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1 Introduction

Let K be a number field, and π a cuspidal automorphic representation of GLd(AK). It is well known

that π is uniquely determined by the Satake parameter c(π, v) for almost all v, and even more precisely,

almost all v of degree 1. Also, it suffices for us to test only finitely many v, namely, there is a bound N

which is some expression in terms of K, d, N(π) such that there is a v with πv
∼= π′

v and Npv < N

(see [2, 12, 13, 16, 17, 19, 24, 31]).

In this paper, we are going to prove some S-effective version of multiplicity one theorems. Roughly

speaking, all situation as above, if π and π′ are not equivalent, then there is also a bound N(S) which

is some expression in terms of K, d and max(N(π), N(π′)) which are analytic conductor of π and π′,

respectively (will be defined soon), such that there is a v /∈ S with πv
∼= π′

v and Npv < N. We encounter

such S-versions in a series work [29, 30].

Now we state our first two theorems. One is the S-effective version of the Chebotarev density theorem,

and the other one is the multiplicity one for GL(1). Throughout, for any place v of K, denote pv to be

the formal prime corresponding to v which denotes also the prime ideal of OK or OKv . dK and dL denote

the discriminants of K and L, respectively, and ζK(s) and ζL(s) denote the Dedekind zeta functions

of K and L, respectively. If χ is a global character of A×
K , N(χ) denotes the conductor of χ (for explicit

definitions see Section 2. Readers may also refer to [9, 19, 25–27]). For a finite set S of places of K, NS

denotes the product of norms of the places in S.
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Theorem 1.1 (S-effective version of the Chebotarev density theorem). Let L/K be a finite Galois

extension of number fields and L 6= Q. Then there is an effectively computable absolute constant C

satisfying the following: For each finite set S of places of K, a conjugacy class [σ] in Gal(L/K), there is

a place v of K such that

(1) v /∈ S and is of degree 1.

(2) The Artin symbol (L/K
pv

) = [σ].

(3) Npv 6 (dLN
[L:K]
S )

C
.

Theorem 1.2 (S-effective version of the multiplicity one for GL(1)). Let K be a number field and χ

be a global character of A×
K . Then there is an effectively computable absolute constant C satisfying the

following: For each finite set S of places of K, there is a place v of K such that

(1) v /∈ S and is of degree 1.

(2) χv is unramified and nontrivial.

(3) Npv 6 (dKN(χ)NS)
C
.

Now we make some definitions. Let π be a unitary cuspidal automorphic representation of GLd(AK), and

L(s, π∞) = π−sdnK/2
dnK
∏

j=1

Γ((s+ bj(π))/2).

Moreover, N(π) is the level of π so that Λ(s, π) = L(s, π∞)L(s, π) satisfies

Λ(s, π) = W (π)N(π)1/2−sΛ(1− s, π̃),

where W (π) is the root number of π.

Now define the extended analytic conductor C(π) (in the sense of [9, 27] etc.) to be

N(π)

dnK
∏

j=1

(1 + |bj(π)|).

Let π′ be another unitary cuspidal automorphic representation of GLd′(AK), and

L(s, π∞ × π′
∞) = π−sdd′nK/2

dd′nK
∏

j=1

Γ((s+ bj(π × π′))/2).

Moreover, N(π × π′) is the level of the Rankin-Selberg π × π′ so that

Λ(s, π × π′) = L(s, π∞ × π′
∞)L(s, πf × π′

f)

satisfies

Λ(s, π × π′) = W (π × π′)N(π × π′)1/2−sΛ(1− s, π̃ × π̃′),

where W (π × π′) is the root number of π × π′.

Now define the extended analytic conductor C(π × π′) (in the sense of [9, 27]) to be

N(π × π′)
dd′nK
∏

j=1

(1 + |bj(π × π′)|).

Moreover, define the bound for Ramanujuan for π be the upper log bounds of coefficients of the cusp

form. Namely, for each π ∈ A0(K), its bound for Ramanujuan RB(π) = SupvMaxi=1,...,d logqv αv,i(π),

where v runs through all finite places ofK where πv is unramified and αv,1, . . . , αv,d are Satake parameters

of πv.
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Theorem 1.3. Let π and π′ be two unitary cuspidal automorphic representations of GLd(K). Let S be

a finite set of finite places of K, and Q = max(C(π), C(π′)) and assume that the bound for Ramanujuan

for π and π′ are < R.

