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Quantum entanglement, since proposed by Einstein, Podolsky
and Rosen (EPR) [1] and further explored by Schrödinger [2] in
1935, has always been the focus of quantum physics realm. The
EPR paradox revealed the conflict between quantum theory and
local realism. Almost 30 years later, in 1964, Bell first came up with
the prototype of a family of inequalities, which was later called Bell
inequality [3,4], to express certain limitation that every local clas-
sical hidden variable theory should follow up. Therefore, it could be
used to distinguish the quantum theory from the local hidden vari-
able theories. Experimental verifications on Bell inequality lasted
for 40 years, until the loophole-free experiments was performed
in 2015 [5].

The widely accepted interpretation of quantum mechanics is
the Copenhagen interpretation. However, one of the major prob-
lems with the interpretation is the unnatural collapsing of states
when a quantum state is measured. Due to this concern, Griffiths
[6] brought up a different interpretation, which can give the same
physical result as Copenhagen interpretation but without collaps-
ing of states, called the consistent histories theory. Under the
framework of consistent histories theory, Cotler and Wilczek [7]
defined a new concept quantum entangled histories, which are
entanglement in time, other than entanglement in space. Later,
they proposed a Bell test for entangled histories [8]. We should
note that some previous literature studied temporal entanglement
both theoretically [9–11] and experimentally [12]. They focused on
the paradox emerging from entanglement induced by measure-
ment and prediction by classical theory. However, the entangled
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history theory focuses on the intrinsic correlation in quantum
dynamics.

In 2016, the quantum entangled history was experimentally
verified through a temporal Greenberger-Horne-Zeilinger (GHZ)
test [13,14] for quantum entangled history state with 3 time nodes
[15]. The classical stochastic processes were introduced as the rep-
resentative of classical theories. A function Gwas defined to distin-
guish quantum and classical theory. It was proved that for
quantum theory, G could approach �1 while the lower bound of
G for classical theory is � 1

16. In the experiment, G was measured
of �0:656, which clearly showed that quantum entangled histories
existed.

This paper aims to broaden the scope of temporal GHZ paradox
from 3 time nodes to arbitrary nodes, and from dimension 2 (qubit)
to arbitrary even (qudit). For the 2 dimensional system, we discuss
a temporal GHZ-type test with arbitrary time nodes. We define a
witness and prove that the boundaries between classical and quan-
tum entangled histories expectations exist. We find exact bound-
ary formula for arbitrary time nodes m. Inspired by Ref. [16], we
construct the temporal GHZ-type test for high dimensions (qudit).
The boundaries between classical and quantum expectations are
also proved to be existed and calculated. We specifically analyze
the behavior of minimum when the dimension is 2 and 1. We find
that when the dimension and number of time nodes tend to infin-
ity, the minimum will approach �1. Therefore, the classical and
quantum predictions are indistinguishable.

The main mathematical formulation of entangled history theory
was introduced in Ref. [7], where the motivation of entangled his-
tory theory is discussed in detail. The Hilbert space of history states
is the vector space which we will focus on. It is defined as the ten-
sor product of several ordinary Hilbert spaces, each simply the Hil-
bert space of the system at a particular time ti. An issue worthy of
ess. All rights reserved.
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attention is that the time sequence is from later to former, i.e., the
history Hilbert space should be written as follows [6,7]

�H :¼ Htn �Htn�1 � � � � � Ht1 ; tn > tn�1 > � � � > t1; ð1Þ

in which the special notation � is used to represent tensor product
in time domain as in Ref. [8] and reserve the notation of � to rep-
resent tensor product in space domain.

In this paper, the Hilbert space of the history of a sequence of
discrete moments, each connected by a bridging operator, is con-
cerned. The bridging operator is denoted Tðtj; tiÞ for mapping the
Hilbert space Hti to Htj , and is determined using the Schrödinger’s
Equation. The history states are defined as

jWÞ ¼ Pin
tn � � � � � Pi1

t1
; ð2Þ

in which Pik
tk
is some projector in Htk . Each tk is called a time node.

