黄瓜SRAP遗传连锁图的构建及侧枝基因定位*

王 刚 潘俊松 李效尊 何欢乐 吴爱忠 蔡 润**

(上海交通大学农业与生物学院, 上海 201101)

摘要 在由黄瓜的两个自交系S06 与S52 杂交产生的 F_2 群体中,应用SRAP(sequence-related amplified polymorphism)标记构建遗传连锁图谱,检测控制黄瓜侧枝数(lbn)和侧枝平均长度(lbl) 的数量性状座位(QTL). 使用筛选出的 64 个多态性引物组合对 F_2 群体进行分析,得到 108 个多态性位点. 经MAPMAKER/EXP3.0 分析(LOD 3.0),获得由 92 个标记座位组成、覆盖 7 个连锁群的遗传图谱,总长 1164.2 cM,标记平均间距 12.6 cM. 应用QTLMapper1.6,各检测到 4 个控制lbn和lbl的QTL,其中,对lbn贡献率最大的QTL位于第二连锁群的ME11SA4B-ME5EM5 区间,其S06基因型具有增效作用,对lbl贡献率最大的QTL位于第二连锁群的DC1OD3-DC1EM14 区间,其S06基因型具有增效作用。

关键词 黄瓜 SRAP 连锁图 侧枝基因 数量性状座位 (QTL)

黄瓜($Cucumis\ sativus\ L.\ 2n=2x=14$)是重要的蔬菜作物之一,在世界上的栽培面积仅次于番茄,位居第二 $^{[1]}$. 黄瓜的经典遗传图谱是由 $100\ 20$ 0 多个颜色、形态和抗病性等基因组成的 60 个连锁群 $^{[2]}$. 虽然分子标记早已用于黄瓜的遗传作图,但进展缓慢. 1994年,Kennard等人 $^{[3]}$ 利用RFLP,RAPD,同工酶,形态和抗病性所产生的标记,构建了由 580 个位点组成的黄瓜遗传图谱,分属 100 个连锁群,覆盖的基因组总长度约为 7660 cM,标记间平均距离约为 130 cM; 1995年,Lee $^{[4]}$ 利用RAPD在黄瓜的杂交 F_2 群体中发展分子标记,获得具有 280 个RAPD标记的黄瓜分子连锁图谱;

1997 年,Serquen等人^[5]利用重组近交系构建了含 77 个RAPD标记和 3 个基因位点的黄瓜遗传图谱,分属 9 个连锁群,覆盖约 600 cM; 2003 年,Fazio等人^[6]构建了包含 131 个标记、覆盖 706 cM、平均间距 5.6 cM的遗传图谱. 黄瓜有 7 对染色体,由于染色体小且难以观察,加之黄瓜本身的细胞遗传学研究落后,所以迄今黄瓜的分子标记连锁群与染色体的对应关系尚不清楚.

黄瓜是一种遗传背景十分狭窄的植物^[7-10], 一般通用的分子标记如RAPD(random amplified polymorphic DNAs)所能揭示的多态性十分有限, 共显性

²⁰⁰⁴⁻⁰⁷⁻²⁸ 收稿, 2004-08-23 收修改稿

^{*} 上海市科委项目(批准号: 033107019)和上海市农委项目(沪农科攻字(2003)第 2-1-2 号)资助

^{**} 联系人: E-mail: cairun@sjtu.edu.cn

[†]同等贡献

的 RFLP(restriction fragmetn length polymorphism)和 SSR(simple-sequence repeat)标记的多态性也不高,而 且可利用的分子标记数目有限. 因此, 新标记技术的 应用对于更好地构建遗传图谱、定位控制黄瓜重要性 状的基因十分必要. Li等人[111]在 2001 年发展了一种 新型分子标记 SRAP(sequence-related amplified polymorphism). 该标记通过独特的引物设计对开放阅读 框(opening reading frames ORFs)进行扩增. 一般而言, 上游引物长 17 bp, 5 端的前 10 bp是一段填充序列, 紧接着是CCGG, 由此组成核心序列, 再加上3 端3个 选择碱基, 可对外显子进行扩增; 下游引物长 18 bp, 5 端的前 10~11 bp是一段填充序列, 紧接着是AATT, 由 此组成核心序列, 再加上 3 端 3 个选择碱基, 可对内 含子区域、启动子区域进行扩增. SRAP标记可以因个 体不同以及物种的内含子、启动子与间隔区长度不 等而产生有多态性的扩增产物,具有简便、稳定、产 率高、广泛适用和便干克降目标片段的优点, 已经在 马铃薯、莴苣、油菜、大蒜和棉花[12]等植物研究中使 用, 并已被应用于遗传连锁图谱、转录图谱[13]的构 建 以及比较基因组学和遗传多样性分析.

