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Abstract The problem of decentralized adaptive output tracking control of a class of interconnected stochastic

nonlinear systems is considered. In the control design, decentralized state observers and backstepping techniques

are applied. To eliminate the influences of interactions with other subsystems, a differentiable function is

employed. It is shown that the designed local adaptive controllers can ensure that all the signals in the closed-

loop system are bounded in probability. Furthermore, the tracking errors can be limited to a small residual set

around the origin in the fourth moment sense and can be adjusted by choosing suitable design parameters.
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1 Introduction

Interconnected systems consisting of subsystem interactions are a special class of large-scale systems.

Decentralized control using only local measurements is a practicable and effective way to control inter-

connected systems. In the last few decades, much effort has been made toward decentralized control of

interconnected systems (for a review, see [1] and the references therein). With the development of the

adaptive backstepping technique [2], many results for decentralized adaptive control have been obtained

for interconnected systems with uncertainties [3–14]. Since Pan and Başar first extended the backstep-

ping technique to the control design of stochastic nonlinear systems in [15], research on interconnected

stochastic nonlinear systems has received considerable attention.

In [12], global decentralized stabilization controllers based on both state feedback and output feedback

are designed for a class of interconnected stochastic nonlinear systems. When considering output feed-

back control design, it is noteworthy that nonlinear interactions depending upon the outputs exist only

in the drift terms. A decentralized risk-sensitive control scheme is presented for a class of interconnected

stochastic nonlinear systems in [3], where nonlinear interactions depending only on the subsystem outputs

exist in both the drift and diffusion terms. However, one should know all of the diffusion terms during the

design procedure. Further, in [13], a decentralized adaptive output feedback stabilization controller is de-

veloped for a large class of interconnected stochastic nonlinear systems with inverse dynamics, parametric
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uncertainties, and unknown nonlinear interactions in both the diffusion and drift terms. On the basis

of the work in [13], the nonlinear dynamic interactions are considered in [16]. However, most of these

papers are concerned with the decentralized adaptive stabilization problem, and very few of them focus

on tracking nonzero local reference signals with interconnected stochastic nonlinear systems [17–19]. A

decentralized adaptive state feedback tracking control procedure is proposed for a class of interconnected

stochastic nonlinear systems with interactions only in the drift terms in [17]. By using a state estima-

tion filter, decentralized adaptive output feedback tracking control for interconnected stochastic systems

is considered in [18], and the developed technique is generalized to an enlarged class of interconnected

stochastic systems in [19]. However, the results of [19] are applicable only to systems in which the diffusion

terms are bounded by the products of the system outputs and bounded functions. Clearly, this matching

condition is very strict. Actually, the study of the tracking problem for interconnected stochastic systems

is relatively complicated compared to that for the stabilization problem. The techniques developed for

the stabilization case cannot be directly generalized to the tracking case. The main reason is that the

tracking errors of subsystems are affected by nonzero reference signals through interactions. It is not

easy to manage these effects in the adaptive backstepping design procedure; further, one should also

consider the effect of the white noise on the design of tracking control. These considerations motivate us

to conduct the current study.

In this paper, inspired by [13, 14], we consider the problem of decentralized backstepping adaptive

tracking control design for a class of interconnected stochastic nonlinear systems consisting of unknown

nonlinear interactions and uncertainties. Unlike the case in [19], the unknown nonlinear interactions do

not need to be bounded by the products of the system outputs and known bounded output-dependent

functions, but need only to be bounded by the products of parameter uncertainties and known output-

dependent functions. Because only the system outputs can be used in controller design, the K-filter

proposed in [20] is generalized to decentralized stochastic cases to estimate the local system states.

To counteract the effects of the reference signals and unknown interactions in the backstepping design

procedure, a differentiable function is constructed. The designed decentralized backstepping tracking

controllers can guarantee the boundedness of all signals in the closed-loop system in probability. Moreover,

the tracking error can be limited to a small region near the origin in the fourth moment sense. In addition,

the proper design parameters can be chosen to make the region arbitrarily small.