Then if π 6∼= π′, there exists a place v of K such that πv 6∼= π′
v, v /∈ S and

Npv 6







CQ1+ǫN ǫ
S , d = 1,

CQ2d+d(d−2)
dH+1 +ǫN

d3(2R+H)
dH+1 +ǫ

S , general d,

where C is some effectively computable constant only depending on arbitrarily chosen number H > 2R,

ǫ > 0, K and d.

Remark 1.4. When d > 2, the two ends of H > 2R lead to the following two estimates:

Npv ≪ǫ min(Q2d+d(d−2)
1+2dR +ǫN

4Rd3

2dR+1+ǫ

S , Q2d+ǫNd2+ǫ
S ).

In particular, if R = 0 (i.e., Ramanujuan holds), then the two ends are

Npv ≪ǫ min(Qd2+ǫN ǫ
S , Q

2d+ǫNd2+ǫ
S ).

This theorem is an S-effective refinement of [17]. When take H = 0, and be aware that the unitary

Grossencharacters are cusp forms of GL(1) with the bound for Ramanujuan as 0, we have the following

corollary (see Theorem 4.1(B) and [30]).

Corollary 1.5. Let K be a number field and χ a nontrivial unitary character of CK . Then there is a

place v of K such that

(1) pv /∈ S.

(2) χv 6= 1 and is not ramified.

(3) Npv ≪ǫ,K N(χ)1/2+ǫN ǫ
S for every ǫ > 0.

Now we summarize the technique we used to proved the theorem. Theorems 1.1 and 1.2 use a refinement

of arguments of [12] and Theorem 1.3 uses Landau’s idea plus arguments with modification of series

papers [2, 17, 31]. Results in [30] are just the special case.

This paper is a byproduct of the author’s projects on the effective version of the Grunwald-Wang and

here he expresses thanks to his advisor Dinakar Ramakrishnan for the introduction of the problem and

the guidance and help during his student year and continuing years afterwards.

2 Notation and preliminaries

In this section, we recall certain notations and the preliminaries to be used in the proofs. Lots of standard

results can be found in various textbooks. Experts can skip most parts of this section.

2.1 Hecke Characters and Hecke L-functions

First, we recall some basic concepts and facts. Throughout, K denotes a number field and AK , A×
K

denote the Adele rings and the idele group of K. It is well known that K, K× embed into AK and A×
K ,

respectively.

A Hecke character χ of K has two types of expression: It is a character of the group fractional ideals

JK of K, or a continuous character of A×
K/K×. χ is also called a global character.

Let Kv denote the completion ofK at a place v with OKv , pv, qv the valuation ring, the prime ideal and

the residue size #(OKv/pv) of Kv, respectively. A continuous character of Kv is called a local character.

Given a global character χ, let χv be the restriction of χ to K×
v , then χ(x) =

∏

v χv(xv) if x = (xv) ∈ A×
K

and the product is finite for each x since all but finitely many χv are unramified.
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Now define the conductor of χv and χ. For each finite place v, we define the arithmetic conductor

N(χv) of χv as

N(χv) =

{

1, if χv is unramified, i.e., χv(OKv ) = 1,

qrv, if r is the smallest integer such that χv(1 + prv) = 1

and N(χ) =
∏

v N(χv).

Recall that the L-function L(s, χ) =
∏

v<∞ L(s, χv) and the complete L-function,

Λ(s, χ) = L∞(s, χ)L(s, χ) =
∏

v

L(s, χv),

where the Gamma factor is L∞(s, χ) =
∏

v |∞ L(s, χv). Here the local L-factors are

L(s, χv) = π−(s+d)/2Γ((s+ d)/2) (v is real, χv(x) = |x|d or |x|d−1Sgn)

= 2(2π)
−(s+d)

Γ(s+ d) (v is complex, χv(z) = zaz̄b with d = max(a, b))

=
1

1− χv(πv)q
−s
v

(v is finite and χv is unramified)

= 1 (v is finite and χv is ramified),

where πv is a uniformizer of Kv, i.e., a generator of the unique prime ideal (also denoted pv) of OKv .

