ELSEVIER

Contents lists available at ScienceDirect

Journal of Energy Chemistry

journal homepage: www.elsevier.com/locate/jechem

Effect of loading on the Ni₂P/Al₂O₃ catalysts for the hydrotreating reactions

Junen Wang a,b, Shaozhong Li a, Jun Xu a, Hui Chen a, Jiangyu Yuan a, Jianyi Shen a,*

- ^a Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
- ^b College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, China

ARTICLE INFO

Article history: Received 14 March 2015 Revised 13 April 2015 Accepted 30 June 2015 Available online 8 August 2015

Key words:
Supported Ni₂P
Liquid phase phosphidation
Triphenylphosphine
Microcalorimetric adsorption of CO
Hydrotreating reactions

ABSTRACT

The $80\% Ni_2 P/Al_2 O_3$ catalysts were prepared by the phosphidation of corresponding $80\% Ni/Al_2 O_3$ with triphenylphosphine in liquid phase and compared with the $60\% Ni_2 P/Al_2 O_3$ for hydrotreating reactions. Both the $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ in comparison exhibited the small and uniform $Ni_2 P$ particles (6.3 and 8.4 nm, respectively), high CO uptakes (305 and 345 μ mol/g, respectively) and thus high activities for the hydrotreating reactions. After the hydrotreating reactions, the small and uniform $Ni_2 P$ particles were remained, although the CO uptakes on the used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ were greatly decreased (to 68 and 95 μ mol/g, respectively) due to the incorporation of S into the $Ni_2 P$ surfaces. The $80\% Ni_2 P/Al_2 O_3$ was found to be significantly more active than the $60\% Ni_2 P/Al_2 O_3$ due to that the $80\% Ni_2 P/Al_2 O_3$ possessed more, and more active $Ni_2 P$ sites than the $60\% Ni_2 P/Al_2 O_3$, probably due to the less S incorporated in the $80\% Ni_2 P/Al_2 O_3$ than in the $60\% Ni_2 P/Al_2 O_3$ during the hydrotreating reactions.

© 2015 Science Press and Dalian Institute of Chemical Physics. All rights reserved.

1. Introduction

The transition metal phosphides were highly active for the hydrodesulphurization (HDS) and hydrodenitrogenation (HDN) reactions [1–3], in which the supported Ni $_2$ P catalysts might be more active and stable than the traditional NiMoS/Al $_2$ O $_3$ and CoMoS/Al $_2$ O $_3$ catalysts [4,5], and thus might be used as the next-generation industrial catalysts for the hydrotreating reactions [5].

In industry, alumina is a preferred support since it possesses the strong mechanical strengths, high temperature resistance, appropriate pore structures and large surface areas. The supported Ni₂P catalysts were frequently prepared using the method of programmed temperature reduction (TPR) of nickel phosphate [1,6–9]. However, only the poorly dispersed Ni₂P catalysts were prepared with TPR method since it required high temperatures and more phosphates [10–13]. Recently, we phosphided a 60%Ni/Al₂O₃ catalyst by using triphenylphosphine (PPh₃) in liquid phase and prepared the $60\% Ni_2 P/Al_2 O_3$ catalyst with highly dispersed Ni₂P particles [14]. This $60\% Ni_2 P/Al_2 O_3$ catalyst adsorbed great amount of CO (305 μ mol/g) and thus exhibited the high activities for the HDS of dibenzothiophene (DBT) and hydrogenation of tetralin to decalin.

In the present work, the Ni₂P/Al₂O₃ catalysts with higher Ni loadings (80wt%) were prepared and compared with the 60%Ni₂P/Al₂O₃ for the hydrotreating reactions. It was found that the 80%Ni₂P/Al₂O₃

prepared via the pre-reduction at 723 K exhibited the high surface density of Ni₂P active sites (345 μ mol/g) as measured by the adsorption of CO. No higher values than 345 μ mol/g were found in the literature so far for the adsorption of CO on Ni₂P. Our research suggested that the loading and reduction temperature significantly affected the reducibility and dispersion of supported Ni in the Ni/Al₂O₃ catalysts [15–20], which in turn affected the content and dispersion of supported Ni₂P in the phosphided Ni₂P/Al₂O₃ catalysts [21,22]. The $80\% Ni_2 P/Al_2O_3$ with the higher CO uptake of 345 μ mol/g exhibited the higher activities for the HDS of DBT and hydrogenation of tetralin to decalin than the $60\% Ni_2 P/Al_2O_3$ with the relatively lower CO uptake of 305 μ mol/g.

2. Experimental

2.1. Preparation of catalysts

The $80\% Ni/Al_2O_3$ was prepared by the co-precipitation method. The preparation procedure can be found elsewhere [23,24]. Briefly, desired amounts of nickel and aluminum nitrates were dissolved in $100 \, \text{mL}$ distilled water to form an aqueous solution and another aqueous solution was obtained by dissolved desired amount of sodium carbonate in $100 \, \text{mL}$ distilled water. The two solutions were simultaneously added dropwise into a beaker containing $200 \, \text{mL}$ distilled water at $353 \, \text{K}$ under vigorous stirring. The precipitate was washed thoroughly with deionized water. The filter cake was added into

^{*} Corresponding author. Tel.: +86 25 83594305; Fax: +86 25 83594305 *E-mail address*: jyshen@nju.edu.cn (J. Shen).

