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Based on light-use efficiency model, an MODIS-derived daily net primary production (NPP) model was 
developed. In this model, a new model for the fraction of photosynthetically active radiation absorbed 
by vegetation (FPAR) is developed based on leaf area index (LAI) and albedo parameters, and a pho-
tosynthetically active radiation (PAR) is calculated from the combination of Bird’s model with aerosol 
optical thickness and water vapor derived from cloud free MODIS images. These two models are inte-
grated into our predicted NPP model, whose most parameters are retrieved from MODIS data. In order 
to validate our NPP model, the observed NPP in the Qianyanzhou station and the Changbai Mountains 
station are used to compare with our predicted NPP, showing that they are in good agreement. The 
NASA NPP products also have been downloaded and compared with the measurements, which shows 
that the NASA NPP products underestimated NPP in the Qianyanzhou station but overestimated in the 
Changbai Mountains station in 2004.  

MODIS, net primary production, fraction of photosynthetically active radiation, photosynthetically active radiation 

Among the missing carbon sink problems[1,2], terrestrial 
ecosystems are recognized as the biggest unknown 
field[3]. Thus, to determine the role of terrestrial ecosys-
tems in the global carbon cycle and understand its short- 
and long-term dynamics are of high practical and scien-
tific importance. Remote sensing has been paid increas-
ingly more attention regarding the regional or global 
scale net primary production (NPP) estimation. For ex-
ample, the vegetation index (VI) and leaf area index 
(LAI) retrieved from satellite images have been used as 
inputs in different terrestrial ecosystem models[4―7]. The 
light-use efficiency model[8] elaborated by Monteith has 
been widely used to estimate NPP based on remote 
sensing data[9―11]. In light-use efficiency models based 
on remote sensing images, NPP can be expressed as 

n PAR PARNPP ,f Qε= × ×          (1) 
where εn is the light-use efficiency; fPAR is the fraction of 
incident photosynthetically active radiation (PAR) ab-

sorbed by vegetation and QPAR is photosynthetically ac-
tive radiation.  

The QPAR is the solar radiation incidence between 400 
and 700 nm that reached the surface after attenuation by 
atmospheric scattering, being absorbed from the top of 
the atmosphere. The QPAR is simply calculated to be 
43―44 percent of total incident shortwave radiation 
measured by weather station and interpolated into the 
regional scale based on measurements from the limited 
number of weather stations[6,11,12], and interpolation can 
bring errors into model especially in large area where 
there are no climate stations or only several stations. In 
fact, QPAR is relative to the angle of solar incidence and 
atmosphere state, especially the atmospheric aerosol 
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optic thickness and water vapor content. The specific 
atmospheric water and aerosol conditions must be taken 
into account for the total and spectral irradiance compu-
tation.  

Fraction of photosynthetically active radiation ab-
sorbed by vegetation (FPAR) is a very important pa-
rameter in the NPP model. For the existing remote sens-
ing NPP models, FPAR is calculated respectively from 
the Normalized Difference Vegetation Index (NDVI) 
used in Glo-PEM NPP model[9] and Enhanced Vegeta-
tion Index (EVI) in VMP model[11], so it is affected by 
VI characteristics. VI varies with view angle and sensors 
bands. In fact, according to its definition, FPAR only 
depends on the solar incident angle and the canopy pa-
rameters.  

Accordingly, it is necessary to develop better models 
to retrieve PAR and FPAR directly from remote sensing 
measurements to improve the NPP estimation precision. 
In order to address these issues, the MODIS data are 
used in our model because of its good quality and 
multi-band, Otherwise, the MODIS NPP product can be 
used to compare with our NPP model results, and the 
flux tower measurements were used to validate NPP 
model. In this paper, the second section is the details of 
the algorithms of FPAR and PAR calculation, and the 
inversion methods of all the parameters used in the 
FPAR and PAR model. The third section is the model 
test site description, MODIS data processing, the 
ground-based LAI measurements and LAI inversion 
from MODIS data. In the fourth part of the article, we 
showed the inversion results of the specific parameters 
from MODIS data. We also have shown a comparison 
between the NPP results from our model, MODIS NPP 
product and the flux tower NPP measurements. 

