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Abstract The problem of decentralized adaptive output tracking control of a class of interconnected stochastic
nonlinear systems is considered. In the control design, decentralized state observers and backstepping techniques
are applied. To eliminate the influences of interactions with other subsystems, a differentiable function is
employed. It is shown that the designed local adaptive controllers can ensure that all the signals in the closed-
loop system are bounded in probability. Furthermore, the tracking errors can be limited to a small residual set
around the origin in the fourth moment sense and can be adjusted by choosing suitable design parameters.
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1 Introduction

Interconnected systems consisting of subsystem interactions are a special class of large-scale systems.
Decentralized control using only local measurements is a practicable and effective way to control inter-
connected systems. In the last few decades, much effort has been made toward decentralized control of
interconnected systems (for a review, see [1] and the references therein). With the development of the
adaptive backstepping technique [2], many results for decentralized adaptive control have been obtained
for interconnected systems with uncertainties [3-14]. Since Pan and Basar first extended the backstep-
ping technique to the control design of stochastic nonlinear systems in [15], research on interconnected
stochastic nonlinear systems has received considerable attention.

In [12], global decentralized stabilization controllers based on both state feedback and output feedback
are designed for a class of interconnected stochastic nonlinear systems. When considering output feed-
back control design, it is noteworthy that nonlinear interactions depending upon the outputs exist only
in the drift terms. A decentralized risk-sensitive control scheme is presented for a class of interconnected
stochastic nonlinear systems in [3], where nonlinear interactions depending only on the subsystem outputs
exist in both the drift and diffusion terms. However, one should know all of the diffusion terms during the
design procedure. Further, in [13], a decentralized adaptive output feedback stabilization controller is de-
veloped for a large class of interconnected stochastic nonlinear systems with inverse dynamics, parametric
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uncertainties, and unknown nonlinear interactions in both the diffusion and drift terms. On the basis
of the work in [13], the nonlinear dynamic interactions are considered in [16]. However, most of these
papers are concerned with the decentralized adaptive stabilization problem, and very few of them focus
on tracking nonzero local reference signals with interconnected stochastic nonlinear systems [17-19]. A
decentralized adaptive state feedback tracking control procedure is proposed for a class of interconnected
stochastic nonlinear systems with interactions only in the drift terms in [17]. By using a state estima-
tion filter, decentralized adaptive output feedback tracking control for interconnected stochastic systems
is considered in [18], and the developed technique is generalized to an enlarged class of interconnected
stochastic systems in [19]. However, the results of [19] are applicable only to systems in which the diffusion
terms are bounded by the products of the system outputs and bounded functions. Clearly, this matching
condition is very strict. Actually, the study of the tracking problem for interconnected stochastic systems
is relatively complicated compared to that for the stabilization problem. The techniques developed for
the stabilization case cannot be directly generalized to the tracking case. The main reason is that the
tracking errors of subsystems are affected by nonzero reference signals through interactions. It is not
easy to manage these effects in the adaptive backstepping design procedure; further, one should also
consider the effect of the white noise on the design of tracking control. These considerations motivate us
to conduct the current study.

In this paper, inspired by [13,14], we consider the problem of decentralized backstepping adaptive
tracking control design for a class of interconnected stochastic nonlinear systems consisting of unknown
nonlinear interactions and uncertainties. Unlike the case in [19], the unknown nonlinear interactions do
not need to be bounded by the products of the system outputs and known bounded output-dependent
functions, but need only to be bounded by the products of parameter uncertainties and known output-
dependent functions. Because only the system outputs can be used in controller design, the K-filter
proposed in [20] is generalized to decentralized stochastic cases to estimate the local system states.
To counteract the effects of the reference signals and unknown interactions in the backstepping design
procedure, a differentiable function is constructed. The designed decentralized backstepping tracking
controllers can guarantee the boundedness of all signals in the closed-loop system in probability. Moreover,
the tracking error can be limited to a small region near the origin in the fourth moment sense. In addition,
the proper design parameters can be chosen to make the region arbitrarily small.