200 ml n-butanol which was then evaporated at 353 K. The sample was further dried in an oven at 393 K for 12 h.

The same phosphidation procedure was used as reported previously [22]. Typically, the $80\% Ni/Al_2O_3$ catalyst was placed in a microreactor and pre-reduced in flowing H_2 (0.1 MPa and 40 mL/min) for 2 h at different temperatures (673–823 K). Then, the temperature was lowered to 443 K, at which the catalyst was phosphided with PPh_3 (2% in heptane) for 36 h (LHSV of 2 h^{-1} and H_2/oil of 300 v/v). After the phosphidation, the catalyst was heat-treated in H_2 at 673 K for 3 h and then cooled down to the first reaction temperature (513 K), at which model diesel was introduced into the reactor and the hydrotreating reactions began.

2.2. Characterization of catalysts

The adsorption of H_2 and O_2 on the 80%Ni/Al₂O₃ catalyst was carried out in a home-made volumetric apparatus. The catalyst was reduced in H_2 at different temperatures for 2 h and evacuated at the reduction temperature for 1 h before the measurements. The adsorption of H_2 was performed at room temperature. After the adsorption of H_2 , the sample was heated to 673 K at a rate of 10 K/min and evacuated at 673 K for 1 h. The adsorption of O_2 was then performed at 673 K. The uptakes of H_2 and O_2 were obtained by extrapolating the coverage of corresponding isotherms to P=0. The degree of reduction (reducibility), dispersion, active surface area and average particle size of supported nickel were calculated based on the amounts of H_2 and O_2 adsorbed and the amount of nickel loaded. The detailed calculation formulae can be found in the literature [23].

The $80\% Ni_2P/Al_2O_3$ catalysts were prepared separately for characterizations. The phosphidation process was the same as that described above (Section 2.1). The phosphided catalysts were passivated for 12 h at room temperature under N_2 containing about 0.5 vol% O_2 before they were characterized with different techniques.

The surface area and pore structure were determined with a Micromeritics Gemini V 2380 autosorption analyzer at 77.3 K after the samples were degassed in flowing N_2 at 473 K for 5 h. X-ray diffraction (XRD) patterns were collected on a Shimadzu XRD-6000 powder diffractometer (Japan) using a Cu $K\alpha$ radiation ($\lambda=0.1541$ nm) under the setting conditions of 40 kV and 30 mA. The chemical compositions of catalysts were determined by an ARL-9800 X-ray fluorescence spectrometer (XRF). The morphologies of catalysts were performed on a JEOL JEM-2100 transmission electron microscope (TEM) operated at 200 kV.

The microcalorimetric adsorption of CO was performed by using a Setaram Tian-Calvet C-80 heat-flux microcalorimeter, connected to a gas-handling system equipped with a Baratron capacitance manometer for precise pressure measurements. Passivated samples were re-reduced in $\rm H_2$ at 673 K for 3 h and then evacuated at 673 K for 1 h. The microcalorimetric adsorption was performed at 308 K.

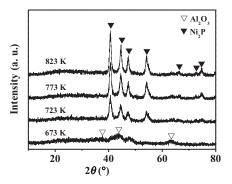


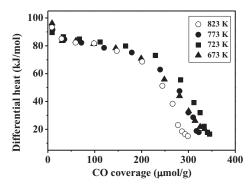
Fig. 1. XRD patterns for the 80%Ni/Al₂O₃ catalysts phosphided at 443 K with PPh₃ in liquid phase after the catalysts were pre-reduced in H₂ for 2 h at different temperatures indicated.

2.3. Catalytic tests

The reactions of HDS of DBT, HDN of quinoline and hydrogenation of tetralin were performed in a fix-bed reactor using a feed containing 1.72% DBT (3000 ppm S), 0.185% quinoline (200 ppm N), 5% tetralin and 0.5% n-octane (as an internal standard) in balanced n-tetradecane (solvent) at different temperatures (513–613 K) with the fixed pressure (3.1 MPa), LHSV (2 h $^{-1}$) and H $_2$ /oil ratio (1500 (v/v)). The products were collected after 24 h and analyzed on gas chromatographs.

3. Results and discussion

3.1. Structural and surface properties of fresh catalysts


The $80\% Ni/Al_2O_3$ catalyst was pre-reduced at different temperatures (673–823 K) and then phosphided with PPh₃ in heptane at 443 K. Fig. 1 shows the XRD patterns of phosphided samples. When the sample was pre-reduced at 673 K, the diffraction peaks for Ni₂P were not clear. When the sample was pre-reduced at 723 K, the diffraction peaks around 40.7° , 44.6° , 47.4° and 54.2° for Ni₂P were clearly seen. The intensities of these diffraction peaks were increased with the further increase of pre-reduction temperatures to 773 and 823 K.