The paper is organized as follows. Section 2 gives some preliminary results and notation. Section 3

describes the problem to be investigated and presents the design of decentralized state estimators. The

decentralized adaptive tracking control design procedure is presented in Section 4. In Section 5, the

stability of the decentralized tracking scheme is analyzed. A numerical example is given in Section 6 to

illustrate the efficiency of our procedure. Concluding remarks are presented in Section 7.

2 Notation and preliminary results

Notation. In represents the identity matrix of order n. The transpose of a matrix or vector Y is denoted

by Y T. Tr(Y ) represents the trace of a square matrix Y . ‖Y ‖ stands for the induced norm of a matrix Y .

The Euclidean norm of a vector Y is denoted by |Y |. For any matrix Y , ‖Y ‖F :=
√

Tr(Y TY ). λmax(Y )

and λmin(Y ) are the maximal and minimal eigenvalues of a symmetric real matrix X , respectively.

Consider the following stochastic nonlinear system:

dx = f(t, x)dt+ g(t, x)dw, (1)

where x ∈ R
n is the system state, f : R+ × R

n → R
n and g : R+ × R

n → R
n×r are continuously

differentiable in their arguments, f(t, 0) and g(t, 0) are bounded uniformly in t, and w is an r-dimensional

standard Brownian motion.

Definition 1. For any given C2 function V (t, x) associated with the stochastic differential equation (1),
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we define the differential operator L as follows:

LV =
∂V

∂t
+

∂V

∂x
f(t, x) +

1

2
Tr

{

∂2V

∂x2
ggT

}

. (2)

Definition 2. A stochastic process {x(t), t > 0} is said to be bounded in probability if limc→∞ supt>0 P

{|x(t)| > c} = 0 [21].

The result of our technique for the solution of system (1) is given by the following theorem.

Theorem 1. Consider the stochastic nonlinear system (1). If there exists a C2 function V (x), class K∞

functions λ1, λ2, and constants m1 > 0,m2 > 0 such that for any x ∈ R
n and t > 0,

λ1(|x|) 6 V (x) 6 λ2(|x|), LV (x) 6 −m1V (x) +m2, (3)

then for any given initial value x0 there exists a global unique strong solution x(t) of system (1), and it

is bounded in probability and satisfies

E[V (x)] 6 e−m1tV (x0) +m−1
1 m2. (4)

This theorem can be derived directly from [13, Theorem 1] and [22, Theorem 4.1].

3 Problem formulation

In this paper, we consider the following interconnected stochastic nonlinear systems of the form:

{

dxi = A0,ixidt+ Fi(t, y)dt+Φi(yi)aidt+ biuidt+GT
i (t, y)dwi,

yi = xi,1, y = (y1, y2, . . . , yN), i = 1, . . . , N,
(5)

where

A0,i =









0
... Ini−1

0 . . . 0









, Φi =









ϕi,1,1 . . . ϕi,1,mi

...
. . .

...

ϕi,ni,1 . . . ϕi,ni,mi









, Fi =









Fi,1

...

Fi,ni









, ai =









ai,1
...

ai,mi









,

xi = (xi,1, xi,2, . . . , xi,ni)
T ∈ R

ni ; ui ∈ R
1 and yi ∈ R

1 are the input and output states of the i-th

subsystem, respectively; ai ∈ R
mi and bi = (0, 0, . . . , bi,si , . . . , bi,0)

T ∈ R
ni are unknown vectors; Φi(yi) ∈

R
ni×mi is a known smooth function; Gi(t, y) = (Gi,1, Gi,2, . . . , Gi,ni) ∈ R

ri×ni and Fi(t, y) ∈ R
ni are

uncertain C1 functions; wi is an ri-dimensional standard Brownian motion defined on the complete

probability space (Ω,F , P ); and Fi(t, y) represents the unmodeled parts of the i-th subsystem and the

interactions with other subsystems. The following assumptions are made for each subsystem.

Assumption 1. The relative degree ρi(= ni − si) and the sign of bi,si are known.