1  MODIS-derived NPP model and its 
parameterization 

1.1  MODIS-derived NPP model 

The MODIS-derived NPP model in this paper is de-
scribed by eq. (1), FPAR and PAR algorithms are the 
most important parts in this model. FPAR is the fraction 
of solar radiation absorbed by canopy, which can be 
calculated using the following equation according to 
energy budget balance principle, 

PAR gap1 ,f p α= − −             (2) 

where pgap is canopy gap probability, expressed as  

[ ]gap s s sexp LAI ( ) ( ) / ,P GΩ θ θ μ= − ⋅ ⋅       (3) 

where Ω (θs) and G(θs) are respectively assembled indi-
ces of foliage and attenuation coefficients in the solar 
zenith angle θs. In this paper, Ω(θs) is assumed to be “1” 
for the random distribution of the foliage and μs is the 
cosine of θs. α in eq. (2) is the albedo, including the 
canopy and the background scattering, which is inte-
grated from 400 to 700 nm. Eq. (2) shows that the FPAR 
can be underestimated because all the scattering photons 
by the background will be intercepted and absorbed 
again by the canopy when it rebounds up towards the 
canopy. So, in this paper, the FPAR in eq. (2) at can-
opy-level is modified as 

PAR gap gap b open1 (1 ),f p p Kα α= − − + −       (4) 

where αb represents the background albedo, including 
soil or litter surface, and it is also integrated from 400 to 
700 nm. Kopen is the openness of the crown at the top of 
canopy, describing how much PAR there scatterred by 
the ground is passing through the crown to the top of the 
canopy. Kopen is expressed as[13] 

π / 2
open gap0

( )sin 2 d .K p θ θ θ= ∫        (5) 

The multi-scattering in crown and multi-responding be-
tween the crown and background have been taken into 
account in eq. (5). 

PAR model from remote sensing measurements can 
provide PAR spatial distribution with 1 km resolution. 
The total downwelling spectral surface irradiance in-
cludes two parts of the irradiance. One is direct irradi-
ance, which is not scattered, but proceeds directly to the 
surface of the earth after losses by absorption, the other 
is diffuse irradiance, which is scattered out of the direct 
beam, and towards the surface. It can be described by  

d s( ) ( ) ( ),E E Eλ λ λ= +          (6) 

where the subscripts d  and s  represent direct and 
diffuse components, respectively. The attenuation of 
solar irradiance in the visible and near-infrared wave-
lengths comprises the following atmospheric processes: 
absorption by ozone, the gas mixture (primarily by oxy-
gen), water vapor and scattering, scattering by the gas 
mixture (Rayleigh scattering), and aerosols. The water 
vapor and aerosol can be retrieved from MODIS data, 
and their inversion methods will be described later in 
this paper. The first step in this PAR algorithm is to 
compute the downwelling irradiance just above the land 
surface at 1 nm resolution and 1 km spatial resolution. 
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Here, the diffuse component should be emphasized, 
which can be described by 

s r a g( ) ( ) ( ) ( ),E I I Iλ λ λ λ= + +           (7) 

where Ir, Ia, and Ig respectively represent the diffuse 
components of incident irradiance arising from Rayleigh 
scattering, aerosol scattering and multiple ground-air 
interactions. The multiple ground-air interactions must 
be taken into account in the diffuse component, being a 
function of land surface albedo. For the land surface, 
this part can be expressed as 

[ ]
g d BSA r a WSA

d BSA r a WSA

WSA

( )

( )
     ,

1

I E r I I r

E r I I r
r

α α

α α
α

= ⋅ ⋅ + + ⋅ ⋅

⋅ ⋅ + + ⋅ ⋅
+

− ⋅

       (8)  

where αBSA and αWSA are respectively black-sky albedo 
and white-sky albedo, and r is atmospheric albedo.  

Owing to only three visible bands (459―479, 545―
565, and 620―670 nm) ranging from 400 to 700 nm can 
be used to calculate the PAR, the instantaneous 
photosynthetically available radiation (IPAR) is 
integrated by using a weighted sum at each of the three 
visible MODIS wavebands. Finally, a daily PAR is inte-
grated. The solar radiative spectrum on the top of at-
mosphere used in this article was obtained from the 
World Radiation Center[14].  