侧枝是黄瓜生产中重要的农艺性状,对黄瓜生产影响较大. 国内黄瓜栽培和收获方式不同于美国的淹渍类型,多数为搭架或吊式栽培,需要侧枝少的类型. 多侧枝会影响黄瓜的生长和挂果率,必须频繁整枝,增加了人工,同时侧枝长势过强,影响主蔓生长,也给黄瓜生产管理带来诸多不便,因此对侧枝性状的研究对于黄瓜生产中培育出侧枝少、长势弱的品系有一定的意义. 本研究应用由黄瓜组合S52/S06 的F₂群体,构建了SRAP标记分子遗传图谱,并以此图谱为基础进行了侧枝这一重要农艺性状的QTL 定位.

1 材料和方法

1.1 材料

所用黄瓜材料为S52/S06的 F_2 群体, 其母本S06为侧枝多、长势强的欧洲温室型自交系, 父本 S52 为侧枝少、长势弱的国内大别山农家品种自交系.

1.2 方法

(1) F₂分离群体的构建: 配制杂交组合得到F₁种

- 子, F_1 种植后自交获得 F_2 . F_2 群体的 200 单株于 2003 年 6月种植于上海交通大学农业与生物学院温室, 各 单株使用统一配置的基质, 装袋后定植, 统一肥水管理, 随机挑选其中的 138 株作为作图群体.
- (2) 侧枝性状的调查与统计: 定植后 50 天调查 亲本和F₂群体中各单株的侧枝数量、每单株侧枝平均 长度以及侧枝长于 5 节的侧枝数量.
- (3) 总DNA提取: 采黄瓜两片真叶展开时的子叶, 用CTAB法[14]提取亲本及群体的总DNA.
- (4) SRAP标记分析: 引物采用Li等人[11,13] (ME1-ME5, DC1, PM8 和 EM1-EM6, OD3, SA4, GA18), Ferrio等人[15](ME7, ME8)及林忠旭等人[12] (EM14, EM15, EM15 为表 1 中的EM8)发表的引物, 还自行设计了 5 个引物, 详见表 1, 引物由上海生物 工程技术服务有限公司合成. PCR反应体系为: 60 ng 模板DNA, 引物各 30 ng, 200 μmol/L dNTPs, 1 × Taq Buffer, 1.5 mmol/L MgCl₂, 0.5 U Tag DNA聚合酶(上 海Promega公司产品), 总反应体系为 20 μL. PCR程序 参照文献[11], 略做修改, 具体程序为: 94 , 3 min; 94 , 30 s, 37 , 30 s, 72 , 90 s, 8 个循环; 94 , 30 s, 48 , 30 s, 72 , 90 s, 32 个循环; 72 , 7 min. 扩增产 物用 4%变性聚丙烯酰胺凝胶电泳分离, 电泳缓冲液 为 1 x TBE. 电泳时使用 70 W恒功率, 电泳 1.5~2 h, 至二甲苯青到胶板 2/3 处, 电泳时胶板温度不高于 50 . 电泳后银染, 程序参照朱正歌等人[16]的方法.
- (5) 数据统计和标记命名: 数据统计时以带型的有无作为基因型, 根据 SRAP 标记在双亲中的表现进行归类, 将 S06 品系呈现的标记类型记为 1, S52 品系呈现的标记类型记为 2, 群体中根据其标记类型分别记为 1 或 2, 缺失的数据计为 0. 采用引物组合的方法对标记进行命名, 如 ME9EM2 表示引物组合为 ME9和 EM2, A, B, C 分别表示该引物组合获得的、胶板上从高到低的第 1, 2, 3 个多态性位点.
- (6) 连锁分析: 应用MAPMAKER/EXP3.0^[17], 设置LOD 3.0, 最大图距 37.2 cM, 对 108 个标记位点进行连锁分析, 采用Kosambi函数将重组率转化成遗传图距 (centimorgan, cM).
- (7)侧枝性状分析:应用基于复合区间作图法的QTLMapper1.6^[18],对单株侧枝数量和侧枝平均长度

进行QTL定位分析,设置LOD > 2.5 为阈值.