Assumption 2. The polynomial bi,sis
si + · · ·+ bi,1s+ bi,0 is Hurwitz.

Assumption 3. The reference signal yri(t) and its derivatives y
(k)
ri (t), k = 1, . . . , ρi are bounded,

known, and piecewise continuous.

Assumption 4. For each 1 6 i 6 N and 1 6 j 6 ni, there exist known smooth functions fi,j,l > 0,

gi,j,l > 0 and unknown constants l1i,j > 0, l2i,j > 0 such that for ∀(t, y) ∈ R+ × R
N ,

|Fi,j(t, y)| 6 l1i,j

N
∑

l=1

fi,j,l(|yl|), |Gi,j(t, y)| 6 l2i,j

N
∑

l=1

gi,j,l(|yl|).

The control object is to design a decentralized adaptive controller with K-filters for the stochastic

nonlinear system (5) satisfying Assumptions 1–4 such that all signals of the closed-loop system are
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bounded in probability, and the given reference yri(t) can be tracked by the system output as closely as

possible in the fourth moment sense.

In the following, using only the local output and input, we will design decentralized K-filters to estimate

the states of each local system. The filters for the i-th subsystem are designed as

ξ̇i = Aiξi + (Ini,ni)
Tui, ξi ∈ R

ni ,

η̇i = Aiηi +Kiyi, ηi ∈ R
ni ,

Ξ̇i = AiΞi +Φi(yi), Ξi ∈ R
ni×mi ,

(6)

where Ki = [ki,1, . . . , ki,ni ]
T ∈ R

ni is selected such that the matrix Ai = A0,i−KiIni,1 is Hurwitz. Then,

there exists a matrix Qi such that QiAi +AT
i Qi = −Ini , Qi = QT

i > 0.

Define

vi,j := Aj
i ξi, j = 0, 1, . . . , si. (7)

Clearly, vi,si,j = vi,si,j(ξi,1, . . . , ξi,si+j). Using the equation Aj
i (Ini,ni)

T = (Ini,ni−j)
T, j = 1, . . . , ni,

we obtain v̇i,j = Aivi,j + (Ini,ni−j)
Tui, j = 0, . . . , si. Let θi := [bi,si , . . . , bi,0, ai,1, . . . , ai,mi ]

T and

Ti := [vi,si , . . . , vi,0,Ξi]. By using the above designed filters, we define the state estimate as

x̂i(t) = ηi + Tiθi. (8)

Hence, the state estimation error is given by

ǫi = xi − x̂i, (9)

which satisfies

dǫi = (Aiǫi + Fi(t, y))dt+GT
i (t, y)dwi. (10)

4 Design of decentralized adaptive controllers

A decentralized adaptive output tracking control scheme will be developed by means of a backstepping

technique in this section. First, a new state transformation is given by

zi,1 = yi − yri ,

zi,j = vi,si,j − αi,j−1, j = 2, . . . , ρi,
(11)

where αi,j−1 = αi,j−1(yi, ξi,1, . . . , ξi,si+j−1, ηi,Ξi, θ̂i, ζ̂i, yri , ẏri , . . . , y
(j−1)
ri ) is the virtual control law. For

notational simplicity, let zi,ρi+1 = 0, αi,0 = 0, and αi,ρi = vi,si,ρi+1 + ui. To counteract the influence of

interactions in the control design, the following auxiliary function si(·) is introduced:

si(zi,1) =







1
z4

i,1
, |zi,1| > σi,

1
(σ4

i−z4

i,1)
ρi+z4

i,1
, |zi,1| < σi,

(12)

where σi is a positive design parameter. It is evident that si(zi,1) is (ρi − 1)-th order differentiable.

