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Abstract We give an explicit description for a weight three generator of the coset vertex operator alge-

bra CL
ŝln

(l,0)⊗L
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(1,0)(Lŝln
(l + 1, 0)), for n > 2, l > 1. Furthermore, we prove that the commutant
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ŝl3
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(l+1, 0)) is isomorphic to the W-algebra W−3+ l+3
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(sl3), which confirms the conjecture

for the sl3 case that CLĝ(l,0)⊗Lĝ(1,0)(Lĝ(l+1, 0)) is isomorphic to W−h+ l+h
l+h+1

(g) for simply-laced Lie algebras g

with its Coxeter number h for a positive integer l.
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1 Introduction

Given a vertex operator algebra V and a vertex operator subalgebra U ⊆ V , CV (U) which is called the

commutant of U in V or coset construction, is the subalgebra of V which commutes with U . The coset

vertex algebra construction, initiated in [46], was introduced by Frenkel and Zhu [44]. Coset construction

is one of the major ways to construct new vertex operator algebras from given ones. It is widely believed

that the commutant CV (U) inherits properties from V and U in many ways. In particular, it is expected

that CV (U) is rational if both V and U are rational. No general results of this kind have been known so

far. Nevertheless, many interesting examples, especially coset vertex operator algebras related to affine

vertex operator algebras, have been extensively studied both in the physics and mathematics literature.

For coset parafermion vertex operator algebras one can refer to [8, 9, 15, 17, 26, 27, 29, 30], etc. For coset

vertex operator algebras related to tensor decompositions of affine vertex operator algebras one can refer

to [46–48,56–58], etc. See [2, 19,21,22,45], etc, for other examples.

Let ĝ and ĥ be the affine Kac-Moody Lie algebras associated to a complex simple Lie algebra g and its

Cartan subalgebra h, respectively. For k ∈ C such that k ̸= −h∨, where h∨ is the dual Coxter number

of g, let Lĝ(k, 0) and Lĥ(k, 0) be the associated simple vertex operator algebras with level k, respectively

(see [44, 59]). The commutant of the Heisenberg vertex operator algebra Lĥ(k, 0) in Lĝ(k, 0), denoted
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by K(g, k), is the so-called parafermion vertex operator algebra (see [65]). Parafermion vertex operator

algebras have been studied extensively (see [8,9,20,26,27,29,30,58]). Among other things, for a positive

integer k, the C2-cofiniteness of K(g, k) was established in [8, 30], the generators of K(g, k) were given

in [29], and the rationalities of K(sl2, k) and K(slk, 2) were established in [9] and [47,48], respectively.

Let Lĝ(1, 0) be the simple affine vertex operator algebra associated to the simple Lie algebra g with

level 1. For l ∈ Z>2, Lĝ(1, 0)
⊗l has a tensor product vertex operator algebra structure with Lĝ(l, 0) being a

vertex operator subalgebra. The commutant of Lĝ(l, 0) in Lĝ(1, 0)
⊗l is a simple vertex operator subalgebra

of Lĝ(1, 0)
⊗l. It was proved in [47] and in [56] independently that CL

ŝln
(1,0)⊗l(L

ŝln
(l, 0)) ∼= K(sll, n) as

vertex operator algebras, presenting a version of level-rank duality. The classification of irreducible

modules and the rationality of CL
ŝl2

(1,0)⊗l(L
ŝl2

(l, 0)) were established in [48]. Then by the level-rank

duality, the parafermion vertex operator algebra K(sll, 2) is rational for any l ∈ Z>2.

More generally, given a sequence of positive integers ℓ = (l1, . . . , ls), the tensor product vertex operator

algebra Lĝ(ℓ, 0) = Lĝ(l1, 0)⊗Lĝ(l2, 0)⊗ · · · ⊗ Lĝ(ls, 0) contains a vertex operator subalgebra isomorphic

to Lĝ(|ℓ|, 0) with |ℓ| = l1+ · · ·+ ls. On the other hand, the sequence ℓ defines a Levi subalgebra lℓ of sl|ℓ|.

Denote by Ll̂ℓ
(n, 0) the vertex operator subalgebra of L

ŝl|ℓ|
(n, 0) generated by lℓ. Set K(sl|ℓ|, lℓ, n) =

CL ̂sl|ℓ| (n,0)(Ll̂ℓ
(n, 0)). It was established in [47] that CL

ŝln
(ℓ,0)(Lŝln

(|ℓ|, 0)) ∼= K(sl|ℓ|, lℓ, n), which is a

more general version of rank-level duality. In particular, we have

CL
ŝln

(l,0)⊗L
ŝln

(1,0)(Lŝln
(l + 1, 0)) ∼= CL

ŝll+1
(n,0)(Lŝll

(n, 0)⊗ Lĥℓ
(n, 0)),

where hℓ is the subalgebra of the Cartan subalgebra of sll+1(C) commuting with sll(C), and ĥℓ is the

associated affine Lie algebra.

(The principal) W-algebras are one-parameter families of vertex algebras associated to simple Lie

algebras. First example of a W-algebra was introduced by Zamolodchikov [64] in an attempt to classify

extended conformal algebras with two generating fields. Since then there have been several approaches

to the construction of W-algebras (see [16,19,32,33,36,37,60,62]). W-algebras have also been studied as

extended Virasoro algebras (see [11–13,18,61]).

For k ∈ C, let Vĝ(k, 0) be the universal affine vertex operator algebra associated to the simple Lie

algebra g with level k. The associated (principal) affine W-algebra Wk(g), which is a vertex algebra, can

be realized as the cohomology of the BRST (Becchi, Rouet, Stora and Tyutin) complex of the quantum

Drinfeld-Sokolov reduction (see [35, 37]). From this point of view, W-algebras have been studied deeply

and extensively, and many remarkable results have been achieved recently (see [3–6, 51–54]). For some

earlier results, one can also refer to [10,14] and [34–41], etc. Among other things, it was established in [4]

that the character of each irreducible highest weight representation of Wk(g) is completely determined

by that of the corresponding irreducible highest weight representations of the affine Lie algebra ĝ. The

C2-cofiniteness and the rationality of the minimal series principal W-algebras were established in [6]

and [7], respectively.

Recall that [41] a rational number k with the denominator u ∈ N is called principal admissible if

u(k + h∨) > h∨, (u, r∨) = 1,

where h is the Coxeter number of g, h∨ is the dual Coxeter number of g, and r∨ is the maximal number

of the edges in the Dykin diagram of g. A principal admissible number k is called non-degenerate if the

denominator u is equal or greater than the Coxeter number h. For a non-degenerate admissible principal

number k, denote by Wk(g) the simple quotient of Wk(g), which are also called minimal series principal

W-algebras (see [6, 7, 41]).

