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Abstract In this paper, we propose a new hard problem, called bilateral inhomogeneous small integer solution

(Bi-ISIS), which can be seen as an extension of the small integer solution problem on lattices. The main idea

is that, instead of choosing a rectangle matrix, we choose a square matrix with small rank to generate Bi-ISIS

problem without affecting the hardness of the underlying SIS problem. Based on this new problem, we present

two new hardness problems: computational Bi-ISIS and decisional problems. As a direct application of these

problems, we construct a new lattice-based key exchange (KE) protocol, which is analogous to the classic Diffie-

Hellman KE protocol. We prove the security of this protocol and show that it provides better security in case

of worst-case hardness of lattice problems, relatively efficient implementations, and great simplicity.
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1 Introduction

With the rapid development of new computing technologies, such as cloud computing, grid computing,

as well as quantum information technology, the computing power grows more powerful and brings new

challenges for the traditional cryptography. To meet these challenges, lattices have emerged in recent

years as a rich platform on which to construct various cryptographic primitives, such as one-way functions

and collision-resistant hash functions [1–3], oblivious transfer [4], public key encryption schemes [5–11],

signatures [11–15], identity-based encryption [12,13,16,17], and fully homomorphic encryption schemes

[18–22]. Lattices are attractive in modern cryptography, because lattice-based constructions can enjoy

very strong security proofs based on worst-case hardness assumptions (that appear to resist quantum and

subexponential attacks), relatively efficient implementations, as well as great simplicity [12,23]. Most of

lattice-based cryptographic constructions are based directly upon one of the two average-case problems

that have been shown to enjoy worst-case hardness guarantees: the small integer solution (SIS) problem

and learning with errors problem [7,10,11,16,17,22].
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In modern cryptography, key exchange (KE) protocols are not only important tools for building prac-

tical cryptosystems, but also basic cryptographic protocols for secure communication. In 1976, Diffie and

Hellman published a famous cryptographic protocol (Diffie-Hellman KE) in the groundbreaking paper

“New Directions in Cryptograph.” The Diffie-Hellman protocol allows users to exchange keys without a

Trusted Authority, even if an opponent is monitoring that communication channel. Although the Diffie-

Hellman protocol itself is an anonymous (non-authenticated) key-agreement protocol (insecure against

man-in-the-middle attack), it provides the basis for a variety of authenticated protocols and is used to

provide perfect forward secrecy in Transport Layer Security’s ephemeral modes.

As mentioned above, various lattice-based cryptographic schemes have been proposed in recent years.

However, review of the literature clearly shows that current research in this area still lacks an effective

solution for lattice-based KE protocol, which is as fast, easy to understand, and simple to implement as

Diffie-Hellman KE, and secure against quantum computing attacks. In view of the fundamental position

of Diffie-Hellman KE, our paper will focus on the construction of such a lattice-based KE protocol.

In this paper, we propose a new KE protocol over the SIS problem and its variants. The SIS problem is

defined by parameters q = q(n) ∈ Z,m = m(n) ∈ Z, and β = β(n) ∈ R, where the integer n is the primary

security parameter; given a uniformly random matrix A ∈ Zn×m
q , the goal is to find a nonzero vector

z ∈ Zm, such that Az = 0 mod q and ‖z‖2 6 β. The SIS problem dates back to Ajtai’s pioneering work

[1], which showed that for appropriate parameters, the SIS problem is at least as hard as approximating

several worst-case lattice problems, such as the (decisional) shortest vector problem (known as GapSVP),

to within a polynomial factor in the lattice dimension. Ajtai’s result was tightened in follow-up works

(e.g., [24]), leading to a somewhat satisfactory understanding of the hardness of the SIS problem. The

hardness of the SIS problem has been the foundation for one-way functions [1] and collision-resistant hash

functions [2], identification schemes [25–27], and digital signatures [11–15].

However, the above-mentioned SIS problem is not suitable for constructing the (as Diffie-Hellman)

KE protocol directly. In this paper, we introduce a new variant of SIS problem, called bilateral (or

double-sides) small integer solution (Bi-SIS). Based on this variant of SIS, we present a new lattice-based

KE (KE) protocol, which enjoys some good properties such as simple, easy to implement, and good

performance. Our contributions can be summarized as follows:

1. Define a new kind of hard problem, called bilateral small integer solution (Bi-SIS), as well as its

inhomogeneous version (Bi-ISIS). We also define computational Bi-ISIS (CBi-ISIS) and decisional Bi-ISIS

(DBi-ISIS) problems and review the hardness of these problems. These problems contain similar relations

between the discrete logarithm (DL), computational Diffie-Hellman (CDH), and decision Diffie-Hellman

(DDH) problems.

