SPECTRAL STRUCTURES OF Al₂O₃ AND BeAl₂O₄ ACTIVATED BY Eu²⁺*

SHI C_{HUN-SHAN} (石春山), MAN Shi-qing (满石清)
AND SUN Jia-yao (孙家跃)

(Changchun Institute of Applied Chemistry: Academia Sinica: Changchun 130022, PRC)

Received March 10, 1990.

Keywords: divalent europium (Eu^{2+}) , nephelauxetic effect, electronic emission, Sanderson's electronegativity.

The $f \rightarrow f$ electronic emission of Eu²⁺ with configuration of $4f^7$ can bring about laser generation. Some of Eu²⁺-activated crystals which can produce sharp line emission, are candidates for visible solid-state laser at shorter wavelengths because their threshold is low and accumulated energy high.

A necessary condition for bringing about $f \to f$ emission of Eu²⁺ is that the lowest $4f^65d$ level of Eu²⁺ is situated above the lowest excited 4f level 6P_f , which requires host materials to meet some conditions in crystallography and spectrography. For this reason many scholars present correlative criteria from all sides^[1-3]. Up to now, it has been found that there are several hundred Eu²⁺-activated compounds in which the $f \to f$ line emission of Eu²⁺ has been observed. They are mostly compound fluorides, a few are oxides but simple-component oxides have not been reported yet.

A lot of experimental facts show that there are two factors that influence the spectral structure of Eu^{2+} , i.e. the strength of the crystal-field at the sites of Eu^{2+} , and the degree of covalence bond between Eu^{2+} and ligand. The type of electronic transition emission is determined by the dominator of the two factors.

I. EXPERIMENTAL

- 1) Starting materials. Al₂O₃, spectrographic-grade; BeO, AR and EuF₂ made by ourselves^[4].
- 2) Sample preparation. Al₂O₃: Eu²⁺ and BeAl₂O₄: Eu²⁺ were prepared by high-temperature solid-state reaction. Al₂O₃, EuF₂ and Al₂O₃, BeO, EuF₂ were mixed and then placed in a graphite crucible, which was heated at high temperature for 6 h under the protection of nitrogen atmosphere. The resulting phosphor cakes were cooled to room

^{*} Project supported by the National Natural Science Foundation of China.

temperature, ground, then kept in a vacuum desiccator.

3) Measurements. The crystal structures of the phosphor prepared were determined by an X-ray diffractometer (Model D/MAX-II B Rigaku, Japan). All excitation and emission spectra were recorded by using a Hitachi Model MPF-4 fluorescence spectrophotometer.

II. RESULTS AND DISCUSSION

(1) Crystal structure

The results of the analysis show that all of the phosphors prepared are single phase with definite structures. The crystallographic data obtained accord with those of ASTM 10-173 and 10-82 phases.

Al₂O₃ heated at 1300°C belongs to α -Al₂O₃ trigonal system. Space group $R\overline{3}C$; hexagonal lattice constants: $a_H = 4.758$ Å, $c_H = 12.991$ Å. Oxygen ions are arranged into A₃ close-packed structure, represented by the symbol ··· ABAB ··· . Two-thrids of the interstices between the oxygen ions are filled with Al³⁺ ions. Three sites are filled by two Al³⁺ ions. There are three kinds of filling ways. The three arrangements of layers containing Al³⁺ ions are represented by symbol, C', C'', and C''' respectively. These layers are inserted into AB or BA oxygen close-packed ones in proper order. Along c_H axis, this arrangement may be represented by || AC' BC'' AC''' BC' AC''' BC''' ||. Eu²⁺ occupies the Al³⁺ site in Al₂O₃ host, which produces an excess negative charge. It can be compensated by producing an O²⁻ vacancy, causing the part of matrix structure to distort. Because F⁻ has one negative charge and O²⁻ has two, the compensating charge can also be effected by replacing O²⁻ with F⁻ while EuF₂ is used as an activator. The latter can avoid the distortion in the crystal lattice.

BeAl₂O₄ belongs to olivine crystal class, orthorhombic system (a=9.404 Å, b=5.476 Å, c=4.427 Å), and space groups is $P_{\rm nma}$, the number of molecules in the unit cell is 4. Oxygen ions are arranged into distorted hexagonal closest-packed structure. Be²⁺ are in the octahedral holes of oxygen ions, and Al³⁺ in the tetrahedral holes. For the octahedral site, there are two kinds of symmetry; one is inversion symmetry (C_1), Al₁³⁺, and the other mirror plane symmetry (C_s), Al₁³⁺.

From ionic radius, $\mathrm{Eu^{2+}}$ should occupy octahedral site, while from the crystal-field stabilization energy, $\mathrm{Eu^{2+}}$ should occupies both of octahedral and tetrahedral sites with the crystal-field stabilization energies of $\mathrm{CFSE} = 0.4\Delta_0$ and $\mathrm{CFSE} = 0.6\Delta_r = 0.267\Delta_0$, i. e. the crystal-field stabilization energy is $4D_q$ when $\mathrm{Eu^{2+}}$ occupies the octahedral lattice site, and is $2.67D_q$ when $\mathrm{Eu^{2+}}$ occupies tetrahedral lattice site. Now we see that the octahedral site is

favourable for Eu²⁺. When Eu²⁺ get into the octahedral site, Be²⁺ which are equal in amount to Eu²⁺ are replaced by Al³⁺ in order to meet the needs of charge balance.