One conjecture (see [18,41]) about minimal series principalW-algebras asserts thatWk(g) is isomorphic

to the commutant CLĝ(p,0)⊗Lĝ(1,0)(Lĝ(p+ 1, 0)) of Lĝ(p+ 1, 0) in Lĝ(p, 0)⊗ Lĝ(1, 0) for g being simply-

laced and k = −h∨ + p+h∨

p+h∨+1 , p ∈ Z+. This conjecture comes partially from the fact that Wk(g)

and CLĝ(p,0)⊗Lĝ(1,0)(Lĝ(p + 1, 0)) share the same normalized characters (see [41, 53]). If g = sl2(C),
then Wk(g) is the simple Virasoro vertex operator algebra L(cp, 0), where cp = 1 − 6

(p+2)(p+3) . For this
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case, the conjecture follows from the Goddard-Kent-Olive construction (see [46]). If g = sln(C) (n > 2)

and p = 1, it was proved in [9] that Wk(g) is isomorphic to the parafermion vertex operator algebra

K(sl2, n), with which the rationality of K(sl2, n) is established. Then the conjecture in this case follows

from the fact that K(sl2, n) ∼= CL
ŝln

(1,0)⊗2(L
ŝln

(2, 0)) (see [47,56]). For general l ∈ Z>1 and n ∈ Z>2, by

the level-rank duality and the reciprocity law given in [47],

CL
ŝln

(l,0)⊗L
ŝln

(1,0)(Lŝln
(l + 1, 0)) ∼= CK(sll+1,n)(K(sll, n)).

In this paper, we first give explicitly a generator of CK(sll+1,n)(K(sll, n)) of weight three. Then we prove

that the conjecture is true for the case that g = sl3(C).
The paper is organized as follows. In Section 2, we briefly review some basics on vertex operator

algebras. In Section 3, we recall some notation and facts about principal affine W-algebras. In Section 4,

we review parafermion vertex operator algebras and the level-rank duality for tensor power decompositions

of rational vertex operator algebras of type A. In Section 5, we study the coset vertex operator algebra

CK(sll+1,n)(K(sll, n)). The main results of this paper are stated in this part.

2 Preliminaries

In this section, we recall some notation and basic facts on vertex operator algebras (see [17,28,42,43,59,

66]).

Definition 2.1. A vertex operator algebra V = (V, Y,1, ω) is defined as follows:

(1) V =
⊕

n∈Z Vn is a Z-graded vector space over C equipped with a linear map Y :

V → (EndV )[[z, z−1]],

v 7→ Y (v, z) =
∑
n∈Z

vnz
−n−1, vn ∈ EndV ,

such that dimVn <∞, Vm = 0 if m << 0, and for any u, v ∈ V , vnu = 0 for sufficiently large n.

(2) There exist two distinguished vectors: the vacuum 1 ∈ V0, and the conformal vector ω ∈ V2
such that

Y (1, z) = id, limx→0Y (u, x)1 = u,

Y (ω, z) =
∑
n∈Z

L(n)z−n−2,

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c.

The complex number c is called the central charge of V . Moreover, L(0) = n on Vn, and for u ∈ V ,

[L(−1), Y (u, z)] =
d

dz
Y (u, z).

(3) For any u, v ∈ V , there exists n > 0 such that

(z1 − z2)
nY (u, z1)Y (v, z2) = (z1 − z2)

nY (v, z2)Y (u, z1).

Definition 2.2. Let (V,1, ω, Y ) be a vertex operator algebra. A weak V -module is a vector space M

equipped with a linear map

YM : V → End(M)[[z, z−1]],

v 7→ YM (v, z) =
∑

n∈Z vnz
−n−1, vn ∈ EndM

satisfying the following:

(1) vnw = 0 for n≫ 0, where v ∈ V and w ∈M .
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(2) YM (1, z) = idM .

(3) The Jacobi identity holds

z−1
0 δ

(
z1 − z2
z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1
−z0

)
YM (v, z2)YM (u, z1)

= z−1
2 δ

(
z1 − z0
z2

)
YM (Y (u, z0)v, z2). (2.1)

Definition 2.3. An admissible V -module is a weak V -module which carries a Z+-grading M =⊕
n∈Z+

M(n), such that if v ∈ Vr then vmM(n) ⊆M(n+ r −m− 1).

Definition 2.4. An ordinary V -module is a weak V -module which carries a C-gradingM =
⊕

λ∈CMλ,

such that

(1) dim(Mλ) <∞.

(2) Mλ+n = 0 for fixed λ and n≪ 0.

(3) L(0)w = λw = wt(w)w for w ∈ Mλ, where L(0) is the component operator of YM (ω, z) =∑
n∈Z L(n)z

−n−2.

It is easy to see that an ordinary V -module is an admissible one. If W is an ordinary V -module, we

simply call W a V -module.

We call a vertex operator algebra C2-cofinite if V/C2(V ) is finite-dimensional, where

C2(V ) = ⟨u−2v |u, v ∈ V ⟩

(see [66]). A vertex operator algebra is called rational if the admissible module category is semisimple

(see [28,66]). We have the following result from [1,28,66].

Theorem 2.5. If V is a vertex operator algebra satisfying the C2-cofinite property, V has only finitely

many irreducible admissible modules up to isomorphism. The rationality of of V also implies the same

result.

Let (V, Y,1, ω) be a vertex operator algebra and (U, Y,1, ω′) a vertex operator subalgebra of V . Set

CV (U) = {v ∈ V | [Y (u, z1), Y (v, z2)] = 0, u ∈ U}.

Recall from [44,59] that if ω′ ∈ U ∩ V2 and L(1)ω′ = 0, then

CV (U) = {v ∈ V |umv = 0, u ∈ U, m > 0}

is a vertex operator subalgebra of V with the conformal vector ω − ω′. We shall write

Y (ω′, z) =
∑
n∈Z

L′(n)z−n−2,

where we view the operators L′(n) as acting on V . We have the following result from [59].

Proposition 2.6. Let (V, Y,1, ω) be a vertex operator algebra and (U, Y,1, ω′) a vertex operator sub-

algebra of V . Then

CV (U) = KerV L
′(−1).