2. Construct a new lattice-based KE protocol based on our new problems. This new construction can

be considered as a lattice-based version of classic Diffie-Hellman KE protocol. We prove the security

of this protocol and show that it provides better security based on the worst-case hardness of lattice

problems, relatively efficient implementations, and great simplicity.

On the one hand, our prototype implementation of the proposed KE protocol shows that it is very

efficient because the main computation is multiplication between matrices and vectors. On the other

hand, it is easy to understand that the worst-case security guarantee provided by our protocol is at the

expense of the increasing of storage space, because the users in our protocol have to store a big matrix

to generate lattice space.

The rest of the paper is organized as follows. The preliminaries and the definitions of the SIS problem

are provided in Section 2. We define the bilateral SIS (ISIS) problem and analyze its hardness in Section

3. We define the CBi-ISIS and DBi-ISIS problem and analyze its hardness in Section 4. We present the

construction of our KE protocol and analyze its security in Section 5. The performance analysis and

experiments are shown in Section 6. The paper concludes in Section 7.

2 Preliminaries

The main security parameter throughout the paper is n. By convention, vectors are in column form and
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we use bold lower-case letters to denote them (e.g., x). Matrices are denoted by bold capital letters (e.g.,

A), and AT is the transposition of A. We use the Euclidean (l2) norm for vectors throughout the paper,

for example, ‖x‖ =
√∑

i x
2
i . We use x1, · · · , xk ←R X to denote the process of choosing elements from

the set X uniformly at random. A function negl : N −→ R is called negligible, if for every polynomial

poly(n) there exists a constant n0 ∈ N, such that negl(n) < poly(n)−1, for all n > n0.

2.1 Definition of lattices

A lattice in the n-dimensional Euclidean space Rn is the set

L(b1, · · · ,bk) =

{
k∑

i=1

xibi : xi ∈ Z

}

of all integral combinations of k linearly independent (column) vectors b1, · · · ,bk ∈ Rn. The integers

k and n are called the rank and dimension of the lattice. A basis can be represented by the matrix

B = [b1, · · · ,bk] ∈ R
n×k having the basis vectors as columns. Using matrix notation, the lattice

generated by a matrix B ∈ Rn×k can be defined as L(B) = {Bx : x ∈ Zk}, where Bx is the usual

matrix–vector multiplication. In particular, any lattice admits multiple different bases.

The shortest vector problem (SVP), whose goal is to find the shortest nonzero vector in a lattice, is

one of the most basic hard problems on lattices. To extend this problem, GapSVPγ and SIVPγ are

two standard (worst-case hard) approximation problems on lattices, where γ denotes the approximation

factor. GapSVP is the decisional version of SVP and SIVP can be seen as an extension of SVP. For space

limitations, we omit their formal definitions, which can be found in many works, such as in [12,23].

2.2 Definition of q-ary lattices

We assume that q ∈ Z is a modulus. Here, we define two kinds of modular lattices, called q-ary lattices.

This kind of lattices are particularly important in lattice-based cryptography. We define a q-ary lattice

L is an integer lattice that satisfies qZn ⊆ L ⊆ Zn. It is easy to know whether an integer vector x is in L
is totally determined by x mod q. Given two integers, q and m > n (e.g., m = O(n log n), q = O(n2)),

and a matrix A ∈ Zn×m
q , we define the following two types of m-dimensional q-ary lattices:

Λq(A) = {v ∈ Z
m : v = ATz (mod q), for all z ∈ Z

n},
Λ⊥
q (A) = {v ∈ Z

m : Av = 0 (mod q)}.

These two lattices are usually used in lattice-based constructions. We were able to generate Λq(A) by

the rows of AT, and Λq(A) corresponds to the linear code generated by A. Also, Λ⊥
q (A) consists of all

integer vectors that are orthogonal modulo q to the row vectors of A, and it also corresponds to the linear

code whose parity matrix is A.

2.3 Finding SISs in q-ary lattices

First, in this subsection, we describe definitions of the SIS and ISIS problems in the l2 norm, then give

some related results. It is well-known that the SIS problem is equivalent to finding some short nonzero

vector in Λ⊥
q (A), and this problem is defined as follows.

Definition 1 (SISq,m,β). Assume that a random matrix A ∈ Zn×m
q is known, the goal of SIS problems

is to calculate a vector z ∈ Zm \ {0}, such that Az = 0 (mod q) and ‖z‖ 6 β.