(2) Spectral structure

The excitation and emission spectra of Eu²⁺ in Al₂O₃ and BeAl₂O₄, measured at 300 K are shown in Figs. 1 and 2, respectively.

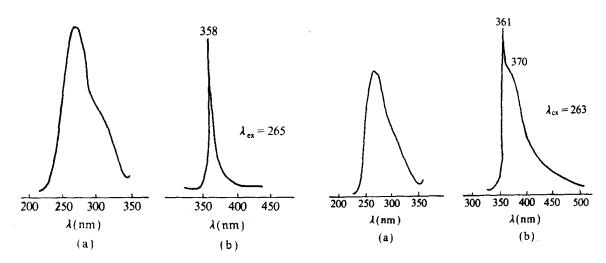


Fig. 1. Excitation spectrum (a) and emission spectrum (b) of Al_2O_3 : Eu^{2+} (300 K).

Fig. 2. Excitation spectrum (a) and emission spectrum (b) of BeAl₂O₄: Eu²⁺ (300 K).

In Figs. 1 and 2, the $f \rightarrow f$ sharp line emission of Eu^{2+} is observed, and in the latter, $d \rightarrow f$ band emission of Eu^{2+} also observed. In order to explain the above spectral facts it is necessary to consider the crystal-field strength and the covalent interaction of Eu — O bond at the same time.

The 4f electrons of Eu^{2+} are well shielded by $5s^2$ $5p^6$ configuration, so the 6P_J levels of Eu^{2+} are not much influenced by the environment, while the 5d electrons in naked state are strongly influenced by the crystal-field. The environments have double influences on the luminescence properties of Eu^{2+} . The location of $4f^65d$ centroid of Eu^{2+} is determined by the surrounding ions or ligands (nephelauxetic effect); and the crystal-field splitting of the 5d level depends on the properties and distribution of these ions or ligands. The nephelauxetic effect is given by [5]

$$1 - \beta = k \cdot h$$
.

The larger the product of k and h, the stronger the nephelauxetic effect $(1-\beta)$ between the centre ion and the ligand. This implies that the covalent degree of chemical bond is strengthened. For Eu — O bond, the stronger the covalence, the lower the centroid of 5d energy. There are Eu — O — M bonds in Eu-doped compounds (M is metal ion). The h value of O^{2-} depends on the properties of the meta-position cation (M) in a large degree. When M

is a smaller, higher-charged metal ion or radical, h decreases, conversely, h increases. According to Sanderson's principle of electronegativity equalization^[6], the partial charge on europium in EuO, Al_2O_3 : Eu^{2+} and $BeAl_2O_4$: Eu^{2+} can be calculated, by which the ionic blending coefficient t_i can also be calculated.

There is no electronegativity value of europium (S_{Eu}) in Sanderson's scale, so we replace the nonpolar covalent radius by the metal radius, 2.04 Å. And the relative radius of europium atom to zero charge is calculated by interpolation and extrapolation, 2.07 Å. Then

$$S_{\rm Eu} = D_{\rm Eu}/D_{\rm iEu} = (r_{\rm iEu}/r_{\rm Eu}) = (2.07/2.04)^3 = 1.05,$$

where $D_{\rm Eu}$ and $D_{\rm iEu}$ are the average electronic densities of europium and relative radius of europium to zero charge. The partial charge on metal atom in the compounds is defined as

$$M_{\rm p.c} = \frac{S_{\rm int} - S_{\rm M}}{2.08\sqrt{S_{\rm M}}} ,$$

where S_{int} is the electronegativity of the compound. The calculation results are listed in Table 1.

Table 1

Partial Charge on Eu and Ionic Blending Coefficient of Eu — O Bond

Compound	Partial Charge on Eu ²⁺	Ionic Blending Coefficient of Eu - O(%)
EuO	0.60	30
BeAl ₂ O ₄ : Eu ²⁺	1.18	59
$Al_2O_3: Eu^{2+}$	1.24	62

In BeAl₂O₄: Eu²⁺ and Al₂O₃: Eu²⁺, a few of Al³⁺ are replaced by Eu²⁺ and most of Al³⁺ and Be²⁺ are around Eu²⁺ when Eu²⁺ are doped into the crystal-lattice. Because there are smaller, higher-charged and higher-electronegative metal ions, Al³⁺ and Be²⁺, the nephelauxetic effect of oxygen ions will be weakened, i.e. the covalent interaction of Eu — O bond is weakened. When Eu²⁺ get into the six-coordinated Al³⁺ sites, the crystal-field effect is strong, but the polarizing power of Al³⁺ and Be²⁺ can cut down the covalency of Eu — O bond, make the centroid of $4f^65d$ of Eu²⁺ lifted, and cause the lowest $4f^65d$ level of Eu²⁺ situated above the lowest excited 4f level P_J . So $f \rightarrow f$ emission can be observed.

REFERENCES

- [1] Blasse, G., Phys. State Solid, B55(1973), K131.
- [2] Fouassier, C. et al., Mater. Res. Bull., 1976, 11:933.
- [3] 石春山等, 化学学报, 47(1989), 11:1056.
- [4] 石春山等,中国稀土学报,3(1985),2:53.
- [5] Huheey, J. E., Inorganic Chemistry, 2nd ed., New York, 1978, 417.
- [6] Sanderson, R. T., Chemical Bonds and Bonds Energy, 2nd ed., Academic Press, New York, 1976, 40.