 In eq. (1), the light-use efficiency εn is expressed as 

n 0 ( ) ( ),f T f Wε ε= × ×          (9) 
where ε0 is the maximum light-use efficiency in optimal 
condition, f (T) and f (W) are air temperature and plant 
water stresses on the photosynthesis in the terrestrial 
ecosystem. ε0 is a very important coefficient in the 
model. It is unreasonable to set one constant to ε0 just 
like the CASA model. In this paper, the maximum 
light-use efficiency model is cited from Glo-PEM 
model[9]. In eq. (9) daily averaged air temperature is 
taken into account to limit the photosynthesis according 
to the air temperature function in the Biome-BGC 
model[10], and this function is 

opt
opt

opt
opt

max opt

log( 1) ,
log( 1)

( ) πcos ,
2

0, 0

T T T
T

f T T T
T T

T T

T

+⎧ <⎪ +⎪
⎪ ⎛ ⎞= −⎨

×⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎪
⎪ <⎩

                

   

                                

≥
     (10) 

where Topt is the optimal temperature for plant’s growth; 
Tmax is the maximum temperature and is often set to be 

40℃. The f (W) is cited from the VMP model[11], which 
is expressed as  

max

1 LSWI( ) ,
1 LSWI

f W +
=

+
          (11) 

where LSWI is calculated based on near-infrared band 
reflectance, that is,  

nir swir nir swirLSWI ( ) ( ) ,ρ ρ ρ ρ= − +      (12) 
where ρnir and ρswir are MODIS reflectances of 
near-infrared bands, 841―875 and 1628―1652 nm. 
LSWImax in eq. (11) is maximum land surface water in-
dex during the whole plant growth.  

1.2  Parameterization method of the MODIS-   
derived NPP model 

In the MODIS-derived NPP model, the light-use effi-
ciency, FPAR, and PAR all depend on both the reflec-
tance of the land surface and the atmospheric condition. 
Several related parameters in the model need to inverse 
from MODIS data, such as the atmospheric water vapor 
and aerosol retrievals, the BRDF, albedo and LAI. Here 
are the brief descriptions of the inversion methods used 
in this MODIS-derived NPP model. 

After discriminating cloud-free pixel from image with 
the MODIS cloud detecting algorithm, the atmospheric 
water vapor and aerosol were first retrieved from 
MODIS cloud-free pixels. The total vertical amount of 
water vapor can be derived using a comparison way 
between the reflected solar radiation in the absorption 
channels and in the nearby non-absorption channel[15]. 
Aerosol optical depth is often retrieved based on the 
dark object algorithm because the reflectance of dense 
vegetation and water in near-IR field is very low and the 
sensor signal is mainly from the scattering of atmos-
pheric aerosol. A reflectance model for sparse lookup 
tables based on the 6S code is often used, whose aerosol 
optical depth can be retrieved based on the 6S code[16]. 
In this article, the surface reflectance models for dense 
and sparse vegetation are used to separate the surface 
reflection contribution from the satellite-received radi-
ance, and then the aerosol optical thickness is retrieved 
based on a lookup table based on the 6S code. 

Albedo is defined as the ratio of upwelling to down-
welling radiation flux on the surface. Downwelling flux 
may be written as the sum of a direct component and a 
diffuse component. Black-sky albedo is defined as al-
bedo in the absence of a diffuse component and is a 
function of solar zenith angle. White sky albedo is de-
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fined as albedo in the absence of a direct component 
when the diffuse component is isotropic. Albedo from 
the BRDF model, which is called a kernel-based BRDF 
model[17] , can be expressed as 

iso geo geo vol volBRDF ,f f k f k= + +        (13) 

where kgeo, kvol respectively represent a geometric optical 
kernel and a radiation transfer kernel, fiso, fgeo, fvol are 
model parameters, denoted as fn, n represents the differ-
ent subscripts. The channel black-sky and white-sky 
albedos are given by 

BSA ( ) ( ) ( ),n n
n

a i f i h θ= ∑            (14) 

WSA ( ) ( ) ,n n
n

a i f i H= ∑             (15) 

where the i means the channel, the kernel integrals hn 
and Hn do not depend on the observations, they may 
therefore be pre-computed based on the definition as 
follows:  

2π π / 2

0 0

1( ) ( , , )sin( )cos( )d d ,
πn nh kθ θ ϑ φ ϑ ϑ ϑ φ= ∫ ∫    (16) 

π / 2

0
2 ( )sin( )cos( )d .n nH h θ θ θ θ= ∫          (17) 

Note that ( ,  ,  )nk θ ϑ φ  is the kernel function. Based on 
the narrow channel albedo, the visible width band 
black-sky albedo αBSA and white-sky albedo αWSA can 
be integrated using the model present in ref. [18].  