The paper is organized as follows. Section 2 gives some preliminary results and notation. Section 3
describes the problem to be investigated and presents the design of decentralized state estimators. The
decentralized adaptive tracking control design procedure is presented in Section 4. In Section 5, the
stability of the decentralized tracking scheme is analyzed. A numerical example is given in Section 6 to
illustrate the efficiency of our procedure. Concluding remarks are presented in Section 7.

2 Notation and preliminary results

Notation. I, represents the identity matrix of order n. The transpose of a matrix or vector Y is denoted
by YT, Tr(Y) represents the trace of a square matrix Y. ||Y|| stands for the induced norm of a matrix Y.
The Euclidean norm of a vector Y is denoted by |Y|. For any matrix Y, ||[Y||r := /Tr(YTY). Apnax(Y)
and Apin(Y) are the maximal and minimal eigenvalues of a symmetric real matrix X, respectively.

Consider the following stochastic nonlinear system:
dz = f(t,z)dt + g(t, x)dw, (1)

where z € R™ is the system state, f : Ry x R® — R"™ and g : Ry x R"™ — R"™*" are continuously
differentiable in their arguments, f(t,0) and g(¢,0) are bounded uniformly in ¢, and w is an r-dimensional
standard Brownian motion.

Definition 1. For any given C? function V (¢, z) associated with the stochastic differential equation (1),
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we define the differential operator £ as follows:

ov. oV

R
LV = 8t+8 ft,z) + Tr{aQQg } (2)

Definition 2. A stochastic process {z(t), ¢ > 0} is said to be bounded in probability if lim. o sup;>q P
{]z(t)| > ¢} =0 [21].
The result of our technique for the solution of system (1) is given by the following theorem.

Theorem 1. Consider the stochastic nonlinear system (1). If there exists a C? function V (z), class Ko
functions A;, A2, and constants m; > 0, mg > 0 such that for any € R™ and ¢ > 0,

Ai(fz]) V(@) < Aalfz]),  LV(2) < =V (z) + ma, (3)

then for any given initial value xy there exists a global unique strong solution xz(t) of system (1), and it
is bounded in probability and satisfies

E[V(z)] < e ™V (z0) + m] 'ma. (4)

This theorem can be derived directly from [13, Theorem 1] and [22, Theorem 4.1].

3 Problem formulation

In this paper, we consider the following interconnected stochastic nonlinear systems of the form:

dz; = Ao aidt + Fi(t,y)dt + @;(y;)a;dt + budt + GE (¢, y)dw;,
Yi = Ti, y:(ylvaa"'ayN)a i:]-a"'va

where

0 ©ildl - Pilms Fiq a;1
AOi: :Ini71 ) (I)'L: : . ) FZ: : y G = . )

s

0 ... 0 Ping,1 - Ping,mg Fin, Ai,my

x; = (Ti1,Ti2,... ,:ciyni)T € R"; u; € R! and y; € R! are the input and output states of the i-th
subsystem, respectively; a; € R™ and b; = (0,0,...,b;5,,...,bi0)T € R" are unknown vectors; ®;(y;) €
R™X™:i ig a known smooth function; G;(t,y) = (Gi1,Giz2,...,Gin,) € R"*™ and Fi(t,y) € R™ are
uncertain C' functions; w; is an r;-dimensional standard Brownian motion defined on the complete
probability space (2, F, P); and Fj(t,y) represents the unmodeled parts of the i-th subsystem and the
interactions with other subsystems. The following assumptions are made for each subsystem.
Assumption 1. The relative degree p;(= n; — s;) and the sign of b; 5, are known.

Assumption 2. The polynomial b; s, 5% 4 -+ + b; 15 + b; ¢ is Hurwitz.

Assumption 3. The reference signal y,,(t) and its derivatives y,(f) (t), & = 1,...,p; are bounded,
known, and piecewise continuous.

Assumption 4. For each 1 <7 < N and 1 < j < ny, there exist known smooth functions f; ;; > 0,
gi,j, = 0 and unknown constants ll >0, 07;,>0 such that for V(t,y) € Ry x RV,

|Ejty \”Zfz]lh/z |Gz]ty \1]292]l|yl

The control object is to design a decentralized adaptive controller with K-filters for the stochastic
nonlinear system (5) satisfying Assumptions 1-4 such that all signals of the closed-loop system are
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bounded in probability, and the given reference y,, (t) can be tracked by the system output as closely as
possible in the fourth moment sense.