When χ = 1 then L(s, χ) = ζK(s). Moreover, it is well known that L(s, χ) is entire of order 1 if χ 6=1

is finite order. Moreover, L(s, χ) satisfies the following functional equation:

Λ(s, χ) = W (χ)A(χ)
1/2−s

Λ(1− s, χ−1)

if χ is unitary. Here A(χ) = dKN(χ) is the analytic conductor of χ.

Let us list out some facts to be used in later parts of this paper. One is the Euler expression

−L′(s, χ)

L(s, χ)
=

∑

v<∞,χv is unramified

∞
∑

k=1

χk
v(πv)q

−ks
v log qv

for Res > 1 which can be easily deduced from the Euler product. Moreover, by the class field theory,

if χ is of finite order, then χ is associated to a cyclic extension L/K, and in fact, it is associated to

a 1-dimensional representation of Gal(L/K) (see the preliminary on Galois representation). Moreover,

Weil [32,33] showed that any Hecke character χ is an unramified twist of a character of finite order unless

it is a CM character (see [6]).

2.2 Cuspidal and isobaric automorphic representations and automorphic L-functions

Now we recall some notation and facts the automorphic forms on GL(d). Most details can be found in

various literatures (see [4, 25], etc).

Denote A(d,K) (resp. A0(d,K)) the set of unitary irreducible automorphic (resp. cuspidal automor-

phic) representations of GLd(AK) and A(K) (resp. A0(K)) the set of unitary irreducible automorphic

(resp. cuspidal automorphic) representations of GLd(AK) for some d. Denote L(s, π) =
∏

v<∞ L(s, πv)

be the (finite part) L-function associated to π, L∞(s, π) =
∏

v|∞ L(s, πv), Λ(s, π) = L(s, π)L∞(s, π) be

the infinite part, and the complete L-function of π, respectively.

For π ∈ A(K), It is well known that π = ⊗πv where πv is an irreducible admissible representation of

GLd(Kv) for each v. Moreover, by the Langlands classification, for each π ∈ A(K), there are π1, . . . , πr

∈ A0(K) such that we have the following isobaric sum decomposition (see [10,11]) π = n1π1⊞ · · ·⊞nrπm.

In particular, L(s, π) =
∏r

i=1 L(s, πi)
ni , L∞(s, π) =

∏r
i=1 L∞(s, πi)

ni .

For π ∈ A0(K), it is also well known that, L(s, π) and Λ(s, π) are entire unless π is a trivial character

so that L(s, π) = ζK(S) has a simple pole at s = 1. In fact, we have Λ(s, π) = W (π)N(π)
1/2−s

Λ(1− s, π̃)
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where π̃ is the contragredient of π. Here N(π) is some positive integer called the level or the analytic

conductor of π, and it is closedly related to the arithmetic conductor which is defined in an arithmetic

way. In particular, if π ∈ A0(1,K), then π is in fact a unitary continuous idele class character χ of

A×
K/K×, and the arithmetic conductor of χ is N(χ) and the analytic conductor is A(χ) = dKN(χ).

Moreover W (π) is a constant of complex number of absolute value 1.

Now we talk about the local L-factors. Let π ∈ A0(d,K). For almost all finite place v, πv is unramified.

In fact, πv is a constituent of the unramified (normalized) induced representation IndGLn

P (χ1 ⊗ · · · ⊗ χd)

where χ1, . . . , χd are unramified characters of K×
v . Let av,i = χi(πp). Then we have

L(s, πv) =

d
∏

i=1

(1− av,iq
−s
v )

−1
= Det(1− q−sc(π, v))

−1
,

where Satake Parameter c(π, v) is the conjugacy class of diag(av,1, . . . , av,d). Moreover, if v is an infinite

place, then

L(s, πv) =
d
∏

j=1

Γv(s+ bv,j(π)),

for some bv,j(π) (j = 1, . . . , d). Here Γv(s) is defined as ΓR(s) = π−s/2(s/2) and ΓC(s) = 2(2π)−sΓ(s).

bv,j(π) are called the infinite type constants. Put L(s, πv) for v | ∞ together, we get L∞(s, π) and also

the infinite type constant bj(π) j = 1, . . . , dnK . In fact, {bj(π)} consists of those bv,j(π) for v real and

bv,j(π) and bv,j(π) + 1 for v complex.