LAI is an important structural property of plant can-
opy, which is defined as the one-sided leaf area per unit 
ground area. One of the simplest ways to retrieve LAI is 
based on the relationship between the vegetation index 
and leaf area index[19]. NDVI and SR are most widely 
used to derive LAI[4,10]. But for continual vegetation 
canopies, physical models are mainly used to simulate 
the canopy reflectance and to obtain LAI, such as the 
SAIL (scattering by arbitrarily inclined leaves) model 
for the continuous canopy[20]. In our NPP model, the 
crop and grass LAI is derived from the SAIL model, but 
for forest the LAI is calculated based on the correlation 
between the vegetation index and the measured LAI[21]. 

The MODIS-derived NPP model flow chart is 
showed in Figure 1. 

2  Test site and data processing 

2.1  Test site 

We chose two test sites to validate our NPP model. They 

 
Figure 1  MODIS-based NPP model flow sketch. In this paper, the 
FPAR, PAR and f(W) are all retrieved from the MODIS data and f(T) from 
measurements. 

 
are Qianyanzhou Ecological Experimental Station and 
Changbai Mountains Ecological Experimental Station, 
which all belong to Chinese Ecosystem Research Net-
work (CERN). 

Qianyanzhou station is located in the mid-subtropical 
monsoon landscape zone of South China. The artificial 
coniferous forest was planted in middle 1980s. The flux 
tower (115°03′29.2″E, 26°44′29.1″N), set up in 2002, is 
located at the top of a hill, in a hilly topography with a 
slope ranging between 2.8° and 13.5°. The forest cover-
age is about 90% around the tower, with slash pine in 
the west, masson pine in the southeast, and Chinese fir 
dominating in the northeast. The Changbai Mountains 
station is situated in the northern slope of Changbai 
Mountains, in Jilin Province, at latitude 42°4′N, longi-
tude 128°8′E, and with an altitude of 736 m. In each 
station, the flux tower is set to attach the eddy covari-
ance system including routine meteorology systems, 
open-path eddy covariance and synchronous closed-path 
eddy covariance measurement. The two eddy covariance 
systems consist of three-dimensional sonic anemometers 
(CSAT3, Campbell Scientific Ltd, USA) to record wind 
speed and temperature, and of an infrared gas analyzer 
(Li-7500, Li Corporation Inc, USA) for measuring CO2 
and water vapor concentrations. In addition, the routine 
meteorological system provides the measurements of 
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global radiation, net radiation, PAR sensors, infrared 
thermometer, soil temperature sensors, soil moisture 
sensors, and soil heat flux plate. The details of flux 
tower introduction and flux arithmetic can be found in 
ref. [22]. 

2.2  Acquisition and processing of MODIS data 

The MODIS data are the key data source to simulate the 
NPP using this model. We login the MODIS/Terra Mul-
tiple Data Ordering Page to download the 1-km resolu-
tion L1B MODIS data for our study sites. There are 65 
days in 2003 and 2004 cloud-free images for Qianyan-
zhou station and only 14 d for Changbai Mountains sta-
tion in 2004. 

2.3  Ground-based LAI measurements and LAI in-
version from MODIS 

For the Qianyanzhou forest region, the correlation be-
tween vegetation index and LAI is used. We chose 30 
stands, of which 13 are located in the Qianyanzhou sta-
tion region, while the other auxiliary sites are scattered 
along two different transects, which extend several 
kilometers away from the Qianyanzhou station. The LAI 
measurements using TRAC (Tracing Radiation and Ar-
chitecture of Canopies)[6,18] were made during the clear 
days from October 27 to November 5, 2003. Because it 
is not easy to find a 100 m or even wide enough place to 
extend the long transect at the hillside, two or three paral- 
lel transects of equal length, 40―60 m, are designed at 
each site. All transects are located 5―10 m apart and 
oriented in the direction perpendicular to solar azimuth. 
The TRAC measurements were made along transect. 
Because of the dense vegetation under the Pinus mas-
soniana and the thin Pinus elliottii forests, LAI under 
canopy can not be measured by TRAC, and we made 2 
or 3 samples with 1 m×1 m size and measured all the 
leaves areas of grass and shrubs in each sample using 
digital photos. The total LAI in these forest is the sum of 
the ground sample measurement and TRAC measure-
ment.  

