文章编号:1000-0690(2003)04-0434-07

中国主要流域盆地风化剥蚀率的控制因素

李晶莹1,2、张 经1,5

(1.中国海洋大学化学化工学院,山东 青岛 266003; 2.青岛科技大学材料与环境科学学院,山东 青岛 266042; 3.华东师范大学河口海岸动力沉积和动力地貌综合国家重点实验室,上海 200062)

摘要:利用中国 40 余条主要河流及其支流的沉积物和溶解质载荷分别去表征流域盆地的物理剥蚀率和化学风化率。研究发现,中国流域盆地的总剥蚀率明显高于世界平均值,且具有南北低中间高的地理分布特点,黄河中游的皇甫川机械和总剥蚀率是世界上已知的最高值。根据流域盆地的机械剥蚀率、化学风化率和总剥蚀率及其影响因子之间的相关分析,得出中国流域盆地中的机械剥蚀率在总剥蚀率中占主导地位,机械剥蚀率和总剥蚀率主要由流域的干旱指数和相对高差来控制,不同流域之间总剥蚀率 72%的差异是由于这两个参数所造成的。而化学风化率在总剥蚀率中总是处于次要地位,它主要受到流域年均降水量和气温的影响(39%),且不受机械剥蚀率的控制。流域盆地自身属性、径流量、最高海拔和森林覆盖率对流域岩石的风化剥蚀率影响不大。构造活动提高了流域的机械剥蚀率和化学风化率,且对机械剥蚀率的影响更强烈。与世界流域盆地相比,中国流域盆地受到流域干旱指数的影响更为显著。

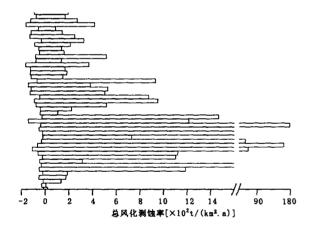
关键词:中国流域盆地;机械剥蚀率;化学风化率;控制因素;气候;地貌;植被;构造活动中图分类号:P343. 文献标识码:A

河流是陆地岩石风化产物到达海洋的主要涂 径之一。岩石和土壤的机械破碎(物理剥蚀)产生 的碎屑颗粒物和岩石、土壤风化淋滤产生的溶解质 分别以沉积物和溶解离子的形式经由河流输入海 洋,每年河流输送入海洋的沉积物和溶解质载荷分 别为 15 Gt 和 5 Gt^[1]。因此, 人们通常用河流水化 学成分(溶解质)去揭示流域盆地地表岩石化学风化 的过程和性质,用河流沉积物载荷去表征流域盆地 的机械剥蚀率。当然,前提条件是流域盆地风化剥 蚀产物量与河流物质输送量相等。对于河流的溶解 质而言,除化学风化产物可能还有大气输入的贡献, 但大区域内大气输送对河水常量组分的整体影响甚 微,而河流沉积物有则可能淤积河道、湖泊或由于人 为筑坝存于水库、灌区中。中国河流每年约有34% 的泥沙(12 亿 t)淤积,尤其是黄河由于泥沙淤积(每 年有7亿 t 淤积)已成闻名世界的地上河^[2]。

为了尽量减少此种干扰,选取了中国从北到南 所有主要入海河流松花江-嫩江、辽河、海滦河、黄 河、淮河、长江、珠江等和它们上游的重要支流(泥沙淤积主要发生在河流的中下游)共计 40 余条,支流的选择依据是流域面积大于 1×10⁵ km² 或输沙量大于 1×10⁷ t。本文主要根据河流水化学和沉积物资料收集和估算了流域的机械剥蚀率和化学风化率,并整理了流域各种环境影响因子的量化指标^[3~6],取它们近些年来的多年平均值,其中的少数河流数据来自作者的实测结果,相关资料之间进行了统计校正。

目前,对中国主要河流溶解质和沉积物输送量及其化学组成的研究工作颇多,但从流域盆地岩石风化剥蚀角度去研究的只有为数不多的工作,且多数研究集中在河流的沉积物输送量而从溶解离子角度研究化学风化率(淋溶模数)的工作甚少。近年来,陈静生等对海南岛、台湾岛的风化剥蚀作用进行了对比研究^[7,8], Zhang 等探讨了长江和黄河的河流水化学、化学风化作用及其影响因素^[9,10]。总之研究区域集中在少数大型流域,对中国所有流