2 结果与分析

2.1 亲本间多态性标记的筛选

用 182 个引物组合(表 1)对亲本S06 与S52 进行筛选,得到 64 个多态性好的引物组合. 每对引物组合 平均可以得到 20~30 条清晰可辨的条带,条带主要分布在 100~800 bp之间,其中强带占到 80%以上. 用这些引物组合进行亲本间的多态性分析,共得到 108 个多态性位点,用于F₂群体的分析.

2.2 黄瓜 SRAP 分子标记连锁图谱的构建

对获得的 108 个标记位点在F₂群体的分离数据进行X²适合性检测,发现有12个标记位点不符合31分离,占11.1%.用MAPMAKER/EXP3.0对108个多态性标记位点进行连锁分析,构建遗传连锁图,其中92个标记进入7个连锁群(LOD 3.0),总长1164.2cM,详见图 1. 最长的连锁群为 281.0 cM,最短的86.6 cM. 每个连锁群有7~22个标记,标记间最大间距25.0 cM,最小3.2 cM.标记在整个连锁群中分布均匀,没有聚集在某一个区域的现象.

2.3 侧枝性状在亲本和F2群体中的表现

定植后 50 天调查亲本和F₂群体各单株的侧枝数量,发现亲本差异明显, S52 与S06 分别平均有 6 条和 14 条侧枝, 相差 8 条,经样本平均数的假设测验证明两亲本间存在显著差异;整个群体的差异也很大,其中有 31 株比S52 的侧枝少,88 株介于亲本S52 和

S06 之间, 4 株的侧枝数多于S06, 在 F_2 群体中各个单株的侧枝数量呈正态分布(图 2), 说明黄瓜的侧枝数量是一个典型的数量性状.

在调查亲本和各单株的侧枝数时发现, S52 没有多于 5 节的侧枝, 而S06 的侧枝均多于 5 节; F_2 群体中有 40 株没有长于 5 节的侧枝, 98 株有 1 条以上长于 5 节的侧枝, 98 株有 1 条以上长于 5 节的侧枝, 98 株有 1 条以上长于 5 节的侧枝, 98 作为标准可考虑将该性状视为质量性状. 同时对亲本和 F_2 群体各个单株的侧枝平均长度进行统计, S52与S06 侧枝平均长度分别是 8 cm和 29 cm, F_2 植株的侧枝平均长度在 1~43 cm之间, 在 16 cm处有一个高峰, 分离数基本上符合正态分布(图 3), 表现为数量性状.

2.4 侧枝性状的定位分析

将在 F_2 群体中的多于和少于 5 节侧枝数的分离数据与 108 个标记位点一起用MAPMAKER3.0 分析,将 该 性 状 定 位 在 第 2 连 锁 群 的 DC1GA18 与 ME11SA4B之间,与两侧标记的距离分别为 9.6 cM和 10.8 cM,标记名称记为lb (lateral branch).

将侧枝数量的群体分离数据采用 QTLMapper1.6 软件进行侧枝性状的 QTL 定位. 以 LOD > 2.5 为确定某一位点存在 QTL 的阈值. 分析结果表明, 在第 2 连锁群的 ME11SA4B 和 ME5EM5 之间检测到一个 QTL, 其贡献率为 10.63%, 称为 lbn1(表 2, 图 1), 其 S06 基因型具有使侧枝数量增加的效应. 另外还检测到 3 个效应较小的 QTL, 分布于第 1, 2 和 7 连锁群.

表 1 本实验中所用的 SRAP 标记引物					
类型	名称	序列(5 ~3)	类型	名称	序列(5 ~3)
上游引物	ME1	TGAGTCCAAACCGGATA	下游引物	EM1	GACTGCGTACGAATTAAT
	ME2	TGAGTCCAAACCGGAGC		EM2	GACTGCGTACGAATTTGC
	ME3	TGAGTCCAAACCGGAAT		EM3	GACTGCGTACGAATTGAC
	ME4	TGAGTCCAAACCGGACC		EM4	GACTGCGTACGAATTTGA
	ME5	TGAGTCCAAACCGGAAG		EM5	GACTGCGTACGAATTAAC
	ME6	TGAGTCCTTTCCGGTAA		EM6	GACTGCGTACGAATTGCA
	ME7	TGAGTCCTTTCCGGTCC		EM7	GACTGCGTACGAATTCAA
	ME8	TGAGTCCTTTCCGGTGC		EM8	GACTGCGTACGAATTCTG
	ME9	TGAGTCCAAACCGGTAG		EM9	GACTGCGTACGAATTGAT
	ME10	TGAGTCCAAACCGGCAT		EM14	GACTGCGTACGAATTCAG
	ME11	TGAGTCCAAACCGGTCT		EM18	GACTGCGTACGAATTCCT
	DC1	TAAACAATGGCTACTCAAG		OD3	CCAAAACCTAAAACCAGGA
	PM8	CTGGTGAATGCCGCTCT		SA4	TTCTTCTTCCTGGACACAAA
				GA18	GGCTTGAACGAGTGACTGA