3 W-algebras for principle case

In this section, we recall some notation and facts on the W-algebras. W-algebras may be defined in

several ways. The definition here was given by using the quantum Drinfeld-Sokolov reduction (see [4,

34, 36, 40, 41, 51]). Throughout this section, k is a complex number with no restriction unless otherwise

stated.

Let g be a complex simple Lie algebra of rank l. Let (· | ·) be the normalized non-degenerate bilinear

form on g, i.e., (· | ·) = 1
2h∨ ·Killing form, where h∨ is the dual Coxeter number of g.
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Let e be a principal nilpotent element of g so that dim ge = l, where ge = {x ∈ g | [x, e] = 0}. By the

Jacobson-Morozov theorem, there exists an sl2-triple {e, f, h0} associated to e satisfying

[h0, e] = 2e, [h0, f ] = −2f, [e, f ] = h0.

Set

gj = {x ∈ g | [h0, x] = 2jx}, for j ∈ Z.

This gives a triangular decomposition g = n+ ⊕ h⊕ n−, where

h = g0, n+ =
⊕
j>1

gj , n− =
⊕
j>1

g−j .

Denote by ∆+ ⊂ h∗ the set of positive roots of g and by {α1, . . . , αl} the subset of simple roots. Let n∗+
be the dual of n+. Define χ̄+ ∈ n∗+ by

χ̄+(x) = (f |x), for x ∈ n+.

Then χ̄+ is a character of n+, i.e., χ̄+([n+, n+]) = 0. Let ĝ be the non-twisted affine Lie algebra associated

to g (see [49] for details), i.e.,

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ CD,

with the commutation relations

[X(m), Y (n)] = [X,Y ](m+ n) +mδm+n,0(X |Y )K,

[D,X(m)] = mX(m), [K, g] = 0

for X,Y ∈ g, m,n ∈ Z, where X(n) = X ⊗ tn. The invariant symmetric bilinear form (· | ·) is extended
from g to ĝ as follows:

(X(m) |Y (n)) = (X |Y )δm+n,0, (D |K) = 1,

(X(m) |D) = (X(m) |K) = (D |D) = (K |K) = 0.

Denote

ĥ = h⊕ CK ⊕ CD,
ĝ+ = n+ ⊗ C[t]⊕ (n− ⊕ h)⊗ C[t]t,
ĝ− = n− ⊗ C[t−1]⊕ (n+ + h)C[t−1]t−1.

Then ĝ has the triangular decomposition ĝ = ĝ+ ⊕ ĥ ⊕ ĝ−. Let ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ be the dual of ĥ,

where Λ0 and δ are the dual elements of K and D, respectively. For λ ∈ ĥ∗, the number λ(K) is called

the level of λ. Let ∆̂ be the set of roots of ĝ, ∆̂+ the set of positive roots, and ∆̂− = −∆̂+. Denote by

∆̂re and ∆̂im the set of real roots and the set of imaginary roots, respectively. Then

∆̂im = {nδ |n ∈ Z}, ∆̂re
+ = {α+ nδ,−α+mδ |α ∈ ∆+, n ∈ Z>0,m ∈ Z>1}.

Let Vĝ(k, 0) be the universal vertex operator algebra associated to g with level k (see [44, 49, 59] for

details). Let Cl be the superalgebra generated by odd generators: ψα(n), α ∈ ∆, n ∈ Z with the following

super Lie relations:

[ψα(m), ψβ(n)]+ = δα+β,0δm+n,0,

for α, β ∈ ∆, m,n ∈ Z. Here, ψα is regarded as the element of Cl corresponding to the root vector

eα(n) ∈ ĝα. Let F be the irreducible Cl-module generated by the cycle vector 1 such that

ψα(n)1 = 0, if α+ nδ ∈ ∆̂re
+ .
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F is naturally a vertex operator superalgebra with the vacuum vector 1 and the fields defined by

Y (ψα(−1)1, z) = ψα(z) :=
∑
n∈Z

ψα(n)z
−n−1, for α ∈ ∆+,

Y (ψα(0)1, z) = ψα(z) :=
∑
n∈Z

ψα(n)z
−n, for α ∈ ∆−.

The conformal vector is chosen as

ω =
∑

α∈∆+

ψ−α(−1)ψα(−1)1.

Let

Ck(g) = Vĝ(k, 0)⊗F

be the tensor product of the vertex operator algebra Vĝ(k, 0) and the vertex superalgebra F . Then Ck(g)

is a vertex algebra. Define vertex operators Qst
+(z) and ψ+(z) as follows:

Qst
+(z) =

∑
n∈Z

Qst
+(n)z−n−1 :=

∑
α∈∆+

eα(z)ψ−α(z)−
1

2

∑
α,β,γ∈∆+

cγα,βψ−α(z)ψ−β(z)ψγ(z),

ψ+(z) =
∑
n∈Z

ψ+(n)z
−n :=

∑
α∈∆+

χ̄+(eα)ψ−α(z),

where χ̄+ is defined as above, and cγα,β is the structure constant of g, i.e., for α, β ∈ ∆+, eα ∈ gα, eβ ∈ gβ ,

[eα, eβ ] =
∑

γ∈∆+

cγα,βeγ .

As in [4], by abuse notation, we set

Qst
+ := Qst

+(0) =
∑

α∈∆+,n∈Z
eα(−n)ψ−α(n)−

1

2

∑
α,β,γ∈∆+,s+r+m=0

cγα,βψ−α(s)ψ−β(r)ψγ(m),

χ+ := χ+(1) =
∑

α∈∆+

χ̄+(eα)ψ−α(1),

Q+ := Qst
+ + χ+.

We have the following lemma (see [4, 40]).

Lemma 3.1. It holds that (Qst
+)2 = χ2

+ = [Qst
+ , χ+] = 0, Q2

+ = 0.

Let F =
⊕

i∈Z F i be an additional Z-gradation of the vertex algebra F defined by

deg 1 = 0, degψα(n) =

{
1, for α ∈ ∆−,

−1, for α ∈ ∆+.

For i ∈ Z, set
Ci

k(g) = Vĝ(k, 0)⊗F i.

This gives a Z-gradation of Ck(g):

Ck(g) =
⊕
i∈Z

Ci
k(g).

By definition,

Q+ · Ci
k(g) ⊂ Ci+1

k (g).