The SIS problem is, in essence, to solve a system of diophantine equations, where it is easy to find

many solutions that satisfy the equations, but it is hard to find a small solution. Also, we can define

a new variant of the SIS problem, which is called the inhomogeneous SIS (denoted by ISIS) problem.

The ISIS problem is equivalent to the problem of decoding an arbitrary integer point t ∈ Z
m to within

distance β on the lattice Λ⊥
q (A). Hence, we have the definition of ISIS problem as follows:
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Definition 2 (ISISq,m,β). Assume that a random matrix A ∈ Zn×m
q and a random syndrome u ∈ Zn

q

are known, the goal of ISIS problem is to find a vector z ∈ Zm, such that Az = u (mod q) and ‖z‖ 6 β.

When we pick some appropriate parameters, the SIS (and ISIS) instances are guaranteed to have a

solution. The following proposition states that SIS and ISIS are as hard as the worst-case problems in

lattices.

Proposition 1 [12, Proposition 4.7]. Given any poly-bounded m,β = poly(n), as well as any prime

q > β ·
√
ω(n logn), the SISq,m,β and ISISq,m,β problems in the average case are as hard as approximating

the problems SIVPγ and GapSVPγ in the worst case to within certain γ = β · Õ(
√
n) factors.

3 Bilateral SIS/ISIS problem and its hardness

In this section, we make an extension to the SIS (ISIS) problems and obtain a new kind of hard problems.

Our variants of SIS and ISIS are very flexible in cryptographic constructions.

3.1 Definitions of bilateral SIS/ISIS problems

Technically, in the definition of our new problem, the parameters are the same as the SIS problem except

the matrix A. We choose a square matrixA ∈ Zm×m
q with rank n, instead of a rectangleA ∈ Zn×m

q in the

original SIS problem. For any square matrix A ∈ Zm×m
q with rank n, there is a submatrix A′ ∈ Zn×m

q ,

such that the rows of A′ are linear independent and belong to A. Thus, we have Λq(A) = Λq(A
′) and

Λ⊥
q (A) = Λ⊥

q (A
′). A is square with rank n, so that both row rank and column rank of A is n, which is

less than m.

The benefit of our improvements is to provide double-sides operations between square matrices and

row/column vectors. That is, given a square matrix A ∈ Zm×m
q , we can extend the (inhomogeneous)

SIS problem to solve the equation Ax = u1 (mod q) and the equation yTA = uT
2 (mod q). We call it

Bilateral SIS (ISIS) problem and denote the corresponding problems by Bi-SIS and Bi-ISIS, respectively.

Definition 3 (Bi-SIS problem). The Bi-SIS (in the l2 norm) is as follows: given an integer q, a matrix

A ∈ Zm×m
q with rank equals n, and a real β, the goal is to find two nonzero integer vectors x,y ∈ Zm\{0},

such that {
Ax = 0 (mod q) and ‖x‖ 6 β,

yTA = 0T (mod q) and ‖y‖ 6 β.
(1)

Definition 4 (Bi-ISIS problem). The Bi-ISIS (in the l2 norm) is as follows: given an integer q, a matrix

A ∈ Zm×m
q with rank equals n, two vectors u1,u2 ∈ Zm

q , and a real β, the goal is to find a vector x ∈ Zm

and a vector y ∈ Zm, such that

{
Ax = u1 (mod q) and ‖x‖ 6 β,

yTA = uT
2 (mod q) and ‖y‖ 6 β.

(2)

Similarly, we denote probability ensembles over Bi-SIS instances and Bi-ISIS instances as Bi-SISq,m,β

and Bi-ISISq,m,β , respectively.

3.2 Hardness analysis of Bi-SIS/Bi-ISIS problems

In this subsection, we give the hardness analysis of our new Bi-SIS/Bi-ISIS Problems. First of all, we

show that the Bi-SIS/Bi-ISIS problem is equivalent to the SIS/ISIS problem.

Lemma 1. There is a polynomial time reduction from SISq,m,β/ISISq,m,β to Bi-SISq,m,β/Bi-ISISq,m,β.

Proof. Suppose the input to a SIS problem is (q(n),A, β(n)), where A ∈ Zn×m
q is uniformly random.

Our goal is to find a nonzero integer vector z ∈ Z
m \ {0}, such that Az = 0 (mod q). Generally, we have

m > n, and without loss of generality we can assume that the n rows of A are linear independent over



Wang S B, et al. Sci China Inf Sci November 2014 Vol. 57 112111:5

integers. Let {a1, · · · , an} be the rows of A, A1 be the matrix, whose first n rows are the rows of A, and

the remainder (m− n) rows are the same vector an, then we have A1 ∈ Zm×m
q with rank equals n.