According to Itô’s formula, we have

dzi,1 = (χi − ẏri)dt+GT
i,1dwi,

dzi,j = v̇i,si,jdt− dαi,j−1

=

[

vi,si,j+1 − ki,jvi,si,1 + Ini,j,ρiui −
∂αi,j−1

∂yi
χidt− βi,j−1 −

∂αi,j−1

∂θ̂i

˙̂
θi −

∂αi,j−1

∂ζ̂i

˙̂
ζi

−
1

2

∂2αi,j−1

∂y2i
GT

i,1Gi,1

]

dt−
∂αi,j−1

∂yi
GT

i,1dwi, j = 2, . . . , ρi, (13)
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where

Wi = [vi,si,2, . . . , vi,0,2,Ξi,2 +Φi,1]
T, W̄i = [0, vi,si−1,2, . . . , vi,0,2,Ξi,2 +Φi,1]

T,

χi = ηi,2 + Fi,1 + W̄T
i θi + bi,si(zi,2 + αi,1) + ǫi,2,

βi,j−1 =

si+j−1
∑

l=1

∂αi,j−1

∂ξi,l
(ξi,l+1 − ki,lξi,1) +

∂αi,j−1

∂ηi
(Aiηi +Kiyi) +

∂αi,j−1

∂Ξi
(AiΞi +Φi)

+

j
∑

l=1

∂αi,j−1

∂y
(l−1)
ri

y(l)ri , j = 2, . . . , ρi.

We now consider the following Lyapunov function candidate:

Vi =
1

4

ρi
∑

j=1

z4i,j +
1

2
(ǫTi Qiǫi)

2 +
1

2
θ̃Ti Γ

−1
i θ̃i +

|bi,si |

2γi
ζ̃2i , (14)

where Γi is a positive definite matrix, γi is a designed positive number, and θ̃i = θi − θ̂i and ζ̃i = ζi − ζ̂i
are the parameter estimation errors.

It follows from (10) and (13) that

LVi =z3i,1(χi − ẏri) +

ρi
∑

j=2

z3i,j

[

αi,j + zi,j+1 − ki,jvi,si,1 −
∂αi,j−1

∂yi
χi −

1

2

∂2αi,j−1

∂y2i
GT

i,1Gi,1 − βi,j−1

−
∂αi,j−1

∂θ̂i

˙̂
θi −

∂αi,j−1

∂ζ̂i

˙̂
ζi

]

+
3

2
z2i,1G

T
i,1Gi,1 +

3

2

ρi
∑

j=2

z2i,j

(

∂αi,j−1

∂yi

)2

GT
i,1Gi,1 − (ǫTi Qiǫi)ǫ

T
i ǫi

+ 2(ǫTi Qiǫi)F
T
i Qiǫi +Tr[Gi(ǫ

T
i QiǫiQi + 2Qiǫiǫ

T
i Qi)G

T
i ]− θ̃Ti Γ

−1
i

˙̂
θi −

|bi,si |

γi
ζ̃i
˙̂
ζi. (15)

Because fi,j,l, gi,j,l, i, l = 1, . . . , N, j = 1, . . . , ni, are smooth, there exist smooth nonnegative

functions pi,j,l(yl), qi,j,l(yl) such that

(

N
∑

l=1

fi,j,l(|yl|)

)4

6

N
∑

l=1

pi,j,ly
4 + 8

(

N
∑

l=1

fi,j,l(0)

)4

,

(

N
∑

l=1

gi,j,l(|yl|)

)4

6

N
∑

l=1

qi,j,ly
4 + 8

(

N
∑

l=1

gi,j,l(0)

)4

.

(16)

From Assumption 4, Young’s inequality, and the norm inequalities, we have

2(ǫTi Qiǫi)F
T
i Qiǫi 6 2||Qi||

2|ǫi|
3|Fi| 6 2||Qi||

(

3

4
δ
4/3
i,8 |ǫi|

4 +
1

4δ4i,8
|Fi|

4

)

6
3

2
||Qi||

2δ
4/3
i,8 |ǫi|

4 +
||Qi||

2ni

2δ4i,8

(

|Fi,1|
4 + · · ·+ |Fi,ni |

4
)