Then by Lemma 3.1, (Ck(g), Q+) is a BRST complex of vertex algebras in the sense of [4, Subsection 3.15]

(see also [40]). This complex is called the BRST complex of the quantized Drinfeld-Sokolov (“+”)

reduction (see [4,37,40]). The following assertion was proved by Feigin and Frenkel [37] for generic k, by

de Boer and Tjin [23] for k in the case that g = sln, and by Frenkel and Ben-Zvi [40] for the general case.
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Theorem 3.2. The cohomology Hi(Ck(g)) is zero for all i ̸= 0.

Set

Wk(g) := H0(Ck(g)).

Then Wk(g) is a vertex operator algebra. We have the following result from [40].

Theorem 3.3. The vertex operator algebra H0(Ck(g)) is strongly generated by elements of degrees

di + 1, i = 1, 2, . . . , l, where di is the i-th exponent of g and l is the rank of g.

Denote by Wk(g) the unique simple quotient of Wk(g) at a non-critical level k. The following theorem

has been proved in [63] in the case that g = sl2(C)1) and in [25] in the case that g = sl3(C) and in [7] for

the general case.

Theorem 3.4. The simple W-algebra Wk(g) is rational (and C2-cofinite [6]), and the set of isomor-

phism classes of minimal series representations of Wk(g) forms the complete set of the isomorphism

classes of simple modules over Wk(g), if k satisfies k + h∨g = p
q ∈ Q>0, (p, q) = 1 and{

p > h∨g , q > hg, if (q, r∨) = 1,

p > hg, q > r∨h∨Lg, if (q, r∨) = r∨,

where hg is the Coxeter number of g, h∨g is the dual Coxeter number of g, Lg is the Langlands dual Lie

algebra of g and r∨ is the maximal number of the edges in the Dykin diagram of g.

The following conjecture is well known (see [18,41,55]).

Conjecture 3.5. Let g be a simply-laced simple Lie algebra over C and h its Coxeter number. Then

for l ∈ Z+ and k = −h+ l+h
l+h+1 ,

Wk(g) ∼= CLĝ(l,0)⊗Lĝ(1,0)(Lĝ(l + 1, 0)).

4 Level-rank duality

For k ∈ Z+ and a complex finite-dimensional simple Lie algebra g with normalized non-degenerate bilinear

form, let ĝ be the corresponding affine Lie algebra and Lĝ(k, 0) be the simple vertex operator algebra

associated with the integrable highest weight module of ĝ with level k. Let h be a Cartan subalgebra of g

and Lĥ(k, 0) the associated Heisenberg vertex operator subalgebra of Lĝ(k, 0). Let

K(g, k) = {v ∈ Lĝ(k, 0) | [Y (u, z1), Y (v, z2)] = 0, u ∈ Lĥ(k, 0)}.

Then K(g, k) is the so-called parafermion vertex operator algebra (see [15,27]).

Let s ∈ Z>2 and ℓ = (l1, . . . , ls) such that l1, . . . , ls ∈ Z+. Let Lĝ(li, 0) be the simple vertex operator

algebra associated with the integrable highest weight module of ĝ with level li, i = 1, 2, . . . , s. Then we

have the tensor product vertex operator algebra

V = Lĝ(l1, 0)⊗ Lĝ(l2, 0)⊗ · · · ⊗ Lĝ(ls, 0).

Denote

l = |ℓ| =
s∑

i=1

li.

g can be naturally imbedded into the weight one subspace of V diagonally as follows:

g ↪→ V1 ⊆ V,

a 7→ a(−1)1⊗ 1⊗ · · · ⊗ 1+ 1⊗ a(−1)1⊗ 1⊗ · · · ⊗ 1+ 1⊗ · · · ⊗ 1⊗ a(−1)1.

It is known that the vertex operator subalgebra U of V generated by g is isomorphic to the simple vertex

operator algebra Lĝ(l, 0) (see [44,49,59]). Let CV (U) be the commutant of U in V . We have the following

lemma (see [47]).

1) Beilinson A, Feigin B, Mazur B. Introduction to algebraic field theory on curves. 1993
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Lemma 4.1. CV (U) is a simple vertex operator subalgebra of V .

Denote

s0 = 0, sj = l1 + l2 + · · ·+ lj , 1 6 j 6 s.

For lk > 2, let sllk(C) be the simple Lie subalgebra of sll(C) consisting of matrices A = (aij)l×l ∈
sll(C) such that aij = 0 for all the pairs (i, j) such that at least one of i and j is not in the set

{sk−1 + 1, sk−1 + 2, . . . , sk}. Let hℓ be the abelian subalgebra of sll(C) consisting of diagonal matrices

A ∈ sll(C) such that [A,B] = 0, for all B ∈ sllk(C) such that lk > 2. Then[
hℓ,

s⊕
k=1,lk>2

sllk(C)
]
= 0.

Set

lℓ = hℓ
⊕( s⊕

k=1,lk>2

sllk(C)
)
.

Then lℓ is a Levi subalgebra of sll(C) and hℓ is the center of lℓ which is contained in the (fixed) Cartan

subalgebra of sll. Denote by Ll̂ℓ
(n, 0) the vertex operator subalgebra of L

ŝll
(n, 0) generated by lℓ. It is

easy to see that

Ll̂ℓ
(n, 0) ∼=

( s⊗
k=1,lk>2

L
ŝllk

(n, 0)

)⊗
Lĥℓ

(n, 0), (4.1)

where Lĥℓ
(n, 0) is the Heisenberg vertex operator subalgebra of L

ŝll
(n, 0) generated by hℓ. We denote

K(sll, lℓ, n) = CL
ŝll

(n,0)(Ll̂ℓ
(n, 0)).

The following theorem comes from [47].

Theorem 4.2. We have the following level-rank duality and the reciprocity law:

CL
ŝln

(l1,0)⊗···⊗L
ŝln

(lm,0)(Lŝln
(l, 0)) ∼= K(sll, lℓ, n),

K(sll, lℓ, n) ∼= CL
ŝln

(l1,0)⊗···⊗L
ŝln

(ls,0)(Lŝln
(l, 0)) ∼= CK(sll,n)(K(sll1 , n)⊗ · · · ⊗K(slls , n)).

Remark 4.3. If l1 = · · · = lm = 1, then by Theorem 4.2,

CL
ŝln

(1,0)⊗l(L
ŝln

(l, 0)) ∼= K(sll, n),

which was also established independently by Lam [56].

5 The commutant of L
ŝln

(l+ 1,0) in L
ŝln

(l,0)⊗L
ŝln

(1,0)

Recall from [9, 47, 56] that CL
ŝln

(l,0)⊗L
ŝln

(1,0)(Lŝln
(l + 1, 0)) ∼= Wk(sln) for l = 1 and k = −n+ n+1

n+2 . So

in the following we always assume that l > 2.