Now let us talk about the “extended analytic conductor” C(π). It is widely used in estimation. Unlike

N(π), it shows up quite differently in different literature. However, it is essentially the same for the

purpose of the estimations. In fact, as L∞(s, π) = π−dnK/2
∏dnK

j=1 Γ((s+ bj(π))/2) we define

C(π) = N(π)

dnK
∏

i=1

(1 + |bj(π)|).

In general, (at least for all cases we know) Rebj(π) > 0.

Now look at π̃. Note that N(π̃) = N(π), As π is unitary, π̃ = π̄ so that all related quantities associated

to π̃ are complex conjugate of those of π. In particular, the Satake parameter c(π̃, v) = c(π, v) when πv

is unramified.

Later on, we will see that L(s, π) is standard.

2.3 Galois representations and Artin L-functions

By the class field theory, when χ is of finite order m, then χ is associated to a cyclic Galois extension

L/K of degreem and L(s, χ) = L(s, ρ), where ρ is the 1 dimensional complex representation of Gal(L/K)

associated to χ. In particular, v splits in L/K if and only if χv is trivial. So this is an example of Artin

L-functions.

In general, let ρ be a Galois representation, namely, a finite dimensional representation of Gal(L/K)

where L is a finite Galois extension of K. Recall that we can define the L-function as the following:

Let V be the representation space of ρ and n = dimCV . For each finite place v of K, w a place of L

over v let σw/v ∈ Gal(L/K) be of the Frobenious element of L/K at w/v, i.e., σw/v ∈ Gal(L/K) such

that (i) σw/v(pw) = pw where pw the prime ideal of L associated to w, (ii) σw/v(x) ≡ xqw where qw be

the size of OLw/pw. It is well known that, the conjugacy class of σw/v is independent of the choice of w.

Now define

L(s, ρv) = det
V

Iw/v (I − q−s
v σw/v)

−1
,

where Iw/v be the inertial group of L/K at w/v, and V Iw/v be the subspace of V fixed by Iw/v. It is

easy to see that L(s, ρv) is independent of the choice of w.
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Define L(s, ρ) =
∏

v L(s, ρv). We can also define the Artin conductor AL/K(ρ) (the explicit definition

is a little bit complicated, and can be found in a lot of literatures.) It is well known that (1) L(s, ρ) is

meromorphic, (2) it allows a functional equation

Λ(s, ρ) = π−ns/2Γ(s/2)a(ρ)Γ((s+ 1)/2)b(ρ).

Recall that The Artin conjecture asserts that L(s, ρ) is entire if ρ is a nontrivial irreducible repre-

sentation. Moreover, the strong Artin conjecture asserts that, in this case there is a unitary cuspidal

automorphic representation π of GLd(AK) such that L(s, ρ) = L(s, π). In this case, not only L(s, ρ) has

good analytic property but so do also a large families of L-functions, eg., the Rankin-Selberg L-functions

(see later subsections). Moreover, by the standard argument which could be seen in a lot of literatures,

the analytic Artin conductor AL/K(ρ) is the same as N(π), the analytic conductor. In particular, this

gives rises to internal relations of arithmetic features (for example, conductors) between ρ and π.

2.4 Rankin-Selberg L-functions

Now we recall the fact of Rankin-Selberg L-functions, which provide a large family of L-functions with

good analytic properties. For details, see [3, 4, 10, 11].