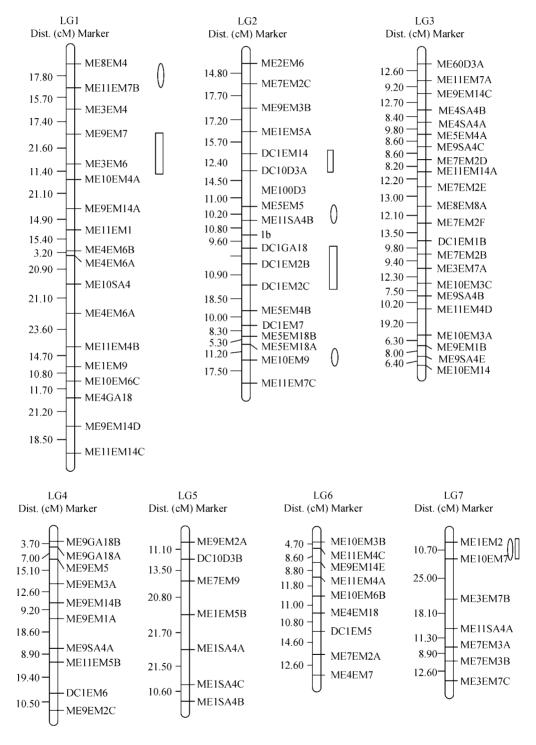


图 1 黄瓜 SRAP 分子标记连锁图

 $LG1\sim LG7$ 示连锁群数目,连锁群左边 Dist. 示标记间距离(cM),右边 Maker 示引物名称,图中 lb 示多于 5 节侧枝基因,其中 \bigcirc 示侧枝数量(lbn)的QTL 位点, \square 示侧枝平均长度(lbl)的QTL 位点

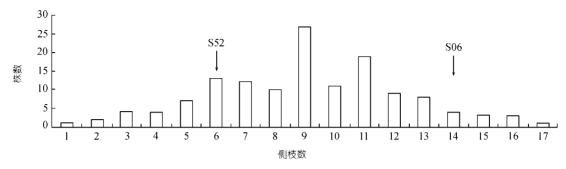


图 2 S52, S06 与F₂群体侧枝数分布(箭头示S52 和S06 的侧枝数)

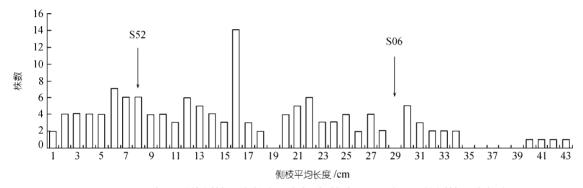


图 3 S52, S06 与F₂群体侧枝平均长度分布规律(箭头示S52 和S06 的侧枝平均长度)

QTL 区间 连锁群序号 LOD 贡献率 效应 lbn1 ME11SA4B~ME5EM5 2 33.08 10.63% 0.9942 1bn2 ME10EM9~ME5EM18A 2 4.32 7.56% 0.6574 6.47% lbn3 ME11EM7B~ME8EM4 3.41 0.7276 7 lbn4 ME10EM7~ME1EM2 4.44 9.33% -0.81851b11 DC1OD3~DC1EM14 2 3.52 10.38% 0.9886 1b12 DC1EM2C~DC1GA18 2 23.52 6.22% 0.7577 1613 ME10EM4A~ME9EM7 1 2.64 7.65% 0.78168 ME10EM7~ME1EM2 -0.98571b14 2.54 6.86%

表 2 用 OTL1.6 软件分析侧枝数量和侧枝平均长度的结果

对侧枝平均长度的 QTL 分析发现, 在第 2 连锁群的 DC1OD3A 和 DC1EM14 间存在一个 QTL, 贡献率为 10.38%, 称为 lbl1(表 2, 图 1), 其 S06 基因型具有使侧枝长度增加的效应. 同时还检测到另外 3 个 QTL, 其中 lbl2 也位于第 2 连锁群,介于 DC1EM2C和 DC1GA18 之间,贡献率为 6.22%,增效基因型同样为 S06;位于第 1 连锁群的 lbl3 的增效基因型也为 S06,位于第 7 连锁群的 lbl4 的增效基因型则为 S52.在对 lbn 和 lbl 进行 QTL 分析时,这两个性状均未检测到上位效应.