In the following, using only the local output and input, we will design decentralized K-filters to estimate
the states of each local system. The filters for the i-th subsystem are designed as

& = Ai&i + (In, n) Tus, & € R™,
n; = Aini + Ky, n; € R, (6)
S = AE 4 Oi(yi), E; € Rmixmi,

where K; = [ki 1, ..., kzn]T € R™ is selected such that the matrix A; = Ay ; — K;1,, 1 is Hurwitz. Then,
there exists a matrix Q; such that Q;A; + AT Q; = —1,,,, Q; = QF > 0.

Define
vij =A%, 7=0,1,...,s. (7)
Clearly, v; s, j = Vis; j(Ei1s -1 &isity). Using the equation A7 (L, n)" = (In, )" 5= 1,..., 1,
we obtain ’l'JiJ‘ = Ai’UiJ‘ + (In“m_j)Tui, j = 0, ey S Let 91 = [bi,si; ey bi,O; A1y ai,m%]T and
T; = [vi,s;s- -, Vi0,Z¢]. By using the above designed filters, we define the state estimate as
Hence, the state estimation error is given by
€ = Tj — ji; (9)
which satisfies

4 Design of decentralized adaptive controllers

A decentralized adaptive output tracking control scheme will be developed by means of a backstepping
technique in this section. First, a new state transformation is given by

Zi,1 = Yi — Yrys

. (11)
Zij = Visj — Qig—1, J=2,...,0i
— 5 2 . i—1)\ - .
where o j—1 = i j—1(Yis &its - Eirsitim1sMis Zis Ois Ciy Yrs Urgs -« - » y,(«z )) is the virtual control law. For

notational simplicity, let 2; ,,+1 = 0, a;0 = 0, and «ay,p, = Vi s;,p;+1 + ;. To counteract the influence of
interactions in the control design, the following auxiliary function s;(-) is introduced:

P |zi,1| = o,
si(zi1) =q ! (12)

1 ) .
(o} Z?,l)p7'+zf£1,1, |ZZ’1| < i,

i—

where o; is a positive design parameter. It is evident that s;(z;1) is (p; — 1)-th order differentiable.
According to Ito’s formula, we have

dZiJ = (Xl — yrl)dt -+ G;l:ld'wi,

dzij = Ujs,,;dt — day j1

O j—1 Oaijj_1 O j_1 2
= |Vis; 41 — KijVis; 1 + Iny gopitts — —22—xedt — B jo1 — —2—0; — —2L—(;
[ J+ J Jsp 0yi J 0, 8@
10%0; day i .
3%050@1 dtf%ai,ldwz—, i=2....p (13)
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where
W, = ['Ui,sq,,2a -5 04,0,2, Ei,g + (I)i71]T, Wi = [O, Vis;—1,25 - -+ Vi,0,2, Ei72 + (I)i71]T,
Xi =iz + Fin W0 +bi s, (20 + i) + €0,
si+7—1
Oay; i Oay; i Oay;
Bij1= Y, 017’]1(&,1+1 —ki&in) + 57”1(141'% + Kiyi) + Cr;i (A + B;)
= il n; =

Oay; )
+Z ul(z) i=2,... pi

We now consider the following Lyapunov function candidate:

bzs =
ZZJ S Q) + 500+ sl (14)

i
where T'; is a positive definite matrix, ; is a designed positive number, and 0, =0, — éi and @- =( — QA}-

are the parameter estimation errors.