Let π and π′ be two isobaric automorphic representations of GLd(AK) and GLd′(AK). Then we can

define the Rankin-Selberg product L(s, π × π′) which is an L-function of degree dd′nK . We know there

are various ways to define the Rankin-Selberg L-functions. One way is a formal one, namely, by the local

Langlands. For each place v of K, let W ′
Kv

be the Weil-Delign group of the local field Kv, let σ(πv) be the

d-dimensional admissible representations of W ′
Kv

associated to πv, and σ(π′
v) defined similarly. Define

the local L-factors L(s, πv × π′
v) = L(s, σ(πv) ⊗ σ(π′

v)), where the local L-factors of Weil-Delign group

representations are defined similarly as the L-functions of local Galois representations. In particular, if v

is a finite place and π and π′ are unramified at v, and

L(s, πv) =

d
∏

i=1

(1− av,i(π)q
−s
v )

−1
, L(s, π′

v) =

d′

∏

j=1

(1 − av,j(π
′)q−s

v )
−1

,

then

L(s, πv × π′
v) =

d
∏

i=1

d′

∏

j=1

(1− av,i(π)av,j(π
′)q−s

v )
−1

.

Like automorphic L-functions, we can define L(s, π × π′) =
∏

v<∞ L(s, πv × π′
v), L∞(s, π × π′)

=
∏

v L(s, πv × π′
v) and Λ(s, π × π′) = L(s, π × π′)L∞(s, π × π′).

We can also define these through certain zeta integrals.

It is well known that L(s, π×π′) converges on some right half plane of s, and extends to a meromorphic

function. There is a positive integer N = N(π × π′) and a number W = W (π × π′) of norm 1 such that

Λ(s, π × π′) = WN1/2−sΛ(1− s, π̃ × π̃′).

Using the language above, L(s, π× π′) is standard when π and π′ are isobaric, with its dual L(s, π̃× π̃′).

Proposition 2.1 (See [3,10,11]). Let π and π′ be two isobaric automorphic representations of GLd(AK)

and GLd′(AK), respectively.

(1) If π and π′ are cuspidal, then L(s, π×π′) is entire unless π′ ∼= π̃⊗||it0 , and in this case, L(s, π⊗π′)

has a simple pole at s = 1− it0, and is holomorphic else where.

(2) If π = ⊞miπi and π′ = ⊞njπ
′
j are the isobaric decompositions of π and π′. Then L(s, π × π′) is

meromorphic, and all of its poles lie on the line Re(s) = 1. Moreover, s = 1 − it0 is a pole if and only

if π′
j
∼= π̃i ⊗ ||it0 for some i and j, and the order of the pole at s = 1 − it0 is

∑

mjnk where the sum is

taken over (j, k) such that π′
k
∼= π̃j ⊗ ||it0 .

(3) In particular, π is cuspidal if and only if L(s, π × π̃) has a simple pole at s = 1.
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Note that, the automorphic L-functions are the special case of the Rankin-Selberg L-functions.

Now we define the extended analytic conductor.

Write L∞(s, π × π′) = π−dd′nK/2
∏dd′nK

j=1 Γ((s+ bj(π × π′))/2) we define

C(π × π′) = N(π × π′)
dd′nK
∏

j=1

(1 + |bj(π × π′)|).

In general, (at least for all cases we know) Rebj(π) > 0.

We quote the following estimation for (extended) analytic conductor Rankin-Selberg product:

Proposition 2.2. Let π ∈ A(d,K) and π′ ∈ A(d′,K). Then there are constant C′ > 0 depending on

nK such that

N(π × π′) 6 N(π)
d′

N(π′)
d
, C(π × π′) 6 C′C(π)

d′

C(π′)
d
.

The proof can be found in [5, 8] (by choosing C′ = 2dd
′nK ).

2.5 Bounds for Ramanujuan

In 1916, Ramanujuan conjectured that the Ramanujuan ∆ function has its coefficients τ(n) ≪ n11/2+ǫ.

More than half century later, Deligne proved this conjecture. In fact, the most general formulation of

the Ramanujuan conjecture is formulated as, for each π ∈ A0(d,K), and each place v of K, the Satake

parameters av,j are all purely imaginary numbers. (In this case, πv is called tempered).

Unfortunately, this is still open, even for the case GL2(Q). In fact, holomorphic modular forms satisfies

the Ramanujuan conjecture but for the Maass wave forms, this is the Selberg conjecture, and is still open.

In fact, for each π ∈ A0(K), we define the following bound called bound for Ramanujuan for π

RB(π) = Maxv,j=1,...,dRe logqv av,j(π)

and say π satisfies Hd(δ) if for (sufficiently large) v, Re logqv av,j(π) 6 δ. See [1]. We say that Hd(δ)

holds if each π ∈ A0(K) satisfies Hd(δ).