According to the broadening of the Ni₂P (111) peak at 40.7° and the Scherrer equation, the average particle sizes of Ni₂P formed in the 80%Ni₂P/Al₂O₃ catalysts pre-reduced at different temperatures were estimated. Table 1 shows the results. It is seen that the particle size of Ni₂P were 8.4 nm in the 80%Ni₂P/Al₂O₃ pre-reduced at 723 K. When the pre-reduction temperature was increased to 773 and 823 K, the particles of Ni₂P were correspondently increased to 10.5 and 11.9 nm, respectively. The average particle sizes of Ni₂P

Table 1Textural and structural properties of the $60\%Ni_2P/Al_2O_3$ and $80\%Ni_2P/Al_2O_3$ catalysts phosphided at 443 K with PPh3 in liquid phase after the $60\%Ni/Al_2O_3$ and $80\%Ni/Al_2O_3$ were pre-reduced in H_2 for 2 h at different temperatures.

Catalyst	60%Ni ₂ P/A	l_2O_3			80%Ni ₂ P/A	l_2O_3		
Pre-reduction temperature (K)	673	723	773	823	673	723	773	823
S_{BET} (m ² /g)	201	154	148	146	158	138	132	111
Pore volume (cm ³ /g)	0.64	0.68	0.61	0.61	0.71	0.69	0.72	0.62
Pore size (nm)	9.9	13.4	12.7	13.1	15.3	15.7	17.1	17.0
XRD phase	Ni ₂ P	Ni ₂ P	Ni ₂ P	Ni ₂ P	Ni ₂ P	Ni ₂ P	Ni ₂ P	Ni ₂ P
d (nm)	4.1	6.3	6.6	7.2	_	8.4	10.5	11.9
CO uptake (µmol/g)	133	305	251	189	334	345	322	298
CO ads. heat (kJ/mol)	86	95	98	81	96	89	91	93

Note: The particle size (d) of Ni_2P was estimated by the Scherrer equation according to the full width at half maximum (FWHM) of the peak at 40.7° in the XRD patterns shown in Fig. 1.

Fig. 2. Differential heats vs. coverage for CO adsorption at 308 K on the $80\%\text{Ni}_2\text{P/Al}_2\text{O}_3$ catalysts phosphided at 443 K with PPh₃ in liquid phase after the $80\%\text{Ni/Al}_2\text{O}_3$ were pre-reduced in H₂ for 2 h at different temperatures indicated. Before the adsorptions, the samples were re-reduced at 673 K in H₂ for 3 h, followed by the evacuation at 673 K for 1 h

formed in the $60\% Ni_2 P/Al_2 O_3$ catalysts pre-reduced at different temperatures were also shown in Table 1 for comparison. Apparently, the particles of $Ni_2 P$ in the $80\% Ni_2 P/Al_2 O_3$ were significantly larger than those in the $60\% Ni_2 P/Al_2 O_3$ prepared via the same pre-reduction temperature.

Table 1 also lists the information about the surface area, pore parameters, phosphide phase, CO coverage and CO adsorption heat for the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts pre-reduced at different temperatures. When the pre-reduction temperature was increased from 673 to 723 K, the surface areas were decreased from 158 to 138 m²/g for the $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and from 201 to 154 m²/g for the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$. When the pre-reduction temperature was further increased to 773 K, the changes of surface area, pore volume and pore size of the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ were not significant.

The adsorption of CO was usually used to probe the number of active sites on Ni₂P surfaces [25,26]. The heat for the adsorption of CO on Ni₂P surfaces can also be measured simultaneously [21,22,27]. The results for the adsorption of CO on the $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts pre-reduced at different temperatures were shown in Fig. 2. The initial heats were measured to be 96, 89, 91 and 93 kJ/mol with the saturation coverage of 334, 345, 322 and 298 $\mu\text{mol/g}$ on the $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts, while the initial heats were found to be 86, 95, 98 and 81 kJ/mol with the saturation coverage of 133, 305, 251 and 189 $\mu\text{mol/g}$ on the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts, prepared via the pre-reduction at 673, 723, 773 and 823 K, respectively. Apparently, the CO uptake was significantly higher on the $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ than on the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ prepared with the same pre-reduction temperature.

The active Ni surface areas (or H_2 uptakes) for the Ni/Al₂O₃ catalysts were decided by the loading, reducibility and dispersion of supported Ni. The corresponding data for the 60%Ni/Al₂O₃ and 80%Ni/Al₂O₃ catalysts were compared in Table 2. It is seen that nickel in the two catalysts was not completely reduced at all the reduc-

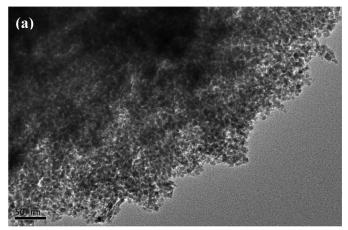
tion temperatures from 673 to 823 K. Increase of loading of Ni increased the reducibility of Ni, but decreased the dispersion of Ni. Increase of reduction temperature also increased the reducibility of Ni, but decreased the dispersion of Ni. After the phosphidation, the CO uptakes which were used to measure the number of active sites on Ni₂P were decided by the content and dispersion of Ni₂P in the catalysts. Although we could not measure the content of Ni₂P currently, the effect of Ni content and reduction temperature on the content and dispersion of Ni₂P was clear. Apparently, the increase of loading of Ni and pre-reduction temperature increased the Ni₂P content but decreased the dispersion of Ni₂P in the resulted Ni₂P/Al₂O₃ catalysts.