Now (q(n),A1, β(n)) is a Bi-SIS instance. Suppose the solution of this Bi-SIS problem (q(n),A1, β(n))

is x,y ∈ Zm \ {0}, such that A1x = 0 (mod q) and yTA1 = 0T (mod q), where ‖x‖ 6 β, ‖y‖ 6 β.

Then, we get Ax = 0 (mod q) and ‖x‖ 6 β. Therefore, we find a solution of the original SIS problem.

This shows that there is a polynomial time reduction from Bi-SISq,m,β to SISq,m,β. Similarly, there is a

polynomial time reduction from Bi-ISISq,m,β to ISISq,m,β .

Lemma 2. There is a polynomial time reduction from Bi-SISq,m,β/Bi-ISISq,m,β to SISq,m,β/ISISq,m,β .

Proof. Suppose the input to a Bi-SIS problem is (q(n),A, β(n)), where A ∈ Zm×m
q is uniformly random

with rank equal to n. Our goal is to find nonzero integer vectors x,y ∈ Z
m \ {0}, ‖x‖ 6 β, ‖y‖ 6 β,

such that Ax = 0 (mod q) and yTA = 0 (mod q). On the one hand, we consider how to find a nonzero

integer vector x, such that Ax = 0 (mod q). Since m > n and rank(A) = n, we can assume without

loss of generality that the first n rows of A are linear independent over integers. Let A1 be the first n

rows of A, then A1 ∈ Zn×m
q . Now (q(n),A1, β(n)) is a SIS instance. The solution of this SIS problem

(q(n),A1, β(n)) is a solution of the original Bi-SIS problem. On the other hand, we consider to find

a nonzero integer vector y, such that yTA = 0 (mod q). Observe that (yTA)T = ATy. Therefore,

we can use the same method as in the above discussion. This shows that there is a polynomial time

reduction from Bi-SISq,m,β to SISq,m,β . Similarly, there is a polynomial time reduction from Bi-ISISq,m,β

to ISISq,m,β .

From Lemma 1 and 2, we conclude that our new problem Bi-SIS/Bi-ISIS is as hard as the SIS/ISIS

problem. We have the following theorem.

Theorem 1. Our new problems Bi-SISq,m,β/Bi-ISISq,m,β are as hard as problems SISq,m,β/ISISq,m,β .

According to Proposition 1 and Theorem 1, we have the following proposition which relates the hardness

of the Bi-SIS/Bi-ISIS problem to hardness of lattice problems.

Proposition 2. Given any poly-bounded m,β = poly(n), as well as any prime q > β ·
√
ω(n logn),

the Bi-SISq,m,β and Bi-ISISq,m,β problems in the average case are as hard as approximating the problems

SIVP and GapSVP in the worst case to within certain γ = β · Õ(
√
n) factors.

3.3 Extension of Bi-ISIS

We extend the Bi-ISIS to the following problem:

Definition 5 (Bi-ISIS*). Let n, m, q and β be the parameters as in ISIS, A ∈ Zm×m
q is a matrix such

that rank(A) = n, e1 is linear independent with column vectors of A, e2 is linear independent with row

vectors of A. Given vectors b1 ∈ {Az + e1 : z ∈ Zm, eT2 · z = 0 mod q } and bT
2 ∈ { zTA + eT2 : z ∈

Zm, zT · e1 = 0 mod q }, the goal is to find a vector x ∈ Zm and a vector y ∈ Zm, such that:
{

Ax+ e1 = b1 (mod q) and ‖x‖ 6 β,

yTA+ eT2 = bT
2 (mod q) and ‖y‖ 6 β.

(3)

We observe that when e1 and e2 are given, the above Bi-ISIS* problem is essentially a Bi-ISIS problem.

When e1 and e2 are unknown, the Bi-ISIS* problem may be much harder to solve than the Bi-ISIS

problem. Based on the hardness of Bi-ISIS problem, it is reasonable to make the assumption that Bi-

ISIS* problems are hard.

4 New hard problems and assumptions

We continue to define new hard problems over lattices and their complexity assumptions. Our new

problems/assumptions are very analogous to the CDH/DDH problems/assumptions in the form. Given

a finite cyclic group G and a random generator g, the CDH and DDH assumptions are defined as follows:

• CDH assumption: this assumption claims that given two elements ga and gb, it is computationally

hard to compute gab.
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• DDH assumption: under this assumption, distinguishing gab from a random value when given ga

and gb is computationally hard.