Remark 2.3. We have, by [1], Hn(Rn) holds for R2 = 7/64, R3 = 5/14, R4 = 9/22 and Rn =

1/2− 2/(n(n+ 1) + 2) for general n.

Remark 2.4. One is easy to see that, if π ∈ A0(K) has R as bound for Ramanujuan. Then L(1 +H

+ 2R, π × π̃) 6 (ζK(1 +H))
d2

for H > 0.

2.6 A lemma on coefficients of Rankin-Selberg L-functions of positive type

We quote a crucial lemma on coefficients of Rankin-Selberg L-functions of positive type (see [2, Lemma 2]).

Proposition 2.5. Let π ∈ A0(d,K), and L(s, π × π̃) =
∑

n=1 ann
−s be the Dirichlet expansion. For

each place v of K, we have aqdv > 1

Remark 2.6. This is a corollary of certain properties of Schur polynomials.

3 L-O Method

In this section, we prove Theorems 1.1 and 1.2. We mainly follow the method of [12, 13]. Also see [29].

By the class field theory, idele class characters χ of finite order correspond in a canonical way to

characters of Gal(K̄/K) of finite order. By abuse of notation, we will still use the letter χ to denote this

Galois character. Moreover, there is a canonically associated finite abelian extension L/K such that the

kernel of χ as an idele class character is NL/KCL ⊂ CL, the norm from CL.

Throughout this section, for any number field L, dL denotes the discriminant of L, and dL/K denotes

the relative discriminant of L over a subfield K.
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3.1 Preparations

First we introduce two kernel functions used in the classical analytic method, which was also used by

Murty [20], Lagarias et al. [12,13] and Serre [28]. The use of these two different kernel functions is related

to the Explicit formulas of Guinand [7] and Weil [32].

Let

k1(s) = k1(s;x, y) =

(

ys−1 − xs−1

s− 1

)2

, k2(s) = k2(s;x) = xs2+s.

Thus

k1(1) =

(

log
y

x

)2

, k2(1) = x2.

For each smooth function k(s), denote k̂(u) the inverse Mellin transform, defined as

k̂(u) =
1

2πi

∫ a+i∞

a−i∞
k(s)u−sds,

where a is a sufficiently large number.

Thus for a > 1, we have

k̂1(u) = k̂1(u;x, y) =























0, if u > y2 or u 6 x2,

1

u
log

y2

u
, if xy 6 u 6 y2,

1

u
log

u

x2
, if x2 6 u 6 xy,

k̂2(u) = k̂2(u;x) = (4π log x)
− 1

2 exp

{

− (log u
x )

2

4 log x

}

.

Note that for each j and u, k̂j(u) > 0, and for large u, k̂j(u) is small.

Lemma 3.1. Assume that L/K is cyclic.

(1) Let ΣR denote the summation over the prime ideals of K that ramify in L, then

∑

p

R ∑

m>1

log(Np)k̂1(Npm) ≪ log y
x

x2
log dL,

∑

p

R ∑

m>1,Npm6x10

log(Np)k̂2(Npm) ≪ (log x)
1
2 log dL.

(2) Let ΣS denote the summation over the prime ideals of K in S, then

∑

p

S ∑

m>1

log(Np)k̂1(Npm) ≪ log y
x

x2
logNS ,

∑

p

S ∑

m>1,Npm6x10

log(Np)k̂2(Npm) ≪ (log x)
1
2 logNS .

(3) Let ΣP denote the summation over the pairs (p,m) for which Npm is not a rational prime, then

∑

p,m

P
log(Np)k̂1(Npm) ≪ nK

(

log y
x

)

(log y)

x(log x)
,

∑

p,m

P
log(Np)k̂2(Npm) ≪ nKx7/4.
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(4)
∑

p

∑

m>1,Npm>x3+δ

log(Np)k̂2(Npm) ≪ nKx2− δ2

4 (log x),

where δ is any positive number.

Proof. Also see [13] and [12].