It follows from (10) and (13) that

Pi 2
3 : 3 T
LV, =23 06— 9r) + Y 20 {ai,j T zig+1 = Rijisi1 — —Xi — 55,2 GinGi1 — Bij

Jj=2

Oajj—1;  Oayj1 dai ;1 2 , ) i
_ 2 91 : 1 G Gz 2 G Gz _ ] €)exe
891 aC C:| 2 z 14,1 1+ 5 Z ’L] ( ayl i,19,1 (61 Q € )61 €

( szz)F Qzez + TI‘[ ( QzezQz + 2@161 TQi)GT] é;rrz_léi - M%éé (15)

Because fiji, 9ij1, & I = 1,...,N, j = 1,...,n,, are smooth, there exist smooth nonnegative
functions p; ji(yi), ¢ij.1(y1) such that

N N 4
(me, |yl|> Z ,J,ly4+8<2fi,j,l(0)> )

=1 =1

N N 4
<Z i1yl ) <Y aigyt+8 <Z gi,j,l(0)> :
=1 =1 =1

From Assumption 4, Young’s inequality, and the norm inequalities, we have

(16)

418

1Qil P
20ty

1
2(e; Qie) Fi Qier < 2/|Qu*leil® | F3| < 2[1Qs]| < 51 el + —IE'I4>

4/3
||Q1||25 Blel* +

(|1Fsal* + -+ |Fin,

Y

Mg N N
iustflet + L S (57 pe i+ (3 10
i 2548 Pij.1Y; 0,550 )
% =1 =1

j=1

%,9

Pi Pi 4/3
Dovi 3 D 1
3 Vgl o <—/f‘1/34< a,]( 1> At |E,1|4>
—

4
3 .
3 4/3 4
zia ki < 151-,/9 sz,l,lyl +8 <Z fi1a(0 ) ;

a4
4 Hi,j

3 43 Ot s L 4/3 Pi Z4 N 4
<33ty (252t S (st s (o) )
=1

j=2 Hilj
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Tr[Gi(e] Qiei Qi + 2Qieiel Q)G = 2Tr[G,Qiei(GiQiei) ] + € Qie; Tr[GF Q.G
2/|GiQicil % + le) Qi€il Amax (Qi)[|Gi |7

2/|Qil PleiPIGillF + leil* || @il Amax (Qi)|| G| F
)‘I2nax Q’L) Hi,

R Q)04 2420, 61

n; N
24 X0 (@Qi) | 3l ]|Qul P pie & 4
< 2 lei|* + 5 Z Z Gi,j,1Y1

0,2 =1
N 4
+8 <Z 9i,j,l(0)> ;
=1

where the variables § and p and I; > max1<j<n1{l

<
<

1
< s leil* + w2 Q| PGl 7 +
7,

igo b j} are positive design parameters. The above
inequalities, together with (15) and Assumption 4, give that

EVYI <Z,il (771',2 + WZTez + bi,sq,ai,l — Yr; + = 64/3 |bz 61|64/3 Zi,1 + 61 67,1 + 45;1{)3 ] ) + %Zﬁg
7,2

Pi
. Qo i1 3 4/3 1
+D 2 {az‘,j — ki jVis;1 — ay] (M2 + Wi 0; + bi g, vis, 2) + <16i,{3,j + T
9 7 0,3,5—

4/3 9 2 4
3z | 3 a3\ (Oaij Lo [(Qaij-1\" 3 [ 3o (Oaij
+ (151',4,]' P oy Zig + 151',5,3‘ 783/1-2 Zi 5+ 151‘,7,]' oy Zi,j

_Bi,j—1:| ZzlJ |:6allj 1 z 60&12 1Cz 80;; 1(W9 +bz ,5: Vi 5,2 )] _égfriiléi - @5@6@

4
B S ) ) (S s ()
7j=1 =1

Jj=1 =1
1 36EQill 24 A2, (Q
_ 4,8 ||Q || + + mmx(Q ) |€i|4

— 17
= 4(5;1’47]- 2 2/.11172 ( )

s 4
(454 i > e wit " zpw i+ <Zf”z ) - [Am@» -
o
2
where the variables 1 and § are positive design parameters.