收稿日期:2002-05-25;修订日期:2002-09-25


基金项目:国家重点基础研究发展规划项目"东黄海生态动力学与生物资源可持续利用(G1999043705)"、华东师范大学河口海岸动力 沉积和动力地貌国家重点实验室资助项目(9907)。

作者简介: 李晶莹(1974 -), 女, 河南新野人, 博士研究生, 海洋化学专业。 E-mail; lijy099@mail. ouqd. edu. cn

域风化剥蚀率及其控制因素的总结尚未见报道。且在以往的研究中,几乎没有研究关注植被和干旱指数(流域陆面蒸发量与降雨量的比值)对流域风化剥蚀率的影响。本文将较全面系统地考虑流域盆地风化剥蚀率的影响因子如气候、地貌、植被等并用量化指数来表示,从而确定控制变量影响的相对程度大小,探讨中国流域风化剥蚀率的区域性变化规律。并与世界流域风化剥蚀率研究的最新成果进行对比,为中国流域盆地物质地球化学循环提供科学依据。

1 中国流域盆地风化剥蚀率的特点

中国流域盆地化学风化率(chemical weathering rate, 简写 CWR)的变化范围不大,从 16~166 t/(km²·a),与世界主要流域盆地化学风化率平均值 36 t/(km²·a)^[11]相比,中国黄河流域以南盆地化学风化率普遍接近或高于此值,而海河以北的大多数流域(除鸭绿江外)化学风化率低于此值,总体上中国流域盆地化学风化率明显具有北方低南方高的分布特点(图 1)。

(自下到上依次为:松花江、嫩江、图们江、鸭绿江、辽河、大凌河、滦河、海河、湟水、桃河、祖厉河、窟野河、无定河、汾河、北洛河、渭河、皇甫川、伊洛河、黄河、淮河、雅砻江、金沙江、嘉陵江、赤水河、沱江、岷江、乌江、汉江、湘江、资水、沅江、澧水、赣江、长江、钱塘江、闽江、九龙江、韩江、西江、北江、东江、红水河、南盘江、柳江、珠江;图中化学风化率的大小应为其绝对值)

图 1 中国主要流域盆地的机械剥蚀率 和化学风化率的比较

Fig. 1 Histograms comparing chemical weathering and mechanical denudation rates for major Chinese watersheds 中国只有极少数流域(松花江、嫩江、图们江、淮河、赣江、北江、东江)的机械剥蚀率 (mechanical denudation rate, 简写 MDR) 低于世界机械剥蚀率 平均值 $150 \text{ t/}(\text{km}^2 \cdot \text{a})^{[11]}$, 而且中国流域盆地的机械剥蚀率变化范围非常大, 从 $7 \sim 1.78 \times 10^4 \text{ t/}(\text{km}^2 \cdot \text{a})$, 最大差值达到 $4 \land \text{2}$ 个数量级, 在地理分布上具有南北低中部高的特点。尤其是流经黄土高原的中部流域的机械剥蚀率异常的高, 大凌河、滦河和黄河及其支流(汾河除外)的机械剥蚀率均大于 $0.1 \times 10^4 \text{ t/}(\text{km}^2 \cdot \text{a})$, 黄河支流窟野河、皇甫川的机械剥蚀率甚至超过了 $1.6 \times 10^4 \text{ t/}(\text{km}^2 \cdot \text{a})$, 是迄今世界已知最高值。

一般而言,流域盆地的机械剥蚀率总是大于化学风化率(图1,唯嫩江流域除外),总剥蚀率(total denudation rate,简写 TDR)主要由机械剥蚀率来控制(两者的相关系数达到0.999),而且化学风化率贡献给总剥蚀率的比例随着总剥蚀率的增大而减小了(相关系数0.94)。如渭河和钱塘江流域、它们的化学风化率基本相同,但渭河的机械剥蚀率远远大于钱塘江,钱塘江流域的化学风化率贡献率达到24.4%,而渭河流域化学风化率对总剥蚀率的贡献比仅1.3%。