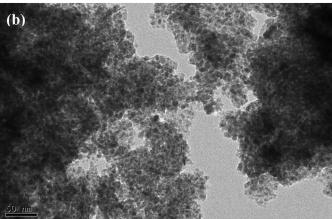
From the data in Table 1, it is seen that CO uptakes on the $60\% Ni_2P/Al_2O_3$ changed significantly with the pre-reduction temperature, indicating that the content and dispersion of Ni_2P in the $60\% Ni_2P/Al_2O_3$ were strongly affected by the pre-reduction temperature. When the pre-reduction temperature increased from 673 to 723 K, the increased content of Ni_2P was more than the decreased dispersion of Ni_2P , leading to the significant increase of CO uptake. When the pre-reduction temperature increased further from 723 to 823 K, the decreased dispersion of Ni_2P was more than the increased content of Ni_2P , leading to the decrease of CO uptakes.

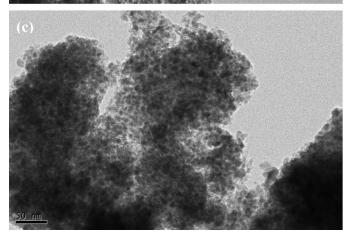
The effect of pre-reduction temperature on the content and dispersion of Ni_2P was smaller in the $80\%Ni_2P/Al_2O_3$ than in the $60\%Ni_2P/Al_2O_3$. This was because the $80\%Ni_2P/Al_2O_3$ possessed the higher loading of nickel and larger particle sizes of Ni_2P . Thus, the CO uptakes on the $80\%Ni_2P/Al_2O_3$ were not significantly affected by the pre-reduction temperature (see Table 1).

The presence of significant amount of unreduced Ni^{2+} in the Ni_2P/Al_2O_3 catalysts could be expected according to the data in Table 2. These unreduced Ni^{2+} cations might affect the activity of hydrotreating reactions, since they might react with H_2S formed during the hydrotreating reactions to form nickel sulfides. In fact, the used $60\%Ni_2P/Al_2O_3$ contained more S than the used $80\%Ni_2P/Al_2O_3$, which might be due to that the $60\%Ni_2P/Al_2O_3$ contained more unreduced Ni^{2+} than the $80\%Ni_2P/Al_2O_3$.

Since the $60\%Ni_2P/Al_2O_3$ and $80\%Ni_2P/Al_2O_3$ prepared via the prereduction at 723 K exhibited the highest CO uptakes in the respective series, they were the only two catalysts compared below.


3.2. Morphology of catalysts


Fig. 3 shows the TEM images of the reduced $80\% Ni/Al_2O_3$, and the fresh and used $80\% Ni_2P/Al_2O_3$ catalysts. It is seen that metallic Ni particles were well dispersed in the $80\% Ni/Al_2O_3$. The average size of Ni particles in the $80\% Ni/Al_2O_3$ was estimated to be about 5.5 nm, consistent with that (4.6 nm) estimated by the uptakes of H_2 and O_2 . After the phosphidation at 443 K, the highly dispersed Ni_2P particles were formed in the fresh $80\% Ni_2P/Al_2O_3$ with the statistically averaged particle size of about 8.8 nm, consistent with that (8.4 nm) estimated by the Scherrer equation. After the hydrotreating reactions at the temperatures from 513 to 613 K, the Ni_2P particles were still highly and homogeneously dispersed in the used $80\% Ni_2P/Al_2O_3$


 Table 2

 Dispersion and reducibility of supported Ni in the 60%Ni/Al₂O₃ and 80%Ni/Al₂O₃ catalysts pre-reduced in H₂ at different temperatures.

Catalysts	60%Ni/Al ₂ O	60%Ni/Al ₂ O ₃				80%Ni/Al ₂ O ₃			
Pre-reduction temp. (K)	673	723	773	823	673	723	773	823	
H ₂ adsorption (μmol/g)	801	865	928	824	846	1017	947	799	
O ₂ adsorption (μmol/g)	2267	2906	3437	3710	3795	4649	4818	5050	
Ni surface area (m ² /g)	63	68	73	65	66.2	79.6	74.1	62.6	
d (nm)	2.9	3.4	3.7	4.6	4.5	4.6	5.1	8.6	
Reducibility (%)	51.6	66.2	78.2	84.5	67.8	83.1	86.1	90.8	
Dispersion (%)	35.3	29.8	27.0	22.2	22.3	21.9	19.7	15.8	

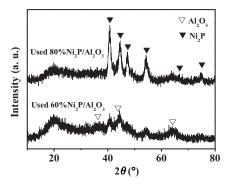


Fig. 3. TEM images of the $80\%Ni/Al_2O_3$ (a) fresh $80\%Ni_2P/Al_2O_3$ (b) and used $80\%Ni_2P/Al_2O_3$ (c) catalysts.

with the average size of about 9.0 nm. As compared with the average size of Ni_2P particles in the fresh $80\%Ni_2P/Al_2O_3$, the increase of size of Ni_2P particles during the hydrotreating reactions was not significant.