6
3

2
||Qi||

2δ
4/3
i,8 |ǫi|

4 +
||Qi||

2nil
4
i

2δ4i,8

ni
∑

j=1





N
∑

l=1

pi,j,ly
4
l + 8

(

N
∑

l=1

fi,j,l(0)

)4


 ,

z3i,1Fi,1 6
3

4
δ
4/3
i,9 z4i,1 +

l4i
4δ4i,9





N
∑

l=1

pi,1,ly
4
l + 8

(

N
∑

l=1

fi,1,l(0)

)4


 ,

ρi
∑

j=2

z3i,j
∂αi,j−1

∂yi
Fi,1 6

ρi
∑

j=2

(

3

4
µ
4/3
i,1,j

(

∂αi,j−1

∂yi

)4/3

z4i,j +
1

4µ4
i,1,j

|Fi,1|
4

)

6

ρi
∑

j=2

3

4
µ
4/3
i,1,j

(

∂αi,j−1

∂yi

)4/3

z4i,j +

ρi
∑

j=2

l4i
4µ4

i,1,j



pi,1,ly
4
l + 8

(

N
∑

l=1

fi,1,l(0)

)4


 ,
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Tr[Gi(ǫ
T
i QiǫiQi + 2Qiǫiǫ

T
i Qi)G

T
i ] = 2Tr[GiQiǫi(GiQiǫi)

T] + ǫTi QiǫiTr[G
T
i QiGi]

6 2||GiQiǫi||
2
F + |ǫTi Qiǫi|λmax(Qi)||Gi||

2
F

6 2||Qi||
2|ǫi|

2||Gi||
2
F + |ǫi|

2||Qi||λmax(Qi)||Gi||
2
F

6
1

µi,2
|ǫi|

4 + µi,2||Qi||
2||Gi||

4
F +

λ2
max(Qi)

2µi,2
|ǫi|

4 +
µi,2

2
||Qi||

2||Gi||
4
F

6
2 + λ2

max(Qi)

2µi,2
|ǫi|

4 +
3nil

4
i ||Qi||

2µi,2

2

ni
∑

j=1

(

N
∑

l=1

qi,j,ly
4
l

+8

(

N
∑

l=1

gi,j,l(0)

)4


 ,

where the variables δ and µ and li > max16j6ni{l
1
i,j, l

2
i,j} are positive design parameters. The above

inequalities, together with (15) and Assumption 4, give that

LVi 6z3i,1

(

ηi,2 + W̄T
i θ̂i + bi,siαi,1 − ẏri +

3

4
δ
4/3
i,1 +

3

4
|bi,si |δ

4/3
i,2 zi,1 +

3

4
δ2i,6zi,1 +

3

4
δ
4/3
i,9 zi,1

)

+
|bi,si |

4δ4i,2
z4i,2

+

ρi
∑

j=2

z3i,j

[

αi,j − ki,jvi,si,1 −
∂αi,j−1

∂yi
(ηi,2 + W̄T

i θ̂i + b̂i,sivi,si,2) +

(

3

4
δ
4/3
i,3,j +

1

4δ4i,3,j−1

)

zi,j

+

(

3

4
δ
4/3
i,4,j +

3

4
µ
4/3
i,1,j

)(

∂αi,j−1

∂yi

)4/3

zi,j +
1

4
δ2i,5,j

(

∂2αi,j−1

∂y2i

)2

z3i,j +
3

4
δ2i,7,j

(

∂αi,j−1

∂yi

)4

zi,j

− βi,j−1

]

−

ρi
∑

j=2

z3i,j

[

∂αi,j−1

∂θ̂i

˙̂
θi +

∂αi,j−1

∂ζ̂i

˙̂
ζi +

∂αi,j−1

∂yi
(W̄iθ̃i + b̃i,sivi,si,2)

]

− θ̃Ti Γ
−1
i

˙̂
θi −

|bi,si |

γi
ζ̃i
˙̂
ζi

+





3

4δ2i,6
+

ρi
∑

j=2

(

1

4δi,5,j
+

3

4δ2i,7,j

)