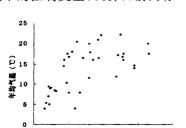
中国流域盆地的机械剥蚀率与化学风化率比值从 1~450, 其中图们江、辽河、大凌河、海滦河、黄河流域、长江支流金沙江、雅砻江、汉江的比值均大于世界平均比值 4.7^[11], 而南方河流尤其九龙江、闽江、钱塘江及珠江各支流, 两者比值在 1~3内。值得注意的是, 对于机械剥蚀率特别大的黄河各支流, 它们的化学风化率并不高, 相反明显低于南方流域盆地, 对中国流域盆地机械剥蚀率与化学风化率的相关分析发现, 两者的相关系数仅为 0.16, 可见流域化学风化率基本不受机械剥蚀率的影响。

2 中国流域盆地风化剥蚀率的控制 因素

河流载荷主要来自岩石、土壤的化学风化和机械剥蚀作用,主要受到岩石、土壤性质的控制,对于中国主要流域盆地而言,不同流域的岩石、土壤组成十分复杂,而且不同岩石的抗蚀性存在巨大的差异,譬如碳酸盐的化学风化速率为花岗岩的 12 倍,很难对其影响状况进行对比分析,故不在本文讨论之列。在大尺度上,本文仅针对各种自然环境因素的影响,同时讨论时尽量避开岩石性质的干扰。

流域的环境因子主要包括河流自身的属性、流域的环境因素如气候、植被、地貌等。本文首先对这些因子进行量化,通过具体的数据来反映因子的相对大小与强弱(表 1)。如气候因子用流域多年平均径流量、年均气温、年均降雨量和干旱指数来表示,植被状况用流域内森林的覆盖率来反映,而地貌因素包括流域发源地的最高海拔和流域的相对高差(河流落差与河流长度的比值)。各流域的因子量化数据主要来自多年来河流的相关水文地质资料和朱道清所著"中国水系大辞典"[5]。

表 1 流域风化剥蚀率影响因子的量化指标


Table 1 The quantitative controlling parameters of the weathering and denudation rates

参数组	影响因子	简写	单位
属性	河流长度	L	km
	流域面积	Α	km^2
	年均降水量	P	mm
气候	年均气温	T	\boldsymbol{c}
	干旱指数	R	-
	年均径流量	Q	10^{8} m^{3}
地貌	最高海拔	H	m
	相对高差(落差/河长)	S	‰
植被	森林覆盖率	V	%

根据对中国 40 余条河流风化剥蚀率和它们的 影响因子量化指标的相关分析,得到了各种因子与流域风化剥蚀率 log 值之间的相关系数表(表 2)。从表 2 中可发现,流域的长度和面积对风化剥蚀率几乎没有什么影响。气候因素中干旱指数与流域机械剥蚀率的相关系数最大,对流域的总剥蚀作用影响最大,而年均气温和降水量对化学风化率的影响最明显。地貌无疑也对流域的风化剥蚀量有一定作用,尤其是流域的相对高差对机械剥蚀率的影响较为显著,而海拔的影响则不明显。整体而言,植被对流域的保护作用表现不明显。

2.1 化学风化率

地表化学风化速率的控制变量机制,目前尚存

50 100 150 化学风化率[t/(km², s)]

图 2 中国流域盆地化学风化率与气候之间的关系

Fig. 2 Plot of the climatic factors versus chemical weathering rates in the Chinese watersheds

表 2 中国主要流域风化剥蚀率及 影响因子的相关系数表

Table 2 The pearsonian correlation matrix for weathering and denudation rates versus morphometric, hydrologic,

climatic	and	vegetable	variables

影响因子	$\log MDR$	LogCWR	log TDR
河流长度	-0.11	-0.07	-0.13
流域面积	-0.13	-0.04	-0.14
年均径流量	-0.26 * *	0.30**	-0.25**
年均降水量	-0.50 * *	0.61 *	-0.50**
年均气温	-0.20	0.67*	-0.19
最高海拔	0.24	0.14	0.21
河流相对高差	0.61*	0.14	0.61*
干早指数	0.77*	-0.15	0.81*
森林複盖率	-0.32**	0.24	-0.28

注:*显著性水平 p< 0.001, * * 显著性水平 p< 0.1。

在较多的争议。一些学者认为化学风化作用主要受岩性和地形变化控制,而受气候影响的程度很小^[12],而另一些学者认为气候中的温度和降雨比地形对化学风化速率的影响更强烈,并利用实验室研究表明硅酸盐矿物的溶解速率与温度呈强烈正相关即温度高则溶解速度快^[13,14]。