In order to develop the relationship between LAI 
ground measurements and the MODIS vegetation index, 
the high resolution image Landsat TM with 30 m and 
Gauss Kruger 20 map projection at GM starting time 
02:23:09 on October 26 in 2003 is chosen, and then the 
relationship will be scaled up to MODIS data with a   
1 km resolution. LANDSAT-5 TM is registered using 
over 40 ground control points obtained from 1:50000 

maps and the digital elevation model. The registration 
accuracy was within ±1 pixel (±30 m). Radiometric cor-
rections were then made using gained and offset coeffi-
cients provided by the images. The atmospheric correc-
tions using 6S were made to convert the radiance meas-
urements at the top of the atmosphere to the sur-
face-level reflectance for further simple SR calculation. 
Then, we obtained the linear relationship between SR 
index from TM image and LAI measured from 30 stands. 
In order to make this relationship available for coarse 
MODIS data, the reflectance of red channel and near 
infrared channel of TM image are scaled up to a 1 km 
spatial resolution by averaging every 33×33 pixel’s val-
ues. The linear relationship is shown in Figure 2.  

With the same method, the relationship between LAI 
and VI has been obtained after the field experiments in 
Changbai Mountains station. Here, we directly cite the 
result from ref. [23]. 

 
Figure 2  The linear relationship between ground measurements of LAI 
and simple ratio index from Landsat-5 TM image. It can be fit for a linear 
relation LAI=0.50907×SR+1.33445. LAI ground measurement samples 
are 29, R is 0.72684, and SD is 0.60116 for the linear regression between 
LAI and a simple ratio index.  

2.4  Meteorological parameters 

The NPP calculation from MODIS in this paper requires 
several meteorologic parameters, such as the daily av-
erage air temperature, air pressure, and air relative hu-
midity. The daily average air temperature is calculated 
from the average of daily maximum and minimum air 
temperatures measured by the flux tower measurement 
system. When our NPP model is used to calculate the 
NPP on region scale or larger area scale, the interpola-
tion meteorologic data measured from climate station 
can be used in eq. (9). 
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2.5  The simulation of the MODIS-derived NPP 
model 

In this paper, cloud free MODIS L1B data are 
downloaded and processed according to the flow chat in 
Figure 1. Then, the parameters related to the NPP model 
mentioned above are retrieved. Finally, the daily NPP 
model on the day scale is conducted using 
MODIS-derived parameters and metrological data. In 
order to validate model results with the observed NPP 
on the stand scale, the retrieved parameters and NPP 
values of the pixel located at the Changbai Mountains 
and Qianyanzhou stations flux towers are picked up 
from the image and shown in the following section. 

3  Results 

3.1  The comparison between retrieved PAR and 
observed PAR  

In order to validate our albedo algorithm used in this 
paper, we use the 16-day MODIS data in North China to 
get the albedo and compare it with the NASA albedo 
product. It shows that our albedo is consistent with 
NASA albedo product. 

In order to validate the PAR algorithm, 54-day 
cloud-free MODIS data in 2003 and 2004 were proc-
essed, and the PAR of the pixel located at the Qianyan-
zhou station flux tower stand was calculated using the 
algorithm based on MODIS land surface reflectance, 
derived aerosol and water vapor content, combined with 
air pressure measured by the climate station. The meas-
ured PAR at the Qianyanzhou station flux tower as 
ground true was used to compare with the predicted 
PAR. The results in Figure 3 show that the calculated 
daily PAR is consistent with the observed PAR, where 
the linear correlation coefficient between the calculated 
and the observed PAR is 0.93, even though the spatial 
scale is different for 1-km pixel for calculated PAR and 
flux tower stand for observed PAR.  

