for integrating diverse data modalities-such as
images, text, and sound—in alignment with task specifications.
This approach not only refines model performance but also
enhances its reliability in complex application settings.

These limitations present opportunities for progress and steer
future initiatives. Leveraging advanced Al algorithms and tech-
nologies, the utilization of large-scale foundation models in com-
prehensive remote sensing intelligence shows potential for
enhancing hardware infrastructure, enhancing specialized frame-
works, and refining application models. The key initiatives involve
constructing an extensible geospatial database and a resilient deep
learning framework, bridging the domain knowledge integration
gap, strengthening human-in-the-loop feedback systems, enhanc-
ing quality assessment procedures, and bolstering the models’ reli-
ability and adaptability across diverse contexts.

(1) Elevating database, framework and hardware infrastruc-
tures for geospatial-centric foundation models. The training of cur-
rent foundation models is restricted by the limited coverage of
categories and sensor diversity in image samples, impacting their
ability to generalize across extensive spatiotemporal domains.
Solutions entail the automatic identification and expansion of
new categories, auto-annotation of geospatial samples, and
enhancing sample precision. An actionable solution is to establish
an automatic or semi-automatic annotation workflow, similar to
SAM, to effectively generate diverse labels for extensive raw data.
Furthermore, data from diverse sources must be meticulously col-
lected, accurately matched, and systematically organized into an
Al-ready state that empowers scientists to access, collaborate on,
and analyze multi-source data as needed [15]. Moreover, creating
domain-specific deep learning frameworks that encompass the
unique ‘time-space-spectrum-angle’ attributes of remote sensing
could serve as a viable solution [3]. Additionally, the close collabo-
ration between the deep learning framework and computing hard-
ware warrants further exploration.

(2) Fine-tuning foundation models with geospatial domain
knowledge. Leveraging geospatial domain-specific knowledge dur-
ing foundation model training can greatly improve prediction
accuracy and relevance. Integrating expert insights and contextual
information regarding geographic features, seasonal variations,
and environmental factors assist models in gaining a deeper under-
standing of earth observation data. Practically, potential methods
include creating large-scale datasets with detailed expert knowl-
edge or using LLMs to fuse multi-modal representations. Besides,
integrating knowledge graphs through restructuring into linguistic
prompts or extracting cross-modality knowledge correlations is a
viable yet underexplored solution.

(3) Reinforcing human-in-the-loop feedback systems. Incorpo-
rating human feedback into the foundation model learning loop
facilitates ongoing refinement and adaptation. Expert review, cor-
rection, and annotation of model outputs contribute to perfor-
mance enhancement over time and establish user confidence in
automated interpretations. Human feedback can be utilized at
the data, feature, mixture and task levels to rectify database errors,
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facilitate feature extraction, guide multi-modal interactions, and
enhance task accuracy outputs, respectively (Fig. S1 online). A
prevalent approach for implementation involves utilizing rein-
forcement learning to modify the behavior of foundation models.

(4) Enhancing quality assessment procedures. Creating
advanced metrics and evaluation frameworks to precisely evaluate
the quality and reliability of model outputs is essential. Thorough
quality control guarantees that foundation model interpretations
adhere to stringent standards required for critical applications
such as environmental monitoring and disaster management. Pos-
sible solutions involve implementing mathematical uncertainty
quantification, developing a judgmental LLM, and establishing an
LLM agent-based automated assessment framework.

(5) Developing more transparent downstream models. Trans-
parency in Al models is essential for their acceptance and utility
insensitive remote sensing downstream tasks. Developing models
that provide interpretable predictions and decisions allow users
to comprehend the reasoning behind interpretations, enhancing
trust in the technology. This can be accomplished through methods
such as model visualization, feature attribution, and providing
clear explanations of model behavior.

The development of a large-scale foundation model for general-
ist remote sensing intelligence, incorporating extensible infras-
tructure, enhancing existing open-source models, and integrating
geospatial knowledge into the model, requires sustained endeav-
ors. Upon creating a model at the scale of hundreds of billions,
ongoing adaptation will be necessary to address evolving down-
stream needs. Presently, there is a deficiency in comprehensive
evaluation frameworks for foundation models. The existing stan-
dards for quality and performance assessment have limitations in
their relevance to remote sensing, underscoring the need for addi-
tional research and development to establish robust, scalable
solutions.

In conclusion, large-scale foundation models have the potential
to transform remote sensing by enhancing interpretation accuracy
across various applications. Nevertheless, challenges such as need-
ing extensible hardware and datasets, integrating geospatial
knowledge, ensuring robust human-in-the-loop feedback, and
developing comprehensive quality assessment frameworks must
be addressed. Continuous innovation and refinement are crucial
for unlocking the complete potential of foundation models to
address the dynamic and complex requirements of intelligent
remote sensing interpretation.
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