+
3

2
µi,2||Qi||

2



nil
4
i

ni
∑

j=1





N
∑

l=1

qi,j,ly
4
l + 8

(

N
∑

l=1

gi,j,l(0)

)4




+





1

4δ4i,9
+

||Qi||
2

2δ4i,8
+

ρi
∑

j=2

1

4µ4
i,1,j



nil
4
i

ni
∑

j=1





N
∑

l=1

pi,j,ly
4
l + 8

(

N
∑

l=1

fi,j,l(0)

)4


−

[

λmin(Qi)−
1

4δ4i,1

−

ρi
∑

j=2

1

4δ4i,4,j
−

3δ
4/3
i,8 ||Qi||

2
+

2 + λ2
max(Qi)

2µi,2



 |ǫi|
4, (17)

where the variables µ and δ are positive design parameters.

By using (17), the local controller and parameter update laws can be designed step by step for each

subsystem as follows:

αi,1 = −ζ̂iχ̄i −
3

4
sign(bi,si)δ

4/3
i,2 zi,1, (18)

αi,j = −ci,jzi,j + πi,j +
∂αi,j−1

∂θ̂i

˙̂
θi +

∂αi,j−1

∂ζ̂i

˙̂
ζi − Ini,j,2b̂i,si

sign(bi,si)

4δ4i,2
zi,2, j = 2, . . . , ρi, (19)

ui = αi,ρi − vi,si,ρi+1, (20)

˙̂
ζi = γisign(bi,si)χ̄iz

3
i,1 − 2cζi ζ̂i, (21)

˙̂
θi = Γiτi,ρi − 2cθi θ̂i, (22)

where ci,j , j = 1, . . . , si, cζi , and cθi are positive design constants,

πi,j = ki,jvi,si1 +
∂(αi,j−1)

∂yi
(ηi,2 + W̄T

i θ̂i + b̂i,sivi,si,2)−

(

3

4
δ
4/3
i,3,j +

1

4δ4i,3,j−1

)

zi,j
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−

(

3

4
δ
4/3
i,4,j +

3

4
δ
4/3
i,1,j

)(

∂αi,j−1

∂yi

)4/3

zi,j −
1

4
δ2i,5,j

(

∂2αi,j−1

∂y2i

)2

z3i,j

−
3

4
δ2i,7,j

(

∂αi,j−1

∂yi

)4

zi,j + βi,j−1,

χ̄i = ci,1zi,1 + ηi,2 + W̄T
i θ̂i − ẏri +

3

4
(δ

4/3
i,1 + δ

4/3
i,9 + δ2i,6)zi,1 + zi,1si(zi,1)

N
∑

m=1

CmΨm(yi),

Ci =





1

4δ4i,9
+

||Qi||
2

2δ4i,8
+

ρi
∑

j=2

1

4µ4
i,1,j

+
3

4δ2i,6
+

ρi
∑

j=2

(

1

4δi,5,j
+

3

4δ2i,7,j

)

+
3

2
µi,2||Qi||

2



nil
4
i ,

Ψi(yl) =

ni
∑

j=1

(pi,j,ly
4
l + qi,j,ly

4
l ),

Ψi0 =

ni
∑

j=1





(

N
∑

l=1

gi,j,l(0)

)4

+

(

N
∑

l=1

fi,j,l(0)

)4


 ,

and the tuning functions are chosen as follows:

τi,1 = W̄iz
3
i,1,

τi,2 = τi,1 +
sign(bi,si)

4δ4i,2
z4i,2(Ini,1)

T −
∂αi,1

∂yi
z3i,2Wi,

τi,j = τi,j−1 −
∂αi,j−1

∂yi
z3i,jWi, j = 3, . . . , ρi.

(23)

5 Stability analysis

The analysis of the tracking errors and stability of the overall closed-loop system consisting of local

systems, decentralized filters, controllers, and parameter update laws are presented in this section. First,

a Lyapunov function candidate for the overall closed-loop system is defined as

V =

N
∑

i=1

Vi, (24)

which satisfies

LV =

N
∑

i=1

LVi.