3.2  Results of MODIS-derived NPP simulation 

In order to validate MODIS-derived NPP results, we 
compare the calculated NPP with the observed NPP 
from an eddy covariance system at the flux tower in the 
Qianyanzhou station and the Changbai Mountains sta-
tion. The NPP values of the corresponding pixels, in 
which the flux tower was located, were picked up ac- 
cording to the geographical location of flux towers. The 
NASA daily NPP products in 2003 and 2004 for the two 

 
Figure 3  The comparison of the calculated PAR with the measured one 
at Qianyanzhou ecological experimental station in Jiangxi Province of 
South China. The simulated IPAR in this figure is picked out of the pixel 
from the flux tower located in 54-day cloud free MODIS images. The 
linear correlation coefficient between the calculated IPAR and the ob-
served IPAR is 0.93, and SD is 13.19. 

 
stations were downloaded for comparison. The results 
are shown in Figures 4 and 5. Though most of the ob-
served NPP from June to August was absent in the two 
years, the results can also reveal the NPP trends. Figure 
4(a) shows a good agreement between the predicted 
NPP product and NASA NPP product in 2003, and both 
of them are a little bit higher than their measurements. 
Figure 4(b) shows a very good consistency between the 
predicted NPP and observed NPP in 2004. We loaded 
the NASA daily NPP product down from the end of 
March in 2006 (from http://edcimswww.cr.usgs.gov/ 
pub/imswelcome/). The NASA daily NPP product in 
2004 varied more smoothly than the observed NPP, and 
is too low during summer. Figure 5 shows the compari-
son between the predicted daily NPP, NASA daily NPP 
product and daily observed NPP in 2004 at the Changbai 
Mountains station. The predicted NPP is coincident with 
the observed NPP, but the NASA daily NPP product is 
much higher than the observed NPP. 

4  Discussions and conclusions 

Generally speaking, through the comparison with the 
observed NPP at the Qianyanzhou station and Changbai 
Mountains station in 2003 and 2004, our MODIS-de- 
rived NPP model is feasible. It can provide the NPP dis-
tribution with 1 km spatial resolution.  
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Figure 4  A comparison between calculated NPP, observed NPP, and NASA NPP product. Two-year results were used. The black rectangles represent 
the predicted NPP, the triangles represent the observed NPP, and the circles are the NASA NPP product. We loaded the NASA NPP product down in dif-
ferent years. 
 

 
Figure 5  A comparison between the predicted daily NPP, NASA daily 
NPP product and daily observed NPP in 2004 at the Changbai Mountains 
station. The predicted NPP is coincident with the observed NPP, but the 
NASA daily NPP product is much higher than the observed NPP, which is 
much overestimated.  
 

However, we know that there are uncertainties in its 
testing, because of the different spatial scales for the 
MODIS-derived NPP (1-km spatial scale) and observed 
NPP (stand scale) though the flux towers of the two sta-
tions is located in flat area. And footprint in the hilly 
region will bring uncertainties into the comparison.  

The PAR model in our NPP algorithm can be used to 
provide the PAR regional distribution results, especially 
for the large area without any climate stations. It can 
eliminate the NPP error caused by the interpolation for 
large area with few measurements. Moreover, the factual 
atmospheric water vapor, aerosol optical thickness and 
the land surface albedo have been taken into account in 

this model. 
FPAR is a very important parameter in our NPP 

model. FPAR model in this paper is developed based on 
the energy balance principle, and the multi-scattering 
effects between the back-ground and crown have also 
been considered. The LAI and albedo are the key pa-
rameters in FPAR model, and they are independent of 
view angles, So this FPAR will not change with view 
angle, unlike the FPAR model based on vegetation index 
in Glo-PEM model[9] and VMP model[11]. 

There are also some uncertainties existing in this NPP 
model, because the NPP in this model is linear with the 
light-use efficiency, FPAR and PAR. So, any uncertain-
ties brought about by parameters inverse from the 
MODIS data will incur effects on the final NPP value. In 
this paper, the light-use efficiency is not concerned, and 
we only focus on the development of FPAR and PAR 
model based on remote sensing data. How to get 
light-use efficiency on pixel scale from satellite image 
will be our next work. 

In this paper, the NASA NPP products are also cho-
sen to compare with the predicted results. The NASA 
NPP products in 2004 for the Qianyanzhou station and 
the Changbai Mountains station are not in good agree-
ment with measurements, the NASA NPP product is less 
estimated at the Qianyanzhou station, but it is overesti-
mated at the Changbai Mountains station. 
The authors would like to thank the Chinese Ecosystem Research Network 
(CERN) for providing the observed data.
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