By using (17), the local controller and parameter update laws can be designed step by step for each
subsystem as follows:

ain = —GiXi — %Sign(bi,sq,)éiégzi,h (18)

S 8023;1 b + 00:521 12 Cz — 1, 5b; Slmgig#‘”)zm, i=2,..., i (19)

Ui = Qi p; — Viys, pitls (20)

éi = 7isign(bs s, )Xi%1 — 2¢¢, i, (21)

0, = Ti7i,, — 2c0.0;, (22)
where ¢; j, 7 =1,...,5;,¢¢, and cg, are positive design constants,

(i j-1) = ThH | 7 3 c4/3 1
T = ki iVi s ¥ 4 3 WToz bi.s, Vi.s, —0 ?
J GVisi1 T+ Oy; (ii2 + Wit + bisssVisss2) = 4 53 + 4533] 1 o
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2

Ssas3 B3 Do 1\ 1o Paij-1\ 3

1 143 1 z 1,5 e Rig — 1015, ayiz Zij
3
4"

day; 4
1,7—1
( 31/]1- ) Zij + Bij—1,

N
Xi = ciazin+ i+ W0, — g, + 4(54/ D0+ 02)m + zasi(zin) D OV (),
m=1
1 @il < 3 3 2
C; = + — + + .2 Qi n;l za
457, " 2say Z4M“] 6% Z 4515j T, ) Tk el
ni
Wiy) = D> (pigayi + Gi.5090),
j=1
4 N 4
vo=3-((Lowo) + (L) |
Jj=1 =1
and the tuning functions are chosen as follows:
i = Wizly,
= M 4 T 8041 1 3
Ti,2 = Ti,1 + 4(5;1’2 ZiﬁQ(Ini 1) ayl Wz; (23)
rig =Ty = QG s g
sJ »J ayz [ ’ ) )

5 Stability analysis

The analysis of the tracking errors and stability of the overall closed-loop system consisting of local
systems, decentralized filters, controllers, and parameter update laws are presented in this section. First,
a Lyapunov function candidate for the overall closed-loop system is defined as

N
v=>v, (24)
1=1

which satisfies N
LV =) LV,
i=1
Hence, substituting (18)—(22) into (17) yields

N pi i b
Z C; z cl|~sZ + 2cei9;fr;19i + 2¢, ﬁ :0;
i=1 j=1 v
N N
+> (=zlisi(zi)Dilys) + Di(ya) + > Ei, (25)
i=1 i=1
_ 1 pi 1 354/3\@1” 2+Ar2nax(Q’i) _
where ¢; = min{c¢; ;|1 < 7 < pi}, &G = Amin(Qi) — w T Ly mt, g =L D; =
T, i,4,7

Z 1 Cn ¥ (y;), and E; = 8C;V;. Here, the positive parameters 6 and p are chosen such that ¢ > 0.
Let h = —2}18i(2:,1)Di(yi) + Di(y:). It is evident that h; is bounded. Hence, we obtain that

N N N
(=2 18i(20,0) Di(wa)) + ZEz < ZHZ' + Z |E;| := M, (26)
i=1 i=1

1 i=1

=

%

where H; is the bound of h;. In conclusion, the main results are presented in the following theorem.
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Theorem 2. Under Assumptions 1-4, consider the closed-loop adaptive stochastic system consisting
of the plant (5), the filters (6), control laws (18)—(20), and parameter update laws (21) and (22). If a
prior bound on the unknown constants Zil’ ; and li ; 1s available, then all the signals of the closed-loop
system are bounded in probability, and the tracking error can be limited to a small region near the origin
in the fourth moment sense. In addition, the adaptive control laws can be adjusted to make the region
arbitrarily small.

Proof. By adding two positive terms, Zf\il 0,077 1; and ZZ 1(|bi,s,
side of (25) and using inequality (26), we obtain

LV <Z(—czzz”

+ —| bl ICZIQ) +M
Yi

?

/'yi)cQC?, to the right-hand

N

bis,| =
@ Qe — T B ) 3 (e

max

—CV+T, (27)

where

. 2¢;
C: 12%15\] {401, W 209i,2c<i} ,

N
<Z|2) + M.

Z<09 r

i=1

T .