By Theorem 4.2, we have

CL
ŝln

(l,0)⊗L
ŝln

(1,0)(Lŝln
(l + 1, 0)) ∼= CL

ŝll+1
(n,0)(Lŝll

(n, 0)⊗ Lĥl
(n, 0))

∼= CK(sll+1,n)(K(sll, n)), (5.1)

where L
ŝll
(n, 0) is the vertex operator subalgebra of L

ŝll+1
(n, 0) associated to the simple root system

{αi, 1 6 i 6 l−1} and Lĥl
(n, 0) is the Heisenberg vertex operator subalgebra of L

ŝll+1
(n, 0) generated by

hl = C
( l∑

i=1

ihαi

)
.
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Let {eα, fα, hαi |α ∈ ∆+, 1 6 i 6 l} be a Chevalley basis of sll+1(C), and let eα, fα and hα be a

standard basis of the simple Lie algebra sl2(C) associated to α ∈ ∆+. For α ∈ ∆+, denote by Wα

and ωα the weight 3 generator and the Virasoro vector of K(sll+1, n) associated to α introduced in [27],

respectively. Then

ωα =
1

2n(n+ 2)
[−nhα(−2)1− hα(−1)21+ 2neα(−1)fα(−1)1],

Wα = n2hα(−3)1+ 3nhα(−2)hα(−1)1+ 2hα(−1)31

− 6nhα(−1)eα(−1)fα(−1)1+ 3n2(eα(−2)fα(−1)1− eα(−1)fα(−2)1).

For α ∈ ∆+, we denote by W 4,α and W 5,α the primary vectors of weight 4 and weight 5 of K(sll+1, n)

associated to α introduced in [27], respectively. From [27], if n = 3, then both W 4,α and W 5,α are zeros

for every α ∈ ∆+, and K(sll+1, n) is generated by {Wα, α ∈ ∆+}.
Denote

V = CK(sll+1,n)(K(sll, n)).

Then V has the conformal vector ω with the central charge cV as follows:

ω =
n+ 2

n+ l + 1

( ∑
16i6l

ωαi+···+αl −
∑

16i6j6l−1

1

(n+ l)
ωαi+···+αj

)
,

cV =
l(n− 1)(2n+ l + 1)

(n+ l)(n+ l + 1)
. (5.2)

For α, β ∈ ∆, denote by cα,β ∈ C the structure constant, i.e.,

[eα, eβ ] = cα,βeα+β , α, β, α+ β ∈ ∆.

It is easy to check that for α, β ∈ ∆+ such that α+ β ∈ ∆+,

ωα
1W

β =
1

n+ 2
[−3nhβ(−2)hα(−1)− 6hα(−1)hβ(−1)2 + 6n(hα(−1)− hβ(−1))eβ(−1)fβ(−1)

+ 6nhβ(−1)(eα+β(−1)fα+β(−1)− eα(−1)fα(−1)) + 3n2(eβ(−2)fβ(−1)− eβ(−1)fβ(−2))

− 3n2(eα(−2)fα(−1)− eα(−1)fα(−2) + eα+β(−2)fα+β(−1)− eα+β(−1)fα+β(−2))

+ 3n2cα,β(fα(−1)eα+β(−1)fβ(−1) + eα(−1)fα+β(−1)eβ(−1))]1.

The following lemmas can be checked directly.

Lemma 5.1. For α, β ∈ ∆+ such that α+ β ∈ ∆, we have

ωα
1W

α+β = ωα
1W

β +
1

n+ 2
(2Wα+β +Wα − 2W β),

ωα
1W

β + ωβ
1W

α =
1

n+ 2
(Wα +W β −Wα+β).

Lemma 5.2. For 1 6 p 6 l − 1, we have

eαp(0)

( ∑
16i6j<l

2(n+ 2)w
αi+···+αj

1 Wαj+1+···+αl −
l∑

i=1

(n+ 4i− 2)Wαi+···+αl

)
= (2n2 − 12np+ 16)eαp(−3)1+ (−3n2 + 6np− 12p− 12n− 12)hαp(−1)eαp(−2)1

+ (3n2 + 6np)hαp(−2)eαp(−1)1+ (6n+ 12p)hαp(−1)2eαp(−1)1

− 12n
∑

16i6p−1

cαp,αi+···+αp−1hαp(−1)eαi+···+αp(−1)fαi+···+αp−1(−1)1

− 12n
∑

16i6p

eαp(−1)eαi+···+αp(−1)fαi+···+αp(−1)1
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+ 12n
∑

16i6p−1

eαp(−1)eαi+···+αp−1(−1)fαi+···+αp−1(−1)1

− 24
∑

16i6p−1

hαi+···+αp−1(−1)(eαp(−2)1− hαp(−1)eαp(−1)1).

Lemma 5.3. For 1 6 p 6 l − 1, we have

eαp(0)

( ∑
16i6j<q6l−1

2(n+ 2)w
αi+···+αj

1 Wαj+1+···+αq −
∑

16i6q6l−1

(n+ 4i− 2)Wαi+···+αq

)

= (n+ l)

[
(2n2 − 12np+ 16)eαp(−3)1+ (−3n2 + 6np− 12p− 12n− 12)hαp(−1)eαp(−2)1

+ (3n2 + 6np)hαp(−2)eαp(−1)1+ (6n+ 12p)hαp(−1)2eαp(−1)1

− 12n
∑

16i6p−1

cαp,αi+···+αp−1hαp(−1)eαi+···+αp(−1)fαi+···+αp−1(−1)1

− 12n
∑

16i6p

eαp(−1)eαi+···+αp(−1)fαi+···+αp(−1)1

+ 12n
∑

16i6p−1

eαp(−1)eαi+···+αp−1(−1)fαi+···+αp−1(−1)1

− 24
∑

16i6p−1

hαi+···+αp−1(−1)(eαp(−2)1− hαp(−1)eαp(−1)1)

]
.

Lemma 5.4. For α, β, γ ∈ ∆+, we have

ωγ
2W

α = 0, ωγ
2ω

α
1W

β = 0.

Denote

X(0) = 0, X(1) = −(n+ 2)Wα1 ,

X(p) = 2(n+ 2)
∑

16i6j<q6p

ω
αi+···+αj

1 Wαj+1+···+αq −
∑

16i6q6p

(n+ 4i− 2)Wαi+···+αq ,

for p > 2. Set

W =
1

n+ l
X(l−1) − 1

n+ l + 1
X(l).