These assumptions, considered as the “standard” assumption, have been widely used in the modern

cryptography. Our goal is to extract the CDH/DDH-like assumption from Bi-ISIS* problem. To do it, we

combine two branches of Bi-ISIS*, b1 = Ax+e1 (mod q) and bT
2 = yTA+eT2 (mod q), into an equation

yTAx = z (mod q), where z ∈ Zq. Also, we consider b1 and b2 as two cryptographic commitments for

two random variables x and y. Hence, using this method, we can integrate two random variables x and

y to a random integer in Zq.

4.1 Definitions of new problems and assumptions

Given an instance of Bi-ISIS with parameters n, q,m, β and a matrix A ∈ Zm×m
q of rank n, let D = {z ∈

Zm : ‖z‖ 6 β}. For any vectors x ∈ D and y ∈ D, there exists two vector sets U = {u1, . . . ,un} which
is linear independent with column vectors of A and V = {vT

1 , . . . ,v
T
n} which is linear independent with

row vectors of A, such that for each index i, yT · ui = 0 mod q and vT
i · x = 0 mod q. From now on,

we define the following notation:

A ∗ x = Ax+
∑

i∈S

ui mod q,

where S ⊆ {1, . . . , n} is a random subset. Similarly, yT ∗A is defined as:

yT ∗A = yTA+
∑

i∈S′

vT
i mod q,

where S′ ⊆ {1, . . . , n} is a random subset. We define the CBi-ISIS problem and the DBi-ISIS problem as

follows:

• Computational Bi-ISIS (CBi-ISIS) problem: given A ∗x and yT ∗A, where x,y ∈ D, the goal

is to compute yTAx (mod q).

• Decisional Bi-ISIS (DBi-ISIS) problem: the goal is to distinguish between the two distributions

(A,A ∗ x,yT ∗A,yTAx) and (A,A ∗ x,yT ∗A, z), where x,y ∈ D and z ∈ Zq are chosen uniformly at

random.

Let e1 =
∑

i∈S ui and eT2 =
∑

i∈S′ vT
i , then we have A ∗x = Ax+ e1 mod q and yT ∗A = yTA+ eT2

mod q, which is an instance of Bi-ISIS*(Subsection 3.3). Obviously, if there is an algorithm that solves the

Bi-ISIS* problem, we can use this algorithm to solve both CBi-ISIS and DBi-ISIS problems. Therefore,

both problems can reduce to the Bi-ISIS* problem.

To our knowledge, there is no efficient algorithm that can solve CBi-ISIS/DBi-ISIS problems other

than an efficient Bi-ISIS* algorithm. From the discussions in Section 3.2, we know Bi-ISIS* is at least as

hard as lattice problems for appropriate parameters (e.g., q = n2,m = n log q = 2n logn, and β =
√
m).

Therefore, based on the hardness of Bi-ISIS* problems (actually, the ISIS problem), we make the following

assumptions.

Definition 6 (CBi-ISIS assumption). Let n, m = poly(n), q = q(n) be integers and β = poly(n) be a

real, such that q > β ·
√
ω(n logn), and let D = {z ∈ Z

m : ‖z‖ 6 β}, A ∈ Z
m×m
q be a random matrix

with rank n. Then, for any probabilistic polynomial time (PPT) algorithm A, the following holds:

Pr[A(A, β,A ∗ x,yT ∗A) = yTAx : x,y ←R D] < negl(n),

where the probability is taken over the random choice of x,y←R D and the random bits used by A.

Definition 7 (DBi-ISIS assumption). Let n, m = poly(n), q = q(n) be integers and β = poly(n) be a

real, such that q > β ·
√
ω(n logn), and let D = {z ∈ Zm : ‖z‖ 6 β}, A ∈ Zm×m

q be a random matrix

with rank n. Then, for any PPT algorithm A, the following holds:

|Pr[A(A, β,A ∗ x,yT ∗A,yTAx) = 1]− Pr[A(A, β,A ∗ x,yT ∗A, z) = 1]| < negl(n),

where the probability is taken over the random choice of x ←R D,y ←R D, and z ←R Zq and the

random bits used by A.
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A direct application of our new hardness assumptions is to construct KE protocols. We propose a

two-party KE protocol in Section 5.