就中国主要流域盆地而言,气候对流域的化学风化率影响最为明显,尤其是年均气温和降水量与流域化学风化率的相关性最好(图 2),径流量次之。以黄河两条支流渭河和伊洛河为例,两流域的相对高差和干旱指数差别不大,年均气温和降水量分别相差约 29%和 24%,它们的化学风化率相差高达 64%。而地貌因子海拔和相对高差与化学型电高大系较差。这种降水量和气温之间的相关系较差。这种降水量和气温控制作用导致中国南方流域盆地的化学风化率与气温、降水量之间的多元回归分析,得到了它们之即的相关系数为 0.62(显著性水平 p<0.001),即中国流域盆地化学风化率 39%的差异是由流域的气温和降水量来控制的,而地势的影响程度仅占 24%。

植被对化学风化作用的影响复杂,一方面,植物根部产生的酸增大了水-岩接触时间,加剧了化学风化作用,而另一方面,植被覆盖在源岩上形成保护层,又减少了岩石暴露面积,阻止了风化作用向深部发展的进程。从漫长地质时期看,植被表现出促进风化进程的趋势。在小尺度范围,这种促进作用表现得尤为突出。如在夏威夷,发现植被覆盖地区岩石的化学风化作用的加速度是岩石裸露区域的 10~100 倍^[15]。整体而言,中国流域盆地植被系统对化学风化率有促进的趋势(相关系数0.24),但影响程度不高。

化学风化作用是有选择性的,如果转移风化产物的搬运过程比风化产物生成的过程更快,称为"搬运限制型",盆地发育薄层土壤;相反,如果潜在的机械剥蚀比化学风化作用更快,称为"风化限制型",化学风化作用具有很强的选择性,活泼的矿物元素贡献给溶解载荷而其它矿物元素主要以机械剥蚀形式被搬运,一般发育厚层土壤^[16]。因此,化学风化率也受到机械剥蚀、化学风化作用之间平衡的控制。在中国,除嫩江外,其它所有流域的机械剥蚀率均超过了化学风化率,使中国流域盆地的化学风化具有较强的选择性,属于"风化限制型",故不受机械剥蚀作用的控制。

近年来,新生代构造抬升提高了地表化学风化的研究也开始得到人们的普遍认同和关注。最典型的证据是,源于喜马拉雅山地和青藏高原地区的

8条大河,虽然流域面积仅占全球的 4.2%,但它们所提供的溶质载荷却占到全球河流入海通量的 25%^[17]。另一个事例是中国海南岛和台湾岛,两者面积接近分别处于亚热带、热带季风气候区,台湾岛河流的化学风化率是海南岛的 3 倍以上^[7],台湾岛流域化学风化率均值达到 523.4 t/(km²·a),远远高于海南岛,被认为与海南岛处于稳定地台发展阶段和台湾岛近期的抬升运动有密切关系^[8],当然并不排除人为活动(如台湾岛土地利用程度较高)亦增大了机械剥蚀率。笔者认为,构造运动对于中国地表岩石化学风化的作用应小于温度和降水量的影响,表现在中国流域盆地的相对高差和海拔与化学风化率的关联性较差,而且机械剥蚀率异常高的黄河流域的离子径流模数并不高。

2.2 机械剥蚀率

全球范围,构造运动是陆地机械剥蚀率的主控作用。造山运动产生大量陆源碎屑,加之形成陡峭起伏的地形使大量岩石、土壤剥蚀并输送到河流中。中国一个机械剥蚀率异常高的区域台湾岛,全岛平均机械剥蚀率达到了9100 t/(km²·a),仅次于黄河流域,被认为主要是中央山脉近年来快速抬升的结果^[7]。通过对中国流域盆地机械剥蚀率与影响因子之间相关分析发现,机械剥蚀率与流域的相对高差和干旱指数的相关性最好,相关系数分别为0.61、0.77(图3,显著性水平 p<0.001),即干旱指数和相对高差是流域机械剥蚀率的主控因素。