—1 2 | i
i N10:]” + 7

— %

It follows from Theorem 1 that z;, €;, 6;, and (:,:Z are bounded in probability. Because z;; and y,,
are bounded in probability, y; is also bounded in probability. Because y; and u; are bounded and A; is
Hurwitz, the variables v;;, &, 7;, and Z; are bounded in probability. Finally, ; is bounded by (7)-(9).
Hence, all signals are bounded in probability. Furthermore, also by Theorem 1, we have

E[V(t)] <e C'V(0) +C~'T, Vt>o. (28)

From the structure of the Lyapunov function V(x), we can easily obtain

E(ly — y|*) = <Z|yz yn|2> <E<N<g|zi,1|4>>

<ANE(V(t)) < 4Ne ©'V(0) + C7INT. (29)

The above inequality shows that one can choose suitable parameters 6, u, ¢, I';, and ~; such that C
is sufficiently large to guarantee that the tracking error converges to an arbitrarily small region near the
origin in the fourth moment sense.

6 Numerical example

A numerical example is given to illustrate the efficiency of our procedure in this section. Consider the
following interconnected systems:

01 21 y? 0 0
afl &) = T1,1 ar + Y1 Y1 a1,1 dt + urdt + i dwy,
T2 00 T2 0 a2 b1 0.1yy Sln(yQ) (30)

Y1 =111, Y1 = sin(2t),

01 0 0 0 0
af #1) = 20 qr 921 qr 4 usdt + , dw,
T2,2 00 22 Y2 1+ a2,2 by 0.1y2 sm(y1) (31)

Y2 = 221, Yro = Sint7
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Figure 1 (Color online) System state x1. Figure 2 (Color online) System state z2.

where (a1,1,a12)T = (0.2,0.3)T, (a2,1,a22)" = (0.6,0.9)T, by = 0.4, and by = 0.7 are unknown parame-
ters. The decentralized K-filters are designed as follows:
D30 = Aivio + (I2,2) T us,
i = Al + ki, (32)
= AE A+, i=1,2,

where k; = (ki 1, kiyg)T, and A; = Ap; —kil2,1. The local parameter update and control laws are given by

b; Ti,1 b;

aia | =Ti| 7o | —2co, | @i |

Qi Ti,3 a; 2

Til 0 .3 Do Vi02

Ti2 | = z3 Hioa+ P | T 4(;?1 (Isp)" — WMZ{B Hioa + P |
Ti3 Eioo+ Pi12 14 ' Eioo+ Pi12

G = ViXizey — 2¢¢, G,
2. 33

o1 = —CiXi — 702 ZiLs

AT 6041-71 A aaiJ b;
Ui = Q2 = Ci2zip+ Mo+ 0 —— +( — — 151
00; oG 0,2

where the design parameters are chosen asci 1 = a1 =2,¢120 = cap = 3,all 055 = 65,51 = phij = il =
1 except that d1,8 = 028 = 0.1, p1,2 = o2 = 10, and 71 = v2 = 1,11 =I'y = I5. The initial values are set
to x1 = (0.5, 1)T, 25 = (0.5,2)T,v10 = va0 = (0.2,0.3)T, 1 = (0.1,0.1)T, 2 = (0.2,0.4)™, =, ;(0) = 0.2,
and Z2;;(0) = 0.1. Figures 1 and 2 show the system states x; and xs. The outputs yi,y2 and the
reference signals ¥,.,,y,, are shown in Figures 3 and 4. It can be seen that the simulation results verify
the efficiency of our proposed scheme.

7 Concluding remarks

A decentralized adaptive output tracking controller is proposed for a class of interconnected stochas-
tic nonlinear systems with parametric uncertainties. The design procedure is backstepping-based and
constructive. A new differentiable function is introduced to counteract the nonlinear interactions in the
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Tracking

_ . . . . . -1.5
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Figure 3 (Color online) Output y1 and trajectory yr, . Figure 4 (Color online) Output y2 and trajectory yr,.

control design. It is proved that the designed decentralized output tracking controllers can guarantee the
boundedness of all the signals of the closed-loop system in probability. Further, the tracking error can

be limited to a small residual set around the origin in the fourth moment sense. Moreover, the residual

set can be adjusted by choosing suitable design parameters.
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