Fig. 4. XRD patterns for the used $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts. Reaction conditions: T=513-613 K, P=3.1 MPa, LHSV =2 h $^{-1}$ and H $_2$ /oil =1500 (v/v).

3.3. Structural and surface properties of used catalysts

Fig. 4 shows the XRD patterns of the used $60\% Ni_2P/Al_2O_3$ [14] and $80\% Ni_2P/Al_2O_3$ catalysts after the hydrotreating reactions. Ni_2P was the only phase detected besides Al_2O_3 , indicating that Ni_2P was highly stable during the hydrotreating reactions at the reaction temperatures from 513 to 613 K. No nickel sulfide phase was detected by XRD in the used catalysts although the studies showed that S would be incorporated into the Ni_2P surfaces during the hydrotreating reactions [28,29]. According to the broadening of Ni_2P (111) peak at 40.7° and the Scherrer equation, the average sizes of Ni_2P particles in the used $60\% Ni_2P/Al_2O_3$ and $80\% Ni_2P/Al_2O_3$ were estimated to be about 6.9 and 9.1 nm, respectively (see Table 3). Thus, the increase of sizes of Ni_2P particles during the hydrotreating reactions was not significant, comparing the XRD results for the fresh and used catalysts.

The initial heats and saturation coverages for the adsorption of CO on the used $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts were listed in Table 3. The initial heats for the adsorption of CO were measured to be 62 and 64 kJ/mol on the used $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ with the saturation coverages of 68 and 95 μ mol/g, respectively. The heats and coverages for the adsorption of CO were both significantly decreased as compared with those on the fresh catalysts. Since the sizes of Ni₂P particles increased only a little, the significant decrease of heats and coverages for the adsorption of CO must be caused by the incorporation of S into the Ni₂P surfaces. As compared with the used $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$, the used $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ possessed the higher CO uptake and thus exhibited the higher activity for the hydrotreating reactions.

Table 3 also lists the information about the surface areas and pore parameters for the used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ catalysts after the hydrotreating reactions. The surface areas of used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ were about 164 and 120 m²/g, respectively, which were not changed significantly as compared to those of the fresh ones. The pore volumes and pore sizes of used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ were decreased, but not significantly, as compared to those of fresh ones (see Table 1).

Table 4 shows the chemical compositions of the 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ before and after the hydrotreating reactions. The P/Ni ratios were measured to be 0.43 and 0.64, respectively, in the fresh 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃, while those were found to

Table 3Textural and structural properties of the used 60%Ni₂P/Al₂O₂ and 80%Ni₂P/Al₂O₃ catalysts.

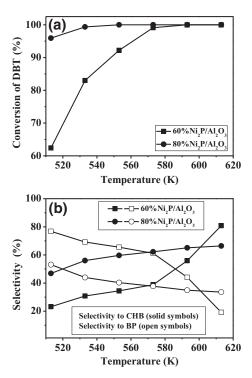
Used catalyst	$S_{\rm BET}({\rm m}^2/{\rm g})$	Pore volume (cm ³ /g)	Pore size (nm)	XRD phase	d (nm)	CO uptake (µmol/g)	CO ads. heat (kJ/mol)
60%Ni ₂ P/Al ₂ O ₃	164	0.55	10.9	Ni ₂ P	6.9	68	62
80%Ni ₂ P/Al ₂ O ₃	120	0.44	11.5	Ni ₂ P	9.1	95	64

Note: The particle size (d) of Ni₂P was estimated by the Scherrer equation according to the full width at half maximum (FWHM) of the peak at 40.7° in the XRD patterns shown in Fig. 4.

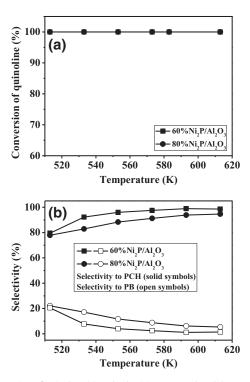
Table 4 Chemical compositions analyzed by XRF for the fresh and used $60\%Ni_2P/Al_2O_3$ and $80\%Ni_2P/Al_2O_3$ catalysts.

Catalyst	Ni (wt%)	P (wt%)	S (wt%)	P/Ni (atom)
60%Ni ₂ P/Al ₂ O ₃	49.9	11.3	-	0.43
Used 60%Ni ₂ P/Al ₂ O ₃	48.6	10.1	5.5	0.39
80%Ni ₂ P/Al ₂ O ₃	58.4	19.7	-	0.64
Used 80%Ni ₂ P/Al ₂ O ₃	58.2	19.9	2.1	0.65

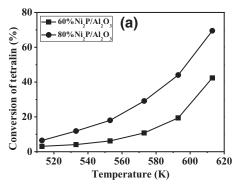
be 0.39 and 0.65 in the used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$, respectively. The P/Ni ratio was decreased in the used $60\% Ni_2 P/Al_2 O_3$ while it was almost not changed in the used $80\% Ni_2 P/Al_2 O_3$. The content of S was significantly higher in the used $60\% Ni_2 P/Al_2 O_3$ (5.5 wt%) than in the $80\% Ni_2 P/Al_2 O_3$ (2.1 wt%), probably owing to that the $80\% Ni_2 P/Al_2 O_3$ contained less unreduced Ni^{2+} cations and more P as compared to the $60\% Ni_2 P/Al_2 O_3$. Thus, the $80\% Ni_2 P/Al_2 O_3$ seemed more resistant to S during the hydrotreating reactions.