We have the following result.

Theorem 5.5. For l > 1, W is a primary vector of V = CK(sll+1,n)(K(sll, n)) of weight 3.

Proof. It follows from Lemmas 5.2 and 5.3 that for 1 6 p 6 l − 1,

eαp(0)W = 0. (5.3)

Consider L
ŝll+1

(n, 0) as a module of the simple Lie algebra generated by eαp , fαp and hαp , for 1 6 p 6 l−1.

Then (5.3) implies that W is a highest weight vector. Since hαp(0)W = 0 for 1 6 p 6 l, we have

fαp(0)W = 0, 1 6 p 6 l − 1. Notice that W ∈ K(sll+1, n). It follows that W ∈ CK(sll+1,n)(K(sll, n)).

Lemma 5.4 implies that W is a primary element.

For α ∈ ∆+, from [27] we have the following lemma.

Lemma 5.6. It holds that

Wα
5 W

α = 12n3(n− 2)(n− 1)(3n+ 4)1,

Wα
3 W

α = 36n3(n− 2)(n+ 2)(3n+ 4)ωα,

Wα
2 W

α = 18n3(n− 2)(n+ 2)(3n+ 4)ωα
−21.
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The following lemmas can be checked directly.

Lemma 5.7. For α, β ∈ ∆+ such that α ̸= ±β

Wα
5 W

β = 6(α |β)n3(n− 1)(n− 2)1,

Wα
2 W

β = 18(α |β)n3(n− 2)(n+ 2)2ωα
0 ω

β ,

Wα
3 W

β =


−18n3(n− 2)(n+ 2)(ωα + ωβ − ωα+β), if (α |β) = −1,

18n3(n− 2)(n+ 2)(ωα + ωβ − ωα−β), if (α|β) = 1,

0, if (α |β) = 0.

Lemma 5.8. For α, β, γ ∈ ∆+ such that (α|β) = −1, we have

Wα
3 ω

α
1W

β = 18n3(n− 2)[−(n+ 4)ωβ + (n+ 4)ωα+β − 3(n+ 2)ωα],

W β
3 ω

α
1W

β = 18n3(n− 2)[(n+ 4)ωα + 3(3n+ 4)ωβ − (n+ 4)ωα+β ],

Wα+β
3 ωα

1W
β = 18n3(n− 2)(n+ 1)(ωα − ωβ − 3ωα+β),

W γ
3 ω

α
1W

β = 18n3(n− 2)(ωα+β−γ + ωβ − ωα+β − ωβ−γ), if (γ |α) = 0, (γ |β) = 1,

W γ
3 ω

α
1W

β = 18n3(n− 2)(ωα+β + ωβ+γ − ωα+β+γ − ωβ), if (γ |α) = 0, (γ |β) = −1,

W γ
3 ω

α
1W

β = 18n3(n− 2)(ωα + 2ωβ + 3ωγ − ωα+γ − 2ωγ−β), if (γ |α) = −1, (γ |β) = 1,

W γ
3 ω

α
1W

β = 0, if (α | γ) = 1, (γ |β) = 0.

By Lemmas 5.6–5.8, we can deduce the following result.

Lemma 5.9. It holds that

W5W =
6n3l(n− 1)(n− 2)(n+ 2l)(2n+ l + 1)(3n+ 2l + 2)

(n+ l + 1)(n+ l)
1,

W3W = 36n3(n− 2)(n+ 2l)(3n+ 2l + 2)ω.

Notice that

W2W = −W2W +
∞∑
j=1

(−1)j+1

j!
L(−1)jWj+2W.

So by Lemma 5.9, we have

W2W ∈ ⟨ω⟩, (5.4)

where ⟨ω⟩ is the Virasoro vertex operator algebra generated by the conformal vector ω of V .

For k + n = n+l
n+l+1 , let Ṽ = Wk(sln) be the W-algebra associated to sln. Denote by ω̃ its conformal

vector. Let W̃ be a weight-three primary vector of Wk(sln) such that

(W̃ , W̃ ) =
6n3l(n− 1)(n− 2)(n+ 2l)(2n+ l + 1)(3n+ 2l + 2)

(n+ l + 1)(n+ l)
1. (5.5)

Then by the fusion rules of the Virasoro algebra, we have

W̃3W̃ = 36n3(n− 2)(n+ 2l)(3n+ 2l + 2)ω̃. (5.6)

Note that cV = cṼ . We denote c = cV = cṼ .

In view of (5.1), the character of V has been given in [53, Theorem 3.1]. This coincides with the

character of Ṽ that was conjectured in [41, Conjecture 3.4− and Proposition 3.4] and proved in [4, Main

Theorem 1]. Therefore we have the following.

Lemma 5.10. V and Ṽ share the same characters.

Recall from Theorem 3.4 that Wk(g) is rational if k = −h+ p+h
p+h+1 , for some p ∈ Z+. Then by [31] the

Virasoro vertex operator subalgebra of Wk(g) generated by ω̃ is simple, denoted by L(c, 0). The following

lemma follows from the OPE given in [40, Subsection 15.3.2].
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Lemma 5.11. Let g = sl3 and k = −h+ l+h
l+h+1 . Then W̃iW̃ ∈ L(c, 0), for all i > 0.

Recall from (5.2) that for n = 3, c = 2l(l+7)
(l+3)(l+4) . Since l > 2, we have c > 1. By [50] the Virasoro vertex

operator subalgebra of V generated by ω is simple. We identify the simple Virasoro vertex operator

subalgebra L(c, 0) inside V and Ṽ . By [24, Proposition 3.3], both V and Ṽ are completely reducible

L(c, 0)-modules. We have the following lemma.

Lemma 5.12. Assume that n = 3. Then WiW = W̃iW̃ ∈ L(c, 0), for i > 0.

Proof. By Lemmas 5.11 and 5.9, (5.5), and the fusion rules of Virasoro vertex operator algebras, it is

enough to prove that WiW ∈ L(c, 0). By Lemma 5.9 and (5.4), WiW ∈ L(c, 0), i > 2. Then by the

skew-symmetry, we only need to show that W1W ∈ L(c, 0). Recall from Theorem 3.3 that Ṽ = Wk(sl3)

is strongly generated by ω̃ and W̃ . Thus, (Wk(sl3))4 = (L(c, 0))4 + CL(−1)W̃ . Moreover, the character

formula of Wk(sl3) obtained in [4] shows that

(Wk(sl3))4 = (L(c, 0))4 ⊕ CL(−1)W̃ .