514

3 讨论

SRAP标记是一种新的标记技术,迄今还没有关于SRAP用于黄瓜研究的报道.本研究在SRAP分析时基本上参照Li等人[11]的PCR反应条件,作了适当的修改,得到了很好的扩增效果.在黄瓜的材料上,不论是多态性引物的比率,还是每个引物组合产生的多态性条带数目,SRAP均优于RAPD(本实验室未发表数据).

在得到的 108 个多态性位点中, 有 12 个标记经 X^2 检测不符合 3 1 分离, 占 11.1%. 所观察到的偏分 离中有 8 个偏向S52, 4 个偏向S06, 偏分离可能是配

子选择的结果. 这 12 个偏分离标记在连锁分析时虽然没有去除, 但连锁分析发现这些标记并未进入得到的 7 个连锁群中. 本实验室曾使用 93 个 F_2 单株作为作图群体来构建连锁图, 得到了 8 个连锁群, 在将群体扩大到 138 个单株时, 原来不连锁的一些标记大多进入到大的连锁群中, 使连锁群数达到理论上的 7 个, 与黄瓜的染色体对数吻合, 同时标记间的平均图距也有所减小. 这说明在样本数较小时, 提高连锁群的质量最有效手段是扩大分离群体.

SRAP已被用于甘蓝和棉花的遗传图谱构建,Li 等人[11,13]在 2001 年以羽衣甘蓝与花椰菜杂交获得的 重组自交系(RIL)为材料构建了含 9 个连锁群、最大间距 34.6 cM的遗传连锁图; 2003 年,林忠旭等人[12]以海岛棉邯郸 208 和陆地棉Pima90 杂交产生的 F_2 代群体,构建了 39 个连锁群,总长 3030.7 cM,覆盖了整个棉花基因组的 65.4%,其中标记间的最大间距为 42.8 cM,最小间距 0.2 cM,平均间距 12.79 cM.我们对S06 和S52 杂交产生的 F_2 代进行连锁分析,构建了总长为 1164.2 cM的 7 个连锁群,与Staub等人[8]估计的黄瓜基因组总图距相近(800~1000 cM).标记间最大间距、最小间距以及平均间距都与Li等人[11,13]和林忠旭等人[12]的相近,所有这些结果都表明SRAP是一种高效的随机分子标记,可用于各种不同的作物.

我们在用SRAP构建的遗传连锁图的基础上,研究了黄瓜单株的侧枝数量、侧枝平均长度和 5 节以上的侧枝数量,这三个性状都与侧枝的生长发育和长势紧密相关,也是黄瓜育种的目标性状.我们在统计侧枝数量与侧枝平均长度时发现,如果以 5 节为标准区分两亲本的侧枝性状,该性状在F2代群体中的分离比符合 3:1. 早先,本实验室在黄瓜定植后 30 天调查侧枝性状时发现,如果以 2 cm侧枝长为标准(此时,亲本S06 侧枝均长于 2 cm,而S52 的侧枝均短于2 cm)来确定侧枝的有和无,F2代也出现两亲本性状3:1的分离比.本研究对多于5节的侧枝性状进行基因定位,将该基因(lb)定位在第 2 连锁群的DC1EM2B附近(图 1),与以 2 cm为标准的侧枝性状基因定位的结果(本实验室数据,未显示)是一致的.

侧枝的数量在S06 和S52 这两个亲本之间的差异明显,而且在F₂代中表现为正态分布,属于典型的数

量性状; 对该性状进行QTL分析, 共检测到 4 个QTL, 其中有一个主效 QTL(lbn1) 位于第 2 连锁群的 ME11SA4B与ME5EM5 之间, 该座位上的S06 基因型能够使侧枝数量增加. 另外, 侧枝的平均长度也是一个数量性状, 它反映了不同黄瓜植株侧枝的长势; 对该性状进行QTL分析, 发现有4个QTL与该性状有关,一个主效QTL(lb11)位于第 2 连锁群的DC1OD3 和DC1EM14 之间, 该座位上的S06 基因型能使侧枝的平均长度增加. 在比较这两个数量性状的QTL所在的区间时, 可以看到决定侧枝数量的lbn4和决定侧枝长度的lb14 都位于第 7 连锁群的 ME10EM7 和ME1EM2 之间, 这两个QTL的区间是重叠的(图 1), 而且这两个座位上的增效基因型均为S52.