The P/Ni ratio in the 60%Ni₂P/Al₂O₃ was significantly lower than the stoichiometric ratio of Ni₂P (0.5). This might be caused by unreduced Ni²⁺ in the catalyst, which might react with H₂S formed during the hydrotreating reaction to form nickel sulfides. In addition, S might be incorporated into Ni₂P surfaces to form NiP_xS_y species, which was considered as the active phase for the hydrotreating reactions [29–31]. The P/Ni ratio in the 80%Ni₂P/Al₂O₃ was higher than the stoichiometric ratio of Ni₂P (0.5). Besides the P in Ni₂P, other forms of P might deposit in the catalyst during the phosphidation, leading to the higher P/Ni ratios. Similarly, different forms of sulfur might be also present in the used 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ catalysts. However, not all the sulfur was present in the Ni₂P lattices as the component of active phase NiP_xS_v. In fact, the amounts of different forms of P and S in the Ni₂P catalysts and their effects on the hydrotreating reactions are the complicated issues to understand in the future.

3.4. Catalytic properties


Fig. 5(a) compares the activities of HDS of DBT over the $60\% Ni_2P/Al_2O_3$ and $80\% Ni_2P/Al_2O_3$ catalysts. The conversion of DBT increased with the increase of reaction temperature. At the temperatures higher than 593 K, the conversion of DBT was 100% over the $60\% Ni_2P/Al_2O_3$ and $80\% Ni_2P/Al_2O_3$ catalysts. The difference in the activity of HDS of DBT was apparent over the two catalysts at the lower temperatures. At 513 K, the conversion of DBT was 62.4 and 95.9%, respectively, over the $60\% Ni_2P/Al_2O_3$ and $80\% Ni_2P/Al_2O_3$, in consistence with their CO uptakes on the used catalysts (68 and 95 μ mol/g, respectively).

The HDS of DBT usually undergoes through two pathways. One is the direct desulfurization pathway (DDS) with the formation of biphenyl (BP) as the desulfurization product, while another is the indirect desulfurization pathway, i.e., the one for the desulfurization after an aromatic ring in DBT is hydrogenated (HYD), with the formation of cyclohexylbenzene (CHB) as the desulfurization product. Fig. 5(b) shows the different selectivities for the HDS of DBT at different temperatures. With the increase of reaction temperature, the selectivity to BP decreased while that to CHB increased. For example, with the increase of reaction temperature from 513 to 613 K, the selectivity to BP decreased from 53.1% to 33.6% while that to CHB increased from 46.9% to 66.4%, over the $80\% Ni_2 P/Al_2 O_3$. At 513 K, the selectivity to BP was 76.8 and 53.1%, while that to CHB was 23.2 and 46.9% over the 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃, respectively. This indicated that the 80%Ni₂P/Al₂O₃ exhibited the higher activity of HYD pathway, i.e., the higher activity for the hydrogenation of aromatic ring in DBT than the 60%Ni₂P/Al₂O₃.


Fig. 6(a) compares the 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ catalysts for the HDN of quinoline. The conversion of quinoline was 100%

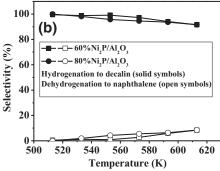


Fig. 5. Conversion of DBT (a) and selectivity to biphenyl (BP) and cyclohexylbenzene (CHB) (b) on the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts. Other reaction conditions: P = 3.1 MPa, LHSV = 2 h^{-1} and $\text{H}_2/\text{oil} = 1500 \text{ (v/v)}$.

Fig. 6. Conversion of quinoline (a) and selectivity to propyl-cyclohexane (PCH) and propylbenzene (PB) (b) on the $60\%\text{Ni}_2\text{P/Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P/Al}_2\text{O}_3$ catalysts. Other reaction conditions: P = 3.1 MPa, LHSV $= 2 \text{ h}^{-1}$ and $\text{H}_2/\text{oil} = 1500 \text{ (v/v)}$.

Fig. 7. Conversion of tetralin (a) and selectivity to decalin and naphthalene (b) on the $60\% \text{Ni}_2 P/\text{Al}_2 O_3$ and $80\% \text{Ni}_2 P/\text{Al}_2 O_3$ catalysts. Other reaction conditions: P=3.1 MPa, LHSV =2 h $^{-1}$ and H $_2$ /oil =1500 (v/v).

over the two catalysts at the temperatures from 513 to 613 K, indicating that the difference of activity of the two catalysts for the HDN of quinoline could not be distinguished under the reaction conditions. Propylbenzene (PB) and propylcyclohexane (PCH) were the products of HDN of quinoline. The selectivities of these products are shown in Fig. 6(b). It is seen that PCH was the main product of HDN on the Ni₂P catalysts, i.e., the aromatic ring without the N atom in quinoline was easily hydrogenated on Ni₂P. In addition, the selectivity to PCH was similar over the two catalysts, but slightly higher on the $60\%\text{Ni}_2\text{P/Al}_2\text{O}_3$ than on the $80\%\text{Ni}_2\text{P/Al}_2\text{O}_3$, probably owing to that the $60\%\text{Ni}_2\text{P/Al}_2\text{O}_3$ contained more γ -Al₂O₃ and thus possessed stronger surface acidity [23,24].