Now consider a GHZ history state

jGHZÞ ¼ 1ffiffiffi
2

p ð½0� � ½0� � ½0� � ½1� � ½1� � ½1�Þ; ð3Þ

in which ½i� ¼ jiihij. An important characteristic of the measurement
of history states is that they must be constructed and measured
spontaneously. An example may be the measurement of the GHZ
history state shown in Ref. [17] that includes the protocol for
measuring history states. Using the formalism of Ref. [17], we
can find the expectation of a temporal observable, Q, in the
same way we calculate the expectation of a normal observable Q 0,
namely hwjQ 0jwi. The expectation of the temporal observable is

hi1i2 . . . injQ ji1i2 . . . ini, in which ½i1i2 . . . in� ¼ Pin
tn � � � � � Pi1

t1
. If a GHZ

state jGHZi ¼ 1ffiffi
2

p ðj000i � j111iÞ is constructed and measured in

the j000i; j001i . . . basis, probability amplitudes hijkjGHZi ¼
1ffiffi
2

p ðhij0ihjj0ihkj0i � hij1ihjj1ihkj1iÞ are obtained. In experiment, the

measurement needs auxiliary qubits or qudits to record the infor-
mation of the system.

The probability of some measurement outcome from a history
state is identical to the probability of measuring a normal state
and get the same results, namely, the probability of getting out-
comes ði; j; kÞ is also hijkjGHZi. Due to this property, whenever cal-
culation of the expectation for a history state is needed, we use the
inner product of bra and ket as usual.

The GHZ-type entanglement is one of the most well-studied
type of entanglement since it demonstrates distinctive results pre-
dicted by classical local theories and quantum theories [13,14].
Here, the current results and construction of several others are
summarized. These examples in space domain will provide signif-
icant support and a general framework to our discussion about the
GHZ-type tests in time domain. From now on, we omit any nota-
tion of tensor product in time.

The original GHZ state [13,14] is a three-partite two-dimen-
sional entangled state:

jGHZi ¼ 1ffiffiffi
2

p ðj000i � j111iÞ: ð4Þ

Witnesses denoted Q1 ¼ X1X2X3, Q2 ¼ X1Y2Y3, Q3 ¼ Y1X2Y3,
Q4 ¼ Y1Y2X3 are used, where Xi or Yi is the pauli matrix X in the
ith Hilbert space. We have

hX1X2X3i ¼ �1; hX1Y2Y3i ¼ 1; hY1X2Y3i ¼ 1; hY1Y2X3i ¼ 1:

ð5Þ
jGHZi is a common eigenvector of all four operators. An observ-

able G ¼ X1X2X3X1Y2Y3Y1X2Y3Y1Y2X3 is measured. Hence, Gqm ¼
hX1X2X3ihX1Y2Y3ihY1X2Y3ihY1Y2X3i ¼ �1 in quantum theory. As
jGHZi is a common eigenvector, Gqm ¼ hX1X2X3X1Y2Y3Y1X2Y3

Y1Y2X3i. If G is considered in classical local theory, the incommu-
tativity of the operators is lost, and thus Gc ¼ hQQii ¼ ðX1X2X3Y1

Y2Y3Þ2 ¼ 1 because each operator is treated like a random variable
with value �1. This is a distinctive difference. An important advan-
tage of GHZ-type entanglement is that the prediction of quantum
mechanics and classical stochastic theory is determined and sepa-
rated. Hence, it is easier for the experiments to detect GHZ-type
entanglement.

When the GHZ-type entanglement is extended to higher dimen-
sions, we aim to preserve the advantages of GHZ paradox: the
quantum prediction and the classical prediction are significantly
separated from each other and the witnesses are all products of
X, Y and Z, the generators of the Heisenberg group. The operators
X, Y and Z are defined as follows

X ¼
Xd�1

k¼1

jðkþ 1Þ mod dihkj;

Y ¼
Xd�1

k¼1

e2pik=djðk� 1Þ mod dihkj;

Z ¼
Xd�1

k¼1

e2pik=djkihkj:

ð6Þ

Previously, the genuine GHZ paradoxes are constructed for even
dimensions and arbitrary number of particles [16,18,19]. They con-
structed special graphs called GHZ graphs whose adjacency matrix
and vertex operators give rise to a GHZ-type paradox. This study
provides us with an ideal model of entangled histories.