Then by Lemma 5.10, we may assume that

W1W = aL(−1)W + u,

for some u ∈ L(c, 0) and a ∈ C. If a ̸= 0, then

L(1)(W1W − u) = aL(1)L(−1)W = 6aW. (5.7)

On the other hand, we have

L(1)W1W =
2∑

i=0

(
2

i

)
(ωiW )3−iW = 3W2W ∈ L(c, 0),

contradicting (5.7). We deduce that a = 0, which implies that W1W ∈ L(c, 0).

Denote by U the vertex operator subalgebra of V generated by W . Then by Lemma 5.12, for n = 3,

U is linearly spanned by

S = {L(−ms) · · ·L(−m1)W−kp · · ·W−k11, kp > · · · > k1 > 1,

n ∈ Z, ms > · · · > m1 > 1, s, p > 0}.

From Theorem 3.3, for n = 3, Ṽ = Wk(sln) is linearly spanned by

S̃ = {L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11, kp > · · · > k1 > 1,

n ∈ Z, ms > · · · > m1 > 1, s, p > 0}.

For any

u =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W−rj1 · · ·W−rjpj
1,

where q > 1, tj , pj > 0, nj1, . . . , njtj , rj1, . . . , rjpj ∈ Z+, j = 1, 2, . . . , q, we always denote

ũ =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W̃−rj1 · · · W̃−rjpj
1.

We have the following lemma.

Lemma 5.13. For m ∈ Z and

u =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W−rj1 · · ·W−rjpj
1,
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where q > 1, tj , pj > 0, nj1, . . . , njtj , rj1, . . . , rjpj ∈ Z+, j = 1, 2, . . . , q, if

Wmu = v

is a linear combination of vectors from S, then

W̃mũ = ṽ.

Proof. We may assume that u is homogeneous. We prove the lemma by induction on the weight of u.

If wtu 6 3, the lemma is true by the fact that (W,W ) = (W̃ , W̃ ) and the fusion rules of the Virasoro

algebra L(c, 0). Suppose that the lemma holds for homogeneous u such that wtu < N . We now assume

that wtu = N . For each monomial uj = L(−nj1) · · ·L(−njtj )W−rj1 · · ·W−rjpj
1, let Wmuj = vj be a

linear combination of elements in S. It is obvious that we may assume that tj = 0. If m 6 −rj1, then
we have W̃mũj = ṽj . If m > −rj1, we have

Wmuj =WmW−rj1 · · ·W−rjpj
1

=
∞∑
s=0

(
m

s

)
(WsW )m−rj1−sW−rj2 · · ·W−rjpj

1+W−rj1WmW−rj2 · · ·W−rjpj
1,

W̃muj = W̃mW̃−rj1 · · · W̃−rjpj
1

=

∞∑
s=0

(
m

s

)
(W̃sW̃ )m−rj1−sW̃−rj2 · · · W̃−rjpj

1+ W̃−rj1W̃mW̃−rj2 · · · W̃−rjpj
1.

Then the lemma follows from Lemma 5.12 and the inductive assumption.

Lemma 5.14. Suppose that n = 3. For any q > 1, tj , pj > 0, nj1, . . . , njtj , rj1, . . . , rjpj ∈ Z+,

j = 1, 2, . . . , q, if

u =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W−rj1 · · ·W−rjpj
1 = 0

for some bj ∈ C, then

ũ =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W̃−rj1 · · · W̃−rjpj
1 = 0.

Proof. We may assume that u is a linear combination of homogeneous elements having the same weight.

Suppose that ũ ̸= 0. Since Wk(sln) is self-dual and generated by W̃ , there is W̃r1W̃r2 · · · W̃rq1 ∈ Wk(sln)

such that

(ũ, W̃r1W̃r2 · · · W̃rq1) ̸= 0. (5.8)

Claim. For any kp > · · · > k1 > 1, q1, q2, . . . , qt ∈ Z, ms > · · · > m1 > 1, p, t > 0,

(L(−ms) · · ·L(−m1)W−kp · · ·W−k11,Wq1Wq2 · · ·Wqt1)

= (L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11, W̃q1W̃q2 · · · W̃qt1). (5.9)

We may assume that

wt(L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11) = wt(W̃q1W̃q2 · · · W̃qt1).

We prove (5.9) by induction on wt(L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11). By Lemma 5.9 and (5.5), (5.9)

holds if wt(L(−ms) · · ·L(−m1)W̃−kp
· · · W̃−k1

1) 6 3. Now assume that the claim holds for

wt(L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11) < N.
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Then by Lemma 5.12, inductive assumption, and the invariance of the bilinear form, the claim holds for

L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11 such that wt(L(−ms) · · ·L(−m1)W̃−kp · · · W̃−k11) = N .

By the claim and (5.8), we have

(u,Wq1Wq2 · · ·Wqt1) ̸= 0,

which contradicts the assumption that u = 0.

Theorem 5.15. For n = 3 and k = −n+ n+l
n+l+1 , we have CK(sll+1,n)(K(sll, n)) ∼= Wk(sln).

Proof. Define φ : U → Ṽ as follows: for any

u =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W−rj1 · · ·W−rjpj
1,

where q > 1, tj , pj > 0, nj1, . . . , njtj , rj1, . . . , rjpj ∈ Z+, j = 1, 2, . . . , q,

φ(u) = ũ =

q∑
j=1

bjL(−nj1) · · ·L(−njtj )W̃−rj1 · · · W̃−rjpj
1.

By Lemmas 5.14 and 5.12, φ is a surjective vertex operator algebra homomorphism from U to Ṽ . Since

U ⊆ V , and V and Ṽ share the same characters, we deduce that U = V and φ is an isomorphism.

Acknowledgements This work was supported by Japan Society for the Promotion of Science Grants (Grant

Nos. 25287004 and 26610006) and National Natural Science Foundation of China (Grant Nos. 11371245 and

11531004).