4.2 Establishing parameters

In this subsection, we discuss how to choose parameters. It is necessary to choose proper parameters to

guarantee the hardness assumption to ensure the security of cryptographic protocol. In the definition of

CBi-ISIS/DBi-ISIS assumption, we have parameters n,m, q, and β, where n is the security parameter

and m = m(n), q = q(n), and β = β(n) are functions of n.

We start from how to choose the matrix A. The following theorem states that for appropriate param-

eters, the ISIS (Bi-ISIS) problem admits a small solution with high probability.

Lemma 3 [12, Lemma 4.1]. Let q be prime and let m > 2n log q. Then, for all but an at most q−n

fraction of A ∈ Zn×m
q , the subset-sums of the columns of A generate a random element in Zn

q , that is,

for every u ∈ Z
n
q there is a vector z ∈ {0, 1}m, such that Az = u.

This theorem gives a proper relationship between n and m. Note that in this theorem the generated

matrix is A ∈ Zn×m
q rather than A ∈ Zm×m

q . Also, the rows of this random matrix A ∈ Zn×m
q are

linear independent with high probability. Hence, we can obtain a matrix A ∈ Zm×m
q with rank n by the

following process: first, choose a matrix A′ ∈ Zn×m
q randomly, then with high probability that the rank

of A′ is n by Lemma 3. Next, we can generate each row of A by a random linear combination of the

rows of A′. In this situation, with high probability the ISIS (Bi-ISIS) problem (with such an input A)

admits a small solution of length less than
√
m. Therefore, we can choose β =

√
m.

To guarantee the hardness of Bi-ISIS, we should choose parameters according to Proposition 2 where

m = poly(n) and β = poly(n); q is any prime, such that q > β ·
√
ω(n logn).

In summary, we can choose parameters satisfying the following conditions: q is prime, q/
√
ω(n logn) >

β >
√
m, and m > 2n log q. For example, we can set q = n2,m = 2n log q = 4n logn, and β =

√
m =

2
√
n logn.

5 Lattice-based KE protocol

KE protocols generate a common secret key between parties that communicate over an insecure network.

The most famous KE protocol is the Diffie-Hellman KE protocol [28], in which Alice and Bob fix a finite

cyclic group G and a generator g. They respectively pick random a, b and exchange ga and gb. The

protocol’s result is that they obtain the shared secret key gab. The left subfigure of Figure 1 illustrates

this protocol. The security of the protocol relies on the DDH assumption: distinguish between the two

distributions (g, ga, gb, gab) and (g, ga, gb, gc), where g is a generator of some multiplicative group of order

p and a, b, c ∈ Zp are chosen uniformly at random. Over the past several years, DDH has been successfully

used to simplify many cryptographic schemes, such that DDH is called a cryptographic gold mine [29].

In this section, we present a secure lattice-based KE protocol and prove its security under the new

DBi-ISIS assumption. With our current state of knowledge, our KE protocol is the first lattice-based KE

protocol.

5.1 Our lattice-based KE protocol

In the following, we adopt the above-mentioned notations and assumptions. We use suitable parameters

m = m(n), q = q(n), β = β(n), and A ∈ Zm×m
q as in Section 4.2, where the rank of matrix A is n and

n ≪ m. Our KE protocol is constructed under the CBi-ISIS/DBi-ISIS assumptions. More exactly, our

protocol relies on associative property: for all vectors x,y ∈ Zm, the equation

(yT ∗A) · x = yT · (A ∗ x) = yTAx (4)

holds, where (yT ∗A) · x is the inner product between (yT ∗A) and x. This property, which is similar

to (ga)b = gab = (gb)a in DH, is important for our construction.
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Figure 1 The Diffie-Hellman KE protocol (left) and our lattice-based KE protocol (right).

We describe our basic KE protocol as follows:

1. Setup: Alice and Bob agree on a random matrix A ∈ Zm×m
q and a real number β.

2. Initialize: Alice picks a random x ∈ Zm, such that ‖x‖ 6 β, generates V = {vT
1 , . . . ,v

T
n } which

is linear independent with rows vectors of A, such that 〈vi,x〉 = 0 mod q. Alice keeps x private and

makes V public. Bob picks a random y ∈ Zm, such that ‖y‖ 6 β, generates U = {u1, . . . ,un} which is

linear independent with column vectors of A, such that 〈ui,y〉 = 0 mod q. Alice keeps y private and

makes U public.