We found no construction of an odd dimension GHZ paradox
has used the same definition as ours in previous literature. In Refs.
[16,20], the construction is only given for even dimension. A proof
that there is no GHZ paradox in the framework of odd dimension is
given in Section A of the Supplementary data (online). However, if
we use another definition of operators, the GHZ paradoxes in odd
dimension can be defined, as shown in Refs. [21–23]. However,
their definition needs special calculation for each pair of particle
number and dimension in order to control the phases of eigenval-
ues to reach a paradox. The construction for the GHZ paradoxes in
odd dimensions is state-dependent.

A complete construction of entanglement witnesses for GHZ
states in space has been summarized before. Here, we explore
GHZ-type entangled histories for arbitrary time nodes and dimen-
sions and construct the GHZ-type tests for entangled history states.
Similar to Ref. [15], we find that there are boundaries between
entangled histories and the classical histories.

Similarly as GHZ test in space, we can define an observable G to
distinguish quantum entangled histories and classical states. The
quantum prediction of G for entangled GHZ-type history state,
e.g. Eq. (3) is always �1. In classical theory, each time node in his-
tories is correlated in a non-local way, rather than locally related in
GHZ states in space. Hence, instead of taking hQQii for classical
mechanics, the observable

QhQii is taken to signify the reduced
reliability of Qi on each other. Note that

Q
Qi is still 1.

Hence, each possible combination of values of Qi – a timeline –
is taken to be aj ¼ ðQijÞ, in which Qij is the ith outcome of the com-
bination aj. Suppose the probability for aj is pj. Then the quantityQhQii can be expressed as

Etðn;dÞ ¼
Y
i

X
j

Q ijpj

 !
; ð7Þ

in which n is the number of witnesses and d is the dimension of the
Hilbert space. Now, the problem left is to find the boundary for
Etðn;dÞ. Also, we denote the number of time nodes m. In general,
n ¼ mþ 1. Hence, n grows when m increases.
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In Ref. [15], the minimum of Etð4;2Þ was calculated and proved.
This corresponded to a qubit system with 3 time nodes. In the
paper, they proved that Etð4;2Þ has a minimum of � 1

16. However,
the method in Ref. [15] cannot easily extend to arbitrary time
nodes m P 3.

Here we consider an entangled GHZ-type history state with
number of time nodes m P 3. It is easily found that here the num-
ber of witnesses n ¼ mþ 1. In this formalism, there would be 2n

different history timelines with outcome 1 or �1 for the n mea-
surements, or witnesses. One very crucial issue is that if we multi-
ply all the outcomes of a timeline, the result should be 1. In the
mathematical form, it isY
i

Q ij ¼ 1: ð8Þ

Because changing the last outcome from 1 to �1 or �1 to 1
changes the sign of the product, it can be concluded that there
are 2n�1 possible outcomes.

Suppose outcome j has a probability pj assigned to it. Then the
classical expectation in time domain, can be expressed as

Et ¼
Yn
i¼1

X2n�1

j¼1

Qijpj

 !
: ð9Þ

This is a polynomial for pj with the constraint that
P

jpj ¼ 1.
We have to find the minimum for Et to confirm that it is indeed

separated from quantum outcomes. In fact, the ultimate result is

Etðn;dÞ 2 � 1� 2
n

� �n

;1
� �

: ð10Þ

The detailed calculation can be found in Section B of the Supple-
mentary data (online).