Hence, substituting (18)–(22) into (17) yields

LV 6

N
∑

i=1



−ci

ρi
∑

j=1

z4i,j − c̄i|ǫi|
4 + 2cθi θ̃

T
i Γ

−1
i θ̂i + 2cζi

bi,si
γi

θ̃iθ̂i





+
N
∑

i=1

(−z4i,1si(zi,1)Di(yi) +Di(yi)) +
N
∑

i=1

Ei, (25)

where ci = min{ci,j |1 6 j 6 ρi}, c̄i = λmin(Qi) −
1

4δ4i,1
−
∑ρi

j=2
1

4δ4i,4,j
−

3δ
4/3
i,8 ||Qi||

2 +
2+λ2

max
(Qi)

2µi,2
, Di =

∑N
m=1 CmΨm(yi), and Ei = 8CiΨi. Here, the positive parameters δ and µ are chosen such that c̄i > 0.

Let hi = −z4i,1si(zi,1)Di(yi) +Di(yi). It is evident that hi is bounded. Hence, we obtain that

N
∑

i=1

(−z4i,1si(zi,1)Di(yi)) +
N
∑

i=1

Ei 6

N
∑

i=1

Hi +
N
∑

i=1

|Ei| := M, (26)

where Hi is the bound of hi. In conclusion, the main results are presented in the following theorem.
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Theorem 2. Under Assumptions 1–4, consider the closed-loop adaptive stochastic system consisting

of the plant (5), the filters (6), control laws (18)–(20), and parameter update laws (21) and (22). If a

prior bound on the unknown constants l1i,j and l2i,j is available, then all the signals of the closed-loop

system are bounded in probability, and the tracking error can be limited to a small region near the origin

in the fourth moment sense. In addition, the adaptive control laws can be adjusted to make the region

arbitrarily small.

Proof. By adding two positive terms,
∑N

i=1 cθi θ̂
T
i Γ

−1
i θ̂i and

∑N
i=1(|bi,si |/γi)cζi ζ̂

2
i , to the right-hand

side of (25) and using inequality (26), we obtain

LV 6

N
∑

i=1

(

− ci

ρi
∑

j=1

z4i,j −
c̄i

λ2
max(Qi)

(ǫTi Qiǫi)
2 − cθi θ̃

T
i Γ

−1
i θ̃i − cζi

|bi,si |

γi
ζ̃2i

)

+
N
∑

i=1

(

cθi |Γ
−1
i ||θi|

2

+
|bi,si|

γi
cζi |ζi|

2

)

+M

6− CV + T, (27)

where

C := min
16i6N

{

4ci,
2c̄i

λ2
max(Qi)

, 2cθi, 2cζi

}

,

T :=

N
∑

i=1

(

cθi |Γ
−1
i ||θi|

2 +
|bisi |

γi
cζi |ζi|

2

)

+M.

It follows from Theorem 1 that zi, ǫi, θ̃i, and ζ̃i are bounded in probability. Because zi1 and yri
are bounded in probability, yi is also bounded in probability. Because yi and ui are bounded and Ai is

Hurwitz, the variables vij , ξi, ηi, and Ξi are bounded in probability. Finally, xi is bounded by (7)–(9).

Hence, all signals are bounded in probability. Furthermore, also by Theorem 1, we have

E[V (t)] 6 e−CtV (0) + C−1T, ∀t > 0. (28)

From the structure of the Lyapunov function V (x), we can easily obtain

E(|y − yr|
4) = E





(

N
∑

i=1

|yi − yri |
2

)2


 6 E

(

N

(

N
∑

i=1

|zi,1|
4

))

6 4NE(V (t)) 6 4Ne−CtV (0) + C−1NT. (29)

The above inequality shows that one can choose suitable parameters δ, µ, c, Γi, and γi such that C

is sufficiently large to guarantee that the tracking error converges to an arbitrarily small region near the

origin in the fourth moment sense.