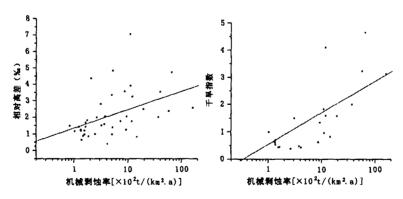


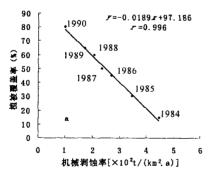
图 3 中国流域盆地机械剥蚀率与干旱指数和相对高差之间的关系

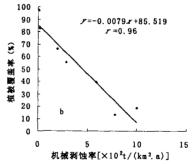
Fig. 3 Plot of relationship between mechanical denudation rates and aridity indexes and relief ratios

黄河流域各支流的相对高差是所有流域中最高的,相对高差最大的皇甫川流域的机械剥蚀率也最大。以前的文献中,很少有研究关注气候因素中的干旱指数,本文研究发现干旱指数对机械剥蚀率的影响最大甚至超过了相对高差。干旱的气候常

常意味着低降雨量和脆弱的生态系统,比如疏松的 土壤结构和稀疏的植被,造成干旱的气候区比湿润 区对机械剥蚀作用更敏感。

以黄河支流北洛河和洮河为例,两者的年均降 水量、气温、相对高差相差不大,前者的干旱指数是 后者的 2.08 倍, 而前者的机械剥蚀率竟是后者的 3.49 倍之多。同样地, 黄河支流窟野河和无定河, 其它因子十分接近, 前者的相对高差比后者高约 9%, 而窟野河的机械剥蚀率为无定河的 1 倍之多。气候因子中降水量、气温对机械剥蚀率的影响不大, 地貌参数中相对高差对机械剥蚀率的控制作用显著, 而海拔的影响不明显。这与世界流域盆地机械剥蚀率主要受到构造运动和地势影响的结论是一致的^[12]。


植被覆盖在岩层和土壤上,固定了土壤,降低 了机械剥蚀作用的发生。从大尺度而言,对中国所 有流域的植被覆盖率与机械剥蚀率的关系研究发 现,两者的相关系数为-0.32(显著性水平p< 0.1),即植被可以较为有效地减少流域的机械剥蚀 作用。在小范围内,这种关系表现得更加明显。以 韩江上游的乌坡河为例,从1984~1990年的7年 间,流域的植被覆盖率从15%增大到80%,机械剥 蚀率下降了77.7%(图 4a)。再以黄土高原流域为 例,从甘谷驿、刘家河、交口河一张村驿、交口河、板 桥、交口河-刘家河、张村驿几个区间植被的覆盖 率从13%增加到了97%,流域的机械剥蚀率则减 少了 98%(图 4b),从以上两例看到,植被覆盖率增 加1%,则机械剥蚀率大约减少1%左右。由此可 见,增大流域的植被覆盖率对减小流域岩石的机械 剥蚀率具有十分明显的效果。


2.3 总剥蚀率

构造运动不仅提高机械剥蚀率,也加快了化学 风化作用的进程。中国剥蚀率最高的两个区域黄 河流域和台湾岛都是构造活动活跃的地区,可以 说,构造活动是流域剥蚀率最重要的控制因素。相 对于机械剥蚀作用,构造活动对于流域化学风化作 用的影响要小的多,化学风化作用受到流域气候因 素(降水量和气温)的影响作用更强一些。

中国流域盆地的总剥蚀率主要是由机械剥蚀率来控制的,化学风化率几乎在所有的流域盆地中都处于次要地位。和机械剥蚀率一样,总剥蚀率与流域的干旱系数和相对高差密切相关,相对高差比海拔更深刻地影响着流域的风化剥蚀作用。而且总剥蚀率与年均降水量的相关性也较好,相关系数为-0.50。降水量越大,流域的总剥蚀率越小,这和总剥蚀率与干旱指数之间的正比关系是一致的。

中国流域的总剥蚀率与干旱指数和相对高差的相关系数分别为 0.81 和 0.61(表 2),通过对总剥蚀率与干旱指数和相对高差的多元回归分析,得到总剥蚀率与两者的相关系数达到了 0.85,因此,中国流域盆地总剥蚀率 72%的差异是由于干旱指数和相对高差的不同而造成的。Summerfield 对世界主要流域盆地总剥蚀率控制因素的研究认为世界流域总剥蚀率 62% 的差异归功于地势和径流量[12]。两者对比发现,中国流域盆地总剥蚀率受