The importance of the minimum lies in two aspects. First, sur-
prisingly, the minimum is not reached in a maximally mixed time-
line, in which each of the timeline has the same probability.
Furthermore, the combination which generates the minimum is
unsymmetrical. Second, as shown in Fig. 1, the lower bound is
not �1 when n ! þ1. In fact, limn!þ1Etðn;2Þmin ¼ �e�2, which is
larger than�1. Hence, a gap is observed between the quantum pre-
diction and classical prediction. For n ¼ 4; d ¼ 2, the GHZ-type test
for entangled histories was performed with single photon experi-
ment [15]. The quantum and classical predictions gap we proved
Fig. 1. (Color online) The boundaries Etðn;2Þ (Etðn;1Þ) between GHZ-type
entangled histories and classical histories for Hilbert space dimension 2 ð1Þ and
witness number n. Etðn;1Þ will approach �1 when n approaches 1.
here makes the GHZ-type entangled histories tests for arbitrary
time nodes possible in experiment.

The GHZ-type test for entangled histories may also be extended
to the system dimensions larger than 2. In higher dimensions, by
the construction of witnesses, n ¼ mþ 1. Qij takes the positive
powers of e ¼ exp ð2pi=dÞ. Et should be real while each sum in j
may not be real. This generates a substantial problem for calculat-
ing Et for d 6 4 since there is no clear and feasible way to calculate
the argument of Et . Furthermore, since ek is discrete on the unit cir-
cle, we cannot use analytic methods if d –1. These are the main
difficulties in calculation.

However, the minimum of Etðn;1Þ can be calculated. Since the
phase could be set as continuous when n ! 1, the optimization is
possible. The main idea of calculation is to find the deviation of the
phase between entries of the timelines and the ultimate expecta-
tions of the witnesses. The deviations conform to some restraints,
and as shown in Section C of the Supplementary data (online), we
find out that under the restraint the minimum is �ðcosp=nÞn. Also,
the construction of the situation which generates the minimum
requires that n can divide d. Hence the minimum is reached for
infinite times for fixed n when we increase d. There will be a fluc-
tuating pattern, while the deviation gradually decreases when d is
increased. Fig. 1 shows the minimum of Etðn;1Þ with respect to
the number of witnesses n. It is found that, the boundaries for d
approaching to 1 is much lower than the boundaries of d ¼ 2 for
every n. Besides, we can see that when n ! 1, the minimum of
Etðn;1Þ becomes �1. In other words, the quantum and classical
predictions are mixed under this condition.

Finally, we give a brief summary and prospect. We analyzed the
GHZ-type entangled histories for arbitrary time nodes and dimen-
sions. In particular, the case of d ¼ 2 and d ¼ 1, are explored. We
introduced classical correlations in time which give rise to an
observable called Etðn; dÞ. We prove respectively that the minimum
of Et for d ¼ 2 and d ¼ 1 are � 1� 2

n

� �n and � cos pn
� �n. They are both

larger than the quantum prediction �1 for finite number of time
nodes m ¼ n� 1.

Moreover, there is an interesting phenomenon. Usually if we
increase the dimension of Hilbert space d to infinity, the quantum
system would tend to behave in a classical way. However, in GHZ-
type tests for entangled histories, even if d ¼ 1, there is still a huge
gap between classical and quantum predictions for finitem. Only if
we increase both d and m (with n) to infinity, which means both
system dimensions and time are continuous, the predictions of
both quantum and classical theories are indistinguishable. Though
there is no dissipating channel being introduced, the mixture of
quantum and classical predictions is simultaneous.

This phenomenon means that when d is infinite, though the
quantum system is similar to a complex classical system, there
are still fundamental differences between quantum and classical
correlation. For small n, if we observed a measurement outcome
lower than the bound given, we can conclude device-indepen-
dently that there is indeed quantum entanglement, even in time.
We have not proved the minimum of Etðn; dÞ for all combinations
of n and d. Further calculation will help us understand how the
dimension of the system and the number of time nodes change
the boundaries between quantum entangled and classical histo-
ries. Besides, it may reveal the deep quantum correlation patterns
between space and time.

In order to experimentally test the theory of the present work,
beside the single photon experiments [13], we may use the trapped
ions [24], or the optically trapped nano-particles [25]. This work
may stimulate further studies. For example, in future we may
investigate the entangled histories for living object [26], experi-
mentally testing the genuine entangled histories without sharing
references [27], etc.
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