3. Alice uses U to compute a = A ∗ x mod q, and sends it to Bob.

4. Bob uses V to compute bT = yt ∗A mod q, and sends it to Alice.

5. Alice computes K1 = bT · x = ytAx mod q.

6. Bob computes K2 = yT · a = ytAx mod q.

According to the associative property (see Eq. (4)), both Alice and Bob are now in possession of the

same integer K = K1 = K2 = ytAx (mod q). This can serve as their shared secret key.

In the right subfigure of Figure 1, we demonstrate the execution of our two-party KE protocol. In

comparison with the left subfigure, it is easy to find that our KE protocol works similar to the Diffie-

Hellman KE protocol. Although our basic construction is not perfect for various attacks, it lays the

foundation of more secure and effective constructions just as the Diffie-Hellman KE protocol. It is

conceivable that our protocol will play an important role in lattice-based cryptography just as the Diffie-

Hellman KE protocol’s role in traditional cryptography.

5.2 Security analysis

Theorem 2. Our lattice-based KE protocol is secure against the passive (or eavesdropper) adversary

under the DBi-ISIS assumption.

Proof. For the sake of clarity, we give a security analysis from the computational perspective in the

following. Let A,B denote Alice and Bob, notations are as above. We consider our KE protocol as a

simple interactive proof system, which can be expressed by

〈A(x), B(y)〉(A, β) = (K1,K2),

where 〈A(x), B(y)〉(A, β) denote the interactive process between A and B, A takes as input a secret x,

B takes as input a secret y, A and β are public inputs, K1 is the output of A, and K2 is the output of

B. An eavesdropper can obtain the information (a,b). Hence, we denote the view of an eavesdropper in

an execution of the protocol as

V iew(〈A(x), B(y)〉(A, β)) = (a,b).
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We consider the security of our protocol from the following aspects:

1. Considering a passive (or eavesdropper) adversary S, his goal is to compute the shared secret key

K. The success probability of this attack is computed as

Pr[S(A, β, V iew(〈A(x), B(y)〉(A, β))) = K : x,y←R D]

= Pr[S(A, β, (a,b)) = K : x,y←R D]

= Pr[S(A, β,A ∗ x,yT ∗A) = yTAx : x,y←R D] < negl1(n),

where negl1(n) is a negligible function of n. The last inequality holds in terms of the CBi-ISIS assumption

in Definition 6.

2. Considering a passive (or eavesdropper) adversary S ′, his tougher goal is to guess A’s and B’s

secrets. The success probability of this attack is computed as

Pr[S ′(A, β, V iew(〈A(x), B(y)〉(A, β))) = (x,y) : x,y←R D]

= Pr[S ′(A, β, (a,b)) = (x,y) : x,y←R D] < negl2(n),

where negl2(n) is a negligible function of n. The last inequality follows from the hardness of Bi-ISIS*

problem in Definition 5.

3. Considering a participant (A or B) is corrupted by the adversary, without loss of generality, we

assume that A∗ is the corrupted participant. In this situation, the adversary denoted by SA∗ has access

to the secret of A∗ which we denote by x∗. The adversary’s goal is to compute B’s secret. The success

probability of this attack is computed as

Pr[SA∗(A, β, V iew(〈A∗(x∗), B(y)〉(A, β))) = y : x∗,y←R D]

= Pr[SA∗(A, β, (a∗,b)) = y : x∗,y←R D]

= Pr[SA∗(A, β,b = yT ∗A) = y : y←R D] < negl3(n),

where the equation holds because x∗ and y are two independent random variants, negl3(n) is a negligible

function of n, and the last inequality follows from hardness of the ISIS problem in Proposition 1.

Finally, as the key security in the Diffie-Hellman protocol is guaranteed by the DDH assumption, the

security of the shared key in our protocol is also guaranteed by the DBi-ISIS assumption. This means

that the shared key K = yTAx is indistinguishable from z which is chosen uniformly at random. That

is, for all adversaries S ′′, we have

|Pr[S ′′(A, β,A ∗ x,yT ∗A,yTAx) = 1]− Pr[S ′′(A, β,A ∗ x,yT ∗A, z) = 1]| < negl4(n),

where negl4(n) is a negligible function of n and the last inequality follows from hardness of the DBi-ISIS

problem in Definition 7.

Similar to the classic Diffie-Hellman KE protocol, our protocol by itself does not provide authentication

of the communicating parties and thus is vulnerable to the man-in-the-middle attack. This problem has

been studied for a long history and there are many reports on how to resist the man-in-the-middle attack

by introducing other cryptography tools [30–34]. A method to authenticate the communicating parties to

each other is generally needed to prevent this type of attack. Hence, our basic protocol can be improved

into an authenticated KE protocol that is secure against the man-in-the-middle attack through the entity

authentication methods, such as the signature-based methods in Refs. [34,35].