The content of aromatic hydrocarbons in diesel fuels is an important factor determining the quality of diesel. Hydrocarbons with multi-rings have low cetane numbers and produce more particulate matters (PM) from diesel engines [32]. In this work, the hydrogenation of tetralin was used to probe the activities of Ni₂P catalysts for the hydrogenation of hydrocarbons with multiple aromatic rings. Fig. 7(a) shows the conversion of tetralin over the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ catalysts at different reaction temperatures. The conversion of tetralin increased with the increase of reaction temperatures from 513 to 613 K. The conversion of tetralin was higher on the $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ than on the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ at the same reaction temperatures. For example, the conversion of tetralin was determined to be 42.4 and 69.5%, respectively, at 613 K over the $60\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$ and $80\%\text{Ni}_2\text{P}/\text{Al}_2\text{O}_3$.

Tetralin might be hydrogenated to decalin (HYD) or dehydrogenated to naphthalene (DHYD) over the Ni_2P catalysts. Fig. 7(b) shows the selectivities to decalin and naphthalene over the $60\% Ni_2P/Al_2O_3$ and $80\% Ni_2P/Al_2O_3$ catalysts at different reaction temperatures. It is seen that decalin was the main product of hydrogenation of tetralin. With the increase of reaction temperature, the selectivity to decalin decreased while that to naphthalene increased. In addition, the selectivity to decalin was quite similar over the two catalysts.

Table 5 Turnover frequencies (TOF) of HDS of DBT and hydrogenation of tetralin on the $60\%Ni_2P/Al_2O_3$ and $80\%Ni_2P/Al_2O_3$ catalysts.

HDS of DBT at 513 K (10^{-4} s^{-1})	Hydrogenation of tetralin to decalin at 613 K (10^{-4} s^{-1})
4.8	12.0 14.1
	(10^{-4} s^{-1})

The turnover frequencies (TOF) for the HDS of DBT and the hydrogenation of tetralin to decalin were calculated according to the CO uptakes on the used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ catalysts. The results are given in Table 5. The $80\% Ni_2 P/Al_2 O_3$ exhibited the higher TOF values than the $60\% Ni_2 P/Al_2 O_3$ for the HDS of DBT and hydrogenation of tetralin to decalin, indicating that the $80\% Ni_2 P/Al_2 O_3$ had the $Ni_2 P$ sites with higher intrinsic activities, which might be associated with the lower content of S in the $80\% Ni_2 P/Al_2 O_3$ during the hydrotreating reactions.

4. Conclusions

Following conclusions can be drawn from the above results:

- (1) The Ni₂P/Al₂O₃ catalysts could be prepared by the prereduction and then phosphidation of corresponding Ni/Al₂O₃ catalysts. It was found that the 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ prepared by the pre-reduction at 723 K in H₂ followed by the phosphidation at 443 K with PPh₃ in liquid phase exhibited the highest CO uptakes (305 and 345 μmol/g, respectively).
- (2) The conversion of HDS of DBT was 62.4 and 95.9% at 513 K and that of hydrogenation of tetralin was 42.4 and 69.5% at 613 K over the 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ catalysts, respectively, indicating that the 80%Ni₂P/Al₂O₃ was significantly more active than the 60%Ni₂P/Al₂O₃ for the HDS of DBT and hydrogenation of tetralin to decalin.
- (3) The XRD and TEM results showed the highly and homogeneously dispersed Ni₂P nano particles in the fresh (6.3 and 8.4 nm, respectively) and used (6.9 and 9.1 nm, respectively) 60%Ni₂P/Al₂O₃ and 80%Ni₂P/Al₂O₃ catalysts, indicating that such Ni₂P nano particles were highly stable during the hydrotreating reactions at the temperatures from 513 to 613 K.
- (4) After the hydrotreating reactions, the CO uptakes on the used $60\% Ni_2 P/Al_2 O_3$ and $80\% Ni_2 P/Al_2 O_3$ catalysts were greatly decreased to 68 and 95 $\mu mol/g$, respectively, due to the incorporation of S into the $Ni_2 P$ surfaces.
- (5) After the hydrotreating reactions, the used 80%Ni₂P/Al₂O₃ exhibited the higher CO uptake than the used 60%Ni₂P/Al₂O₃, indicating that the 80%Ni₂P/Al₂O₃ possessed more active sites of Ni₂P than the 60%Ni₂P/Al₂O₃ for the hydrotreating reactions. In addition, the TOF values for the HDS of DBT and hydrogenation of tetralin were significantly higher on the 80%Ni₂P/Al₂O₃ than on the 60%Ni₂P/Al₂O₃, indicating that the Ni₂P sites were more active in the 80%Ni₂P/Al₂O₃ than in the 60%Ni₂P/Al₂O₃, probably owing to the less S content in the 80%Ni₂P/Al₂O₃ than in the 60%Ni₂P/Al₂O₃. Thus, the 80%Ni₂P/Al₂O₃ seemed more resistant to S than the 60%Ni₂P/Al₂O₃ for the hydrotreating reactions.