(a. 韩江上游乌坡河[18]; b. 黄土高原流域区间[19]

图 4 流域植被覆盖率与机械剥蚀率[t/(km²·a)]之间的关系

Fig. 4 Plot of the relationship between the mechanical denudation rates and vegetative ratios

(a. Wupo River in the upper reaches of Hanjiang River, data from WANG Sheng-Hua, et al;

b. the zone through the Loess Plateau, data from TANG Ke-li, et al)

到流域陆面蒸发量的显著影响,而受径流量的影响不明显,而且中国流域盆地对流域相对高差(构造运动)和干旱指数的依赖性更强烈,其它因子的影响较弱。

以上分析结果来自于对中国大型流域盆地分析的结果,属于大尺度意义上的,对于小流域,可能并不适用,在研究时还应具体情况具体分析。

3 结 论

根据对中国 40 余条主要流域盆地风化剥蚀率及其影响因子的分析,得出以下结论:

- 1) 与世界流域盆地相比, 中国流域盆地的显著特点是机械剥蚀率和总剥蚀率普遍偏高, 地理分布是南北低中部高, 而流域的化学风化率不高且大体上是北高南低的地理分布态势。
- 2) 中国流域盆地的化学风化率主要受到流域 年均降水量和气温的影响,流域之间化学风化率约 39%的差异是这两个因素引起的,而受到地势和植 被的影响有限,且不受流域机械剥蚀率的控制。
- 3) 中国流域盆地机械剥蚀率、总剥蚀率主要是由流域干旱指数和相对高差来控制的,不同流域总剥蚀率差异的 72%是由于流域这两个参数的差异造成的。中国与世界主要流域盆地相比,相同的是都受到构造运动(地势)的强烈控制,不同的是中国流域受气候因子中干旱指数而不是径流量的控制,而且中国流域盆地对干旱指数和相对高差的依赖性更强。
- 4) 植被有增大化学风化率、减小物理剥蚀率的趋势,这种影响可能在小范围内很明显,但在大尺度上的影响一般并不显著。
- 5)构造运动既可以增大机械剥蚀率,又能促进化学风化率。中国两个剥蚀率最大的区域黄河流域和台湾岛可能均与近年来的构造活动有一定关系。相对于机械剥蚀率,化学风化率对它的依赖性要差得多。

参考文献:

- [1] Milliman J D, Meade R H. World wide delivery of river sediment to the ocean [J]. Journal of Geology, 1983, 91:1-21.
- [2] 刑大韦,张玉芳,粟晓玲,等.中国多沙性河流的洪水灾害及 其防御对策[J].西北水资源与工程,1998,9(2):1~8.
- [3] 杨守业,刘曙光,李从先.亚洲入海河流的化学通量及其控制 因素[J].海洋通报,2000,19(4):22~28.
- [4] 刘曙光,杨守业,丁 坚,等.亚洲入海河流输沙量的区域性