6 Performance analysis and experiments

The performance of a cryptographic construction is directly related to the length of parameters. In terms

of Subsection 4.2, we choose parameters q = O(n2),m = O(n log n), and β = O(
√
m) for a given security

‘strength’ n, such that the CBi-ISIS/DBi-ISIS assumption holds.

We first analyze the communication complexity of our lattice-based KE protocol for typical parameters

q = n2 and m = 2n log q = 4n logn. According to the above definition, the storage overheads of A is
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Table 1 The comparison between Bi-ISIS and DH on communication

Protocol Type Variant Length Size

Storage A ∈ Z
m×m
q m2 · |q| 16n2 log3 n

Bi-ISIS Exchange A ∗ x,yT ∗A ∈ Zm
q m · |q| 8n log2 n

Shared key yTAx ∈ Zq |q| 2 logn

Storage g ∈ Z∗

p |p| k = log p

DH Exchange ga, gb ∈ Z∗

p |p| k = log p

Shared key gab ∈ Z∗

p |p| k = log p

1000

1000

2000

2000

3000

3000

4000

4000

Figure 2 The distribution of yTAx (mod q) in DBi-ISIS.

m2 ·|q| = 16n2 log3 n bits and the communication overheads of the vectorsA∗x,yT∗A ism·|q| = 8n log2 n

bits during each exchange step. The shared secret key is |q| = 2 logn bits. By comparison, the overhead

of the DH protocol is |p| = log p bits for each integer, where p is a large prime. The main security

parameter of the DH protocol is the length of the modulus p denoted by k = |p| (then p ≈ 2k). We list

the overhead in Table 1. If we set k = n, from Table 1, we can see that the storage overheads of our

protocol are much more larger than the DH protocol, while the communication overhead of our protocol

is approximately the same as that of DH.

We point out that the security strength provided by our lattice-based protocol is stronger than that

of the DH protocol [36,37]. In fact, the security parameter n of our lattice-based KE protocol is the

dimension of the underlying lattice. When n is several hundreds large, modern computation capability is

not capable of handling the underlying lattice problems [38,39]. In contrast, when the security parameter

k of the DH is several hundreds large, the underlying DL problem is considered to be insecure. Actually,

lattice-based constructions enjoy very strong security that appears to resist against quantum attacks, but

traditional constructions based on DL cannot provide this kind of security.

Next, We analyze the computation complexity of our protocol. The main computation in our protocol

is multiplication between matrices and vectors, so that the complexity of computing A ∗ x or yT ∗A is

O(m2|q|2) = O(n2 log4 n), where m is the length of vectors, |q|2 denotes the computational overheads of

multiplication of two integers in Zq, and |q| = 2 logn. Similarly, the complexity of computing bTx or

yTa is O(m|q|2) = O(n log3 n). On the other hand, it is well-known that 1024-bit DH keys are equivalent

in strength to 80-bit symmetric keys [40,41]. Hence, set |p| = 1024 bits. The complexity of exponential

operation in Z∗
p is O(|p|3). When n = 80,

• the complexities of A ∗ x/yT ∗A and bTx/yTa are 1.6× 108 and 1.6× 105, respectively.

• the complexity of gx/gy is 1.1× 109.

Therefore, the runtime of our KE protocol is faster than that of the DH protocol. More importantly,

our protocol is easy to implement because all operations can be realized in central processor unit (CPU)

with 16-bit or 32-bit word size. This means that it does not require the implementations of large integer

(1024-bit or 2048-bit) arithmetic used in the DH protocol. Therefore, it can be used to develop the next

generation of security products and services in cloud and data center [42,43].

Finally, we illustrate the distribution of yTAx (mod q) in Figure 2, from which it is very easy to detect

that the distribution is uniform [44–46]. In this experiment, we choose parameters n = 64, q = 4099(≈ n2),
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and m = 1536(≈ 2n log q) and compute the value yTAx (mod q) for 4000 randomly chosen small vectors

x and y. From this figure, we can see that the distribution of yTAx (mod q) is close to the uniform

distribution over Zq.

7 Conclusion

In this paper, we propose some new hard problems and assumptions that are related to the SIS problem

on lattices. Based on these problems and assumptions, we construct a new secure two-party lattice-based

KE protocol. This protocol enjoys some good properties such as simple, easy to implement, and good

performance. Therefore, it has great potential for a new security foundation in the quantum era by

replacing the traditional Diffie-Hellman KE.
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