本研究使用的SRAP标记是一种显性标记,据报道¹¹¹有些标记也呈现共显性特征,但是我们所分析的标记中未发现有共显性标记.显性标记由于无法区分纯合子与杂合子,所以在进行QTL分析时不能够区分QTL的显性和加性效应. F₂群体属于临时群体,在对性状进行QTL分析时存在难以重复的缺点.本研究涉及的三个有关侧枝发育和长势性状的基因(或QTL)都分布在第1,2,7连锁群,并且相对集中在第2连锁群.在该连锁群的DC1EM2C与ME5EM5 区间集中了控制侧枝数量的QTL(lbn1)和控制侧枝平均长度的QTL(lbl2),以及决定侧枝多于 5 节的基因(lb),说明在这一区域里确实有控制侧枝生长发育和长势的基因存在.

在分析F₂代侧枝性状的分离数据时可以发现, 无论是在侧枝数量,还是在侧枝平均长度上均有超 亲植株出现(图 2 和 3),有一些植株在侧枝数量和侧 枝平均长度上均低于S52 亲本,这显然是几个QTL分 离的结果.因此,可以利用QTL的分离和标记辅助选 择获得超亲遗传的侧枝更少、侧枝长势更弱的 种质 资源,进一步培育侧枝长势恰当的黄瓜优良 品种.

参 考 文 献

- 1 李怀智. 我国黄瓜栽培的现状及其发展趋势. 蔬菜, 2003, 8: 3~4
- 2 Pierce L K, Whener T C. Review of genes and linkage groups in cucumber. HortScience, 1990, 26: 605~615
- 3 Kennard W C, Poetter K, Dijkhuizen A, et al. Linkages among RFLP, RAPD, isozyme disease resistance and morphological

- markers in narrow and wide crosses of cucumber. Theor Appl Genet, 1994, 89: 42~48
- 4 Lee Y H. Use of random amplified polymorphic DNAs for linkage group analysis in interspecific hybrid F2 generation of cucurbica. Journal of the Korean Society Horticultural Science, 1995, 36(3): 323~330
- Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (*Cucumis sativas* L.) using random amplified polymorphic DNA makers. Molecular Breeding, 1997, 3(4): 257~268[DOI]
- 6 Fazio G, Staub J E. Genetic mapping and QTL analysis of horticultural traits in cucumber (*Cucumis sativus* L.) using recombinant inbred lines. Theor Appl Genet, 2003, 107: 864~874[DOI]
- 7 张海英, 王永健, 许 勇, 等. 黄瓜种质资源遗传亲缘关系的 RAPD 分析. 园艺学报, 1998, 25(4): 345~349
- 8 Staub J E, Serquen F C, Gupta M. Genetic makers, map construction, and their application in plant breeding. HortScience, 1996, 31: 729~741
- 9 Dijkuizen A, Kennard W C. RFLP variability and genetic relationships in cultivated cucumber. Euphytica, 1996, 90: 79~87
- 10 Knerr L D, Staub J E. Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor Appl Genet,

- 1989, 78: 119~128[DOI]
- 11 Li G, Quiros C F. Sequence-related amplified polymorphisim (SRAP), a new maker system based on a simple RCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455~461[DOI]
- 12 林忠旭, 张献龙, 聂以春, 等. 棉花 SRAP 遗传连锁图构建. 科学通报, 2003, 48(15): 1676~1679
- 13 Li G, Gao M, Yang B, et al. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107: 168~180
- 14 Clark M S. PlantMolecular Biology——A Laboratory Mannual. Heidelber: Springer Verlag Berlin, 1998
- 15 Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of *Cucubita pepo* using SRAP and AFLP markers. Theor Appl Genet, 2003, 107: 271~282[DOI]
- 16 朱正歌, 贾继增, 孙宗修. AFLP 指纹银染法显带研究. 中国水稻科学, 2002, 16(1): 71~73
- 17 Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. 1987
- 18 Wang D L, Zhu J, Li Z K, et al. User Manual for QTKMapper Version1. 6. 1999