- 变化规律[]].海洋通报,2000,19(5):32~40.
- [5] 朱道清(编).中国水系大辞典[M].青岛:青岛出版社,1993.
- [6] 张立诚, 佘中盛, 章 申, 等. 水环境化学元素研究[M]. 北京: 中国环境科学出版社, 1996.
- [7] 陈静生,谢贵柏,李远辉.海南岛现代剥蚀作用及其与台湾岛和夏威夷群岛的比较[J].第四纪研究,1991,(2):289~299.
- [8] 陈静生,陈 梅,谢贵柏.海南岛台湾岛河流水化学比较研究 [J].地理学报,1992,47(5):403~409.
- [9] Zhang J, Huang W W and Liu M G, et al. Drainage basin weathering and major element transport of the large Chinese rivers (Huanghe and Changjiang) [J]. Journal of Geophysical Research, 1990, 95(C8): 13277 - 13288.
- [10] Zhang J, Huang W W, Letolle R. Major element chemistry of the Huanghe, China-Weathering processes and chemical fluxes [J]. Journal of Hydrology, 1995, 168: 173 - 203.
- [11] Gaillardet J, Dupre B, Allegr, C J. A global geochemical mass budget applied to the Congo Basin Rivers: Erosion rates and continental crust composition [J]. Geochimica et Cosmochimica Acta, 1995, 59: 3469 – 3485.
- [12] Summerfield M A and Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins [J]. Journal of Geophysical Research, 1994, 99(B7): 13871 - 13883.
- [13] White A D, Blum A E. Effects of climate on chemical weathering in watersheds [J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1729-1747.
- [14] Berner R A, Berner E K. Silicate weathering and climate [A]. Ruddiman W F. Tectonic Uplift and Climate Change [C]. New York and London; Plenum Press, 1997. 354-364.
- [15] Gislason S E, Arnorsson S, Armannsson H. Chemical weathering of basalt in Southwest Iceland: effects of runoff age of rocks and vegetative/glacial cover [J]. American Journal of Science, 1996, 296: 837 - 907.
- [16] Stallard R F, Edmond J M. Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load [J]. Journal of Geophysical Research, 1983, 88 (C14): 9671 - 9688.
- [17] 秦建华, 潘桂棠, 杜 谷. 新生代构造抬升对地表化学风化和全球气候变化的影响[J]. 地学前缘, 2000, 7(4):517~524.
- [18] 王胜华,张辉香,王远梅,韩江上游乌坡河流域植被与输沙量的关系[J].珠江水利水电信息,1993,(3):17~20.
- [19] 唐克丽,王斌科,郑粉梨,等.黄土高原人类活动对土壤侵蚀的影响[J].人民黄河,1994,(2):13~16.

Natural Controls of Fluvial Denudation Rates in Major Drainage Basins of China

LI Jing-Ying¹, ZHANG Jing^{1,2}

- (1. Chemistry, Chemistry and Chemical Engineering College, Ocean University of China, Qingdao, Shandong 266003;
- 2. Materialand Environmental college, Qingdao University of Science and Technology, Qingdao, Shandong 266042;
 - 3. State Key Laboratory of Estuary and Coast, East China Normal University, Shanghai 200062)

Abstract: The chemical weathering and mechanical denudation play an important role in studying the sea-land matter balance and global climatic change. The rock weathering and erosion products, including the dissolved and solid yields which amount to 15Gt and 5Gt annually, are mainly transported through the rivers into the ocean. The dissolved and particulate loads of the river are used to estimate the physical erosion and chemical weathering rates over the world drainage basins, respectively. The total weathering rate is obviously higher than that of major world watersheds. It is found that the lower erosion rates are distributed in the northern and southern China, while the higher values are observed in the middle of China. The average physical denudationrate rate in Huangfuchuan (the Yellow River's tributary) is the highest value known in the world. The chemical weathering rate is always far less than the mechanical denudation rate in the same watershed, furthermore, the proportion of total denudation contributed by chemical weathering decreases as total denudation rate increases. Data demonstrates chemical weathering rate constitutes only a small proportion of the total denudation rate, while mechanical denudation rate is the most important denudation rate in most drainage basins in China. Moreover the chemical weathering rate is to a less extent controlled by the mechanical denudation rate in the same drainage basin.

The environmental and basin property data are quantified and indicated by the annual mean precipitation and temperature, runoff, aridity index, relief ratio, highest altitude, vegetative ratio, river length and basin area in the past decades. Variables expressing basin relief characteristics and aridity indexes are found to be most strongly associated with mechanical and total denudation rates, with approximately 72% of the variance in the total denudation rates being accounted for by the basin relief ratios and aridity indexes. The annual mean precipitation and temperature are responsible for the 39% of the variance of the chemical weathering rates in the Chinese drainage basins. However, basin property, runoff, highest altitude and vegetative ratio are only weakly associated with the physical denudation and chemical weathering rates. The effect of vegetative ratio on increasing the chemical weathering rates and decreasing the physical denudation rates possibly shows clear on the small scale and usually faint on the large scale. The key factors identified as controlling denudation rates here are also applicable to the interaction between tectonic and denudation processes in the Chinese watersheds, although chemical weathering rates are more weakly associated with these topographic variables than mechanical denudation rates. In particular, compared to the world other watersheds, the aridity indexes play a major role in controlling the denudation rates of Chinese drainage basins.

Key words: major drainage basins; mechanical denudation rate; chemical weathering rate; controlling factors; climate; relief; vegetation; tectonic activity