6 Numerical example

A numerical example is given to illustrate the efficiency of our procedure in this section. Consider the

following interconnected systems:

d

(

x1,1

x1,2

)

=

(

0 1

0 0

)(

x1,1

x1,2

)

dt+

(

2y1 y21

0 y1

)(

a1,1

a1,2

)

dt+

(

0

b1

)

u1dt+

(

0

0.1y1 sin(y2)

)

dw1,

y1 = x1,1, yr1 = sin(2t),

(30)

d

(

x2,1

x2,2

)

=

(

0 1

0 0

)(

x2,1

x2,2

)

dt+

(

0 0

y2 1 + y1

)(

a2,1

a2,2

)

dt+

(

0

b1

)

u2dt+

(

0

0.1y2 sin(y1)

)

dw,

y2 = x2,1, yr2 = sin t,

(31)
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Figure 1 (Color online) System state x1. Figure 2 (Color online) System state x2.

where (a1,1, a1,2)
T = (0.2, 0.3)T, (a2,1, a2,2)

T = (0.6, 0.9)T, b1 = 0.4, and b2 = 0.7 are unknown parame-

ters. The decentralized K-filters are designed as follows:

v̇i,0 = Aivi,0 + (I2,2)
Tui,

η̇i = Aiηi + kiyi,

Ξ̇i = AiΞi +Φi, i = 1, 2,

(32)

where ki = (ki,1, ki,2)
T, and Ai = A0,i−kiI2,1. The local parameter update and control laws are given by









˙̂
bi
˙̂ai,1
˙̂ai,2









= Γi









τi,1

τi,2

τi,3









− 2cθi









b̂i

âi,1

âi,2









,









τi,1

τi,2

τi,3









= z3i1









0

Ξi,2,1 +Φi,1,1

Ξi,2,2 +Φi,1,2









+
z3i2
4δ4i4

(I3,1)
T −

∂αi1

∂yi
z3i2









vi02

Ξi,2,1 +Φi,1,1

Ξi,2,2 +Φi,1,2









,

˙̂
ζi = γiχ̂iz

3
i,1 − 2cζi ζ̂i,

αi,1 = −ζ̂iχ̂i −
3

4
δ
4/3
i,2 zi,1,

ui = αi,2 = ci,2zi,2 + πi,2 +
˙̂
θTi

∂αi,1

∂θ̂i
+

˙̂
ζTi

∂αi,1

∂ζ̂i
−

b̂i
4δ4i,2

zi,2,

where the design parameters are chosen as c1,1 = c2,1 = 2, c1,2 = c2,2 = 3, all δij = δi,j,l = µi,j = µi,j,l =

1 except that δ1,8 = δ2,8 = 0.1, µ1,2 = µ2,2 = 10, and γ1 = γ2 = 1,Γ1 = Γ2 = I2. The initial values are set

to x1 = (0.5, 1)T, x2 = (0.5, 2)T, v10 = v20 = (0.2, 0.3)T, η1 = (0.1, 0.1)T, η2 = (0.2, 0.4)T,Ξ1,i,j(0) = 0.2,

and Ξ2,i,j(0) = 0.1. Figures 1 and 2 show the system states x1 and x2. The outputs y1, y2 and the

reference signals yr1 , yr2 are shown in Figures 3 and 4. It can be seen that the simulation results verify

the efficiency of our proposed scheme.

7 Concluding remarks

A decentralized adaptive output tracking controller is proposed for a class of interconnected stochas-

tic nonlinear systems with parametric uncertainties. The design procedure is backstepping-based and

constructive. A new differentiable function is introduced to counteract the nonlinear interactions in the
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Figure 3 (Color online) Output y1 and trajectory yr1 . Figure 4 (Color online) Output y2 and trajectory yr2 .

control design. It is proved that the designed decentralized output tracking controllers can guarantee the

boundedness of all the signals of the closed-loop system in probability. Further, the tracking error can

be limited to a small residual set around the origin in the fourth moment sense. Moreover, the residual

set can be adjusted by choosing suitable design parameters.
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