References

1 Abe T, Buhl G, Dong C. Rationality, regularity, and C2 co-finiteness. Trans Amer Math Soc, 2004, 356: 3391–3402

2 Adamovic D, Perse O. The vertex algebra M(1)+ and certain affine vertex algebras of level −1. SIGMA Symmetry

Integrability Geom Methods Appl, 2012, doi: https://doi.org/10.3842/SIGMA.2012.040

3 Arakawa T. Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math

J, 2005, 130: 435–478

4 Arakawa T. Representation theory of W-algebras. Invent Math, 2007, 169: 219–320

5 Arakawa T. Rationality of Bershadsky-Polyalov vertex algebras. Comm Math Phys, 2013, 323: 627–633

6 Arakawa T. Associated varieties of modules over Kac-Moody algebras and C2-cofiniteness of W-algebras. Int Math

Res Not IMRN, 2015, 22: 11605–11666

7 Arakawa T. Rationality of W-algebras: Principal nilpotent cases. Ann of Math (2), 2015, 182: 565–694

8 Arakawa T, Lam C, Yamada H. Zhu’s algebra, C2-algebras and C2-cofiniteness of parafermion vertex operator algebras.

Adv Math, 2014, 264: 261–295

9 Arakawa T, Lam C, Yamada H. Parafermion vertex operator algebras and W-algebras. ArXiv:1701.06229, 2017

10 Arakawa T, Molev A. Explicit generators in rectangular affine W-algebras of type A. Lett Math Phys, 2017, 107:

47–59

11 Bais F A, Bouwknegt P, Schoutens K, et al. Extensions of the Virasoro algebra constructed from Kac-Moody algebras

using higher order Casimir invariants. Nuclear Phys B, 1988, 304: 348–370

12 Bais F A, Bouwknegt P, Schoutens K, et al. Coset construction for extended Virasoro algebras. Nuclear Phys B, 1988,

304: 371–391

13 Bilal A, Gervais J-L. Conformal theories with non-linearly extended Virasoro symmetries and Lie algebra classification.

In: Advanced Series in Mathematical Physics, vol. 7. Singapore: World Scientific, 1989, 483–526

14 Bershadsky M, Ooguri H. Hidden SL(w)-symmetry in conformal field theory. Comm Math Phys, 1989, 126: 49–84

15 Blumenhagen R, Eholzer W, Honecker A, et al. Coset realization of unifying W -algebras. Internat J Modern Phys A,

1995, 10: 2367–2430

16 Blumenhagen R, Flohr M, Kleim A, et al. H-algebras with two and three generators. Nuclear Phys B, 1991, 354:

255–289

17 Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068–3071

18 Bouwknegt P, Schoutens K. W-symmetry in conformal field theory. Phys Rep, 1993, 223: 183–276

19 Cappelli A, Georgiev L S. Todorov I T. Parafermion Hall states from coset projections of abelian conformal theories.

Nuclear Phys B, 2001, 599: 499–530



Arakawa T et al. Sci China Math February 2018 Vol. 61 No. 2 205

20 Chen T, Lam C. Extension of the tensor product of unitary Virasoro vertex operator algebra. Comm Algbra, 2007,

35: 2487–2505

21 Creutzig T, Linshaw A R. Cosets of affine vertex algebras inside large structures. ArXiv:1407.8512v3, 2014

22 de Boer J, Feher L, Honecker A. A class of W-algebras with infinitely generated classical limit. Nuclear Phys B, 1994,

420: 409–445

23 de Boer J, Tjin T. The relation between quantum W algebras and Lie algebras. Comm Math Phys, 1994, 160: 317–332

24 Dong C, Jiang C. A Characterization of Vertex Operator Algebra L( 1
2
, 0) ⊗ L( 1

2
, 0). Comm Math Phys, 2010, 296:

69–88

25 Dong C, Lam C, Tanabe T, et al. Z3 symmetry and W3 algebra in lattice vertex operator algebras. Pacific J Math,

2004, 215: 245–296

26 Dong C, Lam C, Wang Q, et al. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323: 371–381

27 Dong C, Lam C, Yamada H. W -algebras related to parafermion vertex operator algebras. J Algebra, 2009, 322:

2366–2403

28 Dong C, Li H, Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310: 571–600

29 Dong C, Wang Q. The structure of parafermion vertex operator algebras: General case. Comm Math Phys, 2010, 299:

783–792

30 Dong C, Wang Q. On C2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328: 420–431

31 Dong C, Zhang W. On classification of rational vertex operator algebras with central charges less than 1. J Algebra,

2008, 320: 86–93

32 Fateev V A, Lukyanov S L. The models of two-dimensional conformal quantum field theory with Zn symmetry. Internat

J Modern Phys A, 1988, 3: 507–520

33 Fateev V A, Zamolodchikov A B. Conformal quantum field theory models in two dimensions having Z3 symmetry.

Nuclear Phys B, 1987, 280: 644–660

34 Feigin B, Frenkel E. Representations of affine Kac-Moody algebras, bosonization and resolutions. Lett Math Phys,

1990, 19: 307–317

35 Feigin B, Frenkel E. Quantization of the Drinfeld-Sokolov reduction. Phys Lett B, 1990, 246: 75–81

36 Feigin B, Frenkel E. Duality in W -algebras. Int Math Res Not IMRN, 1991, 6: 75–82

37 Feigin B, Frenkel E. Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. In: Infinite Analysis.

International Journal of Modern Physics A, vol. 7. Singapore: World Scientific, 1992, 197–215

38 Felder G. BRST approach to minimal models. Nuclear Phys B, 1989, 317: 215–236

39 Frenkel E. W -algebras and Langlands-Drinfeld correspondence. In: New Symmetry Principles in Quantum Field

Theory. NATO Advances Science Institute, Series B: Physics, vol. 295. New York: Plenum, 1992, 433–447

40 Frenkel E, Ben-Zvi D. Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88.

Providence: Amer Math Soc, 2004

41 Frenkel E, Kac V G, Wakimoto M. Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction.

Comm Math Phys, 1992, 147: 295–328

42 Frenkel I B, Huang Y, Lepowsky J. On Axiomatic Approaches to Vertex Operator Algebras and Modules. Memoirs of

the American Mathematical Society, vol. 494. Providence: Amer Math Soc, 1993

43 Frenkel I B, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Mathematics,

vol. 134. Amsterdam: Academic Press, 1988

44 Frenkel I B, Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math

J, 1992, 66: 123–168

45 Gepner D, Qiu Z. Modular invariant partition functions for parafermionic field theories. Nuclear Phys B, 1987, 285:

423–453

46 Goddard P, Kent A, Olive D. Unitary representations of the Virasoro and super-Virasoro algebra. Comm Math Phys,

1986, 103: 105–119

47 Jiang C, Lin Z. Tensor decomposition, parafermions, level-rank duality, and reciprocity law for vertex operator algebras.

ArXiv:1406.4191, 2014

48 Jiang C, Lin Z. The commutant of L
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