Acknowledgments

Financial supports from NSFC (21273105), MSTC (2013AA031703), NSFJC (BK20140596) and the fundamental research funds for central universities are acknowledged.

References

- A. Infantes-Molina, C. Moreno-Leon, B. Pawelec, J.L.G. Fierro, E. Rodriguez-Castellon, A. Jimenez-Lopez, Appl. Catal. B: Environ. 113-114 (2012) 87.
- [2] J.R. Hayes, R.H. Bowker, A.F. Gaudette, M.C. Smith, C.E. Moak, C.Y. Nam, T.K. Pratum, M.E. Bussell, J. Catal. 276 (2) (2010) 249.
- [3] J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellon, A. Jimenez-Lopez, J Catal 263 (1) (2009) 4.
- [4] X.Q. Wang, P. Clark, S.T. Oyama, J. Catal. 208 (2) (2002) 321.
- [5] S.T. Oyama, J. Catal. 216 (1-2) (2003) 343.
- [6] S.T. Oyama, H.Y. Zhao, H.J. Freund, K. Asakura, R. Wlodarczyk, M. Sierka, J. Catal. 285 (1) (2012) 1.
- [7] V. Zuzaniuk, R. Prins, J. Catal. 219 (1) (2003) 85.
- [8] S.J. Sawhill, D.C. Phillips, M.E. Bussell, J. Catal. 215 (2) (2003) 208.
- [9] J. Chen, H. Shi, L. Li, K. Li, Appl. Catal. B: Environ. 144 (0) (2014) 870. [10] P.A. Clark, S.T. Oyama, J. Catal. 218 (1) (2003) 78.
- [11] S.J. Sawhill, K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, J. Catal. 231 (2) (2005) 300.
- [12] K.-S. Cho, H.-R. Seo, Y.-K. Lee, Catal. Commun. 12 (6) (2011) 470.
- J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellon, A. Jimenez-Lopez, Appl. Catal. B: Environ. 92 (1-2) (2009) 100. [13]
- [14] J. Wang, Y. Fu, H. Chen, J. Shen, Chem Eng J (in press).

- [15] S. Narayanan, R. Unnikrishnan, V. Vishwanathan, Appl Catal A: gen 129 (1) (1995)

- [16] S. Narayanan, R. Unnikrishnan, Appl. Catal A: Gen 145 (1) (1996) 231.
 [17] R. Molina, G. Poncelet, J. Catal. 199 (2) (2001) 162.
 [18] P. Savva, K. Goundani, J. Vakros, K. Bourikas, C. Fountzoula, D. Vattis, A. Lycourghiotis, C. Kordulis, Appl. Catal. B: Environ. 79 (3) (2008) 199.
- [19] S. Hu, M. Xue, H. Chen, Y. Sun, J. Shen, Chin. J. Catal. 32 (6) (2011) 917.

- [19] S. Hu, W. Xie, H. Chen, J. Sun, J. Shen, Catall. Commun. 11 (4) (2009) 266.
 [21] Y. Zhao, M. Xue, M. Cao, J. Shen, Appl. Catal. B: Environ. 104 (3-4) (2011) 229.
 [22] J. Wang, H. Chen, Y. Fu, J. Shen, Appl. Catal. B: Environ. 160–161 (0) (2014) 344.
 [23] S. Hu, M. Xue, H. Chen, J. Shen, Chem. Eng. J. 162 (1) (2010) 371.
- [24] J. Zhao, H. Chen, J. Xu, J. Shen, J. Phys. Chem. C 117 (20) (2013) 10573.
 [25] S.T. Oyama, Y.-K. Lee, J. Catal. 258 (2) (2008) 393.

- S.T. Oyama, Y.-K. Lee, J. Catal. 258 (2) (2008) 393.
 G.-N. Yun, Y.-K. Lee, Appl. Catal. B: Environ. 150 (647) (2014).
 Y. Zhao, Y. Zhao, H. Feng, J. Shen, J. Mater. Chem 21 (22) (2011) 8137.
 A.E. Nelson, M. Sun, A.S.M. Junaid, J. Catal. 241 (1) (2006) 180.
 S.T. Oyama, X. Wang, Y.K. Lee, W.J. Chun, J. Catal. 221 (2) (2004) 263.
 K.A. Layman, M.E. Bussell, J. Phys. Chem. B 108 (30) (2004) 10930.
 K.A. Layman, M.E. Bussell, J. Phys. Chem. B. 108 (40) (2004) 15791.

- [32] M. Santikunaporn, J.E. Herrera, S. Jongpatiwut, D.E. Resasco, W.E. Alvarez, E.L. Sughrue, J. Catal. 228 (1) (2004) 100.