(1-a) (See [12, Lemma 3.1])

R
∑

p

∞
∑

m=1

log(Np)k̂1(Npm) ≪
R
∑

p

log(Np) log(y/x)
∞
∑

m=1

(Np)−m

≪ log(y/x)

x2

R
∑

p

log(Np)

≪ log(y/x)

x2
log(dL).

Here we use two facts: (i) k̂1(u) ≪ u−1 log(y/x) and k̂1 = 0 if u < x2; (ii) The conductor-discriminant

formula
∑R

p log(Np) ≪ log(dL).

(1-b) (See [12, Lemma 3.1])

R
∑

p

∑

m>1,Npm6x10

log(Np)k̂2(Npm) ≪
R
∑

p

log(Np)
∑

m>1,Npm6x10

(log x)
−1/2

≪
R
∑

p

log(Np)(log x)
1/2

≪ (log x)
1/2

log(dL).

Here we use two trivial estimates k̂2(u) ≪ (log x)
−1/2

and #{Npm 6 x10} ≪ log x.

(2) The proof is almost the same as (1) except that we need to estimate
∑S

log(Np)

instead of
∑R

log(Np).

(3-a) (See [12, Lemma 3.2]) Use the fact that the number of pairs (p,m) such that Npm = q is at

most nK , and we have

∑

p,m

P
log(Np)k̂1(Npm) ≪ nK

(

log
y

x

)

∑

x26ph6y2,h>2

p−h log ph

≪ nK

(

log
y

x

)

(log y)
∑

n=pa,a>2,n>x2

n−1

≪ nK

(

log
y

x

)

(log y)
1

x log x
,

where the last bound uses the prime number theorem.

(3-b) (See [12, Lemma 3.2]) Let S(u) denote the number of prime power integers ph(h > 2) in the

interval [1, u]. It is easy to see that S(u) ≪ u1/2 since S(u) 6 u1/2+u1/3+u1/5+ · · · ≪ u1/2+u1/3 log u.

Thus,

∑

p

P
log(Np)k̂2(Npm) ≪ nK

∑

p,h>2

log(ph)k̂2(p
h)

≪ nK

∫ ∞

3

(log u) k̂2(u) dS(u)

< −nK

∫ ∞

3

S(u)d (log(u)k̂2(u))



242 Wang S Sci China Math February 2015 Vol. 58 No. 2

≪ nK

∫ ∞

3

u1/2 log(u)(−k̂′2(u))du

≪ nK

∫ ∞

3

u1/2 log(u)k̂2(u)
log(u/x)

2 log x

x

u
du

≪ nK
x

(log x)
3/2

∫ ∞

3

u−1/2(log u)2 exp

(

− (log(u/x))
2

4 logx

)

du

≪ nK
x3/4

(log x)
3/2

∫ ∞

3

(log u)
2
exp

(

− (log u)
2

4 log x

)

du

≪ nK
x3/4

(log x)
3/2

∫ ∞

−∞
t2 exp

(

− t2

4 logx
+ t

)

dt

≪ nKx3/4

∫ ∞

−∞
t2 exp(−t2 + t

√

log x)dt

≪ nKx3/4

∫ ∞

−∞

(

t+

√
log x

2

)2

exp(−t2)x1/4dt

≪ nKx log(x) < nKx7/4.

For (4),
∑

Npm>x3+δ

log(Np)k̂2(Npm) ≪ nK

∑

q>x3+δ

(log q)k̂2(q)

≪ nK

∫ +∞

x3+δ

(log u)k̂2(u)du

≪ nK(log x)−
1
2

∫ +∞

(3+δ) log x

t exp

(

− (t− log x)
2

4 logx

)

etdt

≪ nKx2(log x)
− 1

2

∫ +∞

(3+δ) log x

t exp

(

− (t− 3 log x)
2

4 logx

)

dt

≪ nKx2(log x)
− 1

2

{
∫ +∞

δ log x

3 logx exp

(

− t2

4 logx

)

dt

+ (log x)

∫ +∞

δ
√
log x

t exp

(

− t2

4

)

dt

}

≪ nKx2(log x)
− 1

2

{

3(log x)
3/2

∫ +∞

δ
√
log x

exp

(

− t2

4

)

dt

+ (log x) exp

(

− δ2

4
log x

)}

≪ nKx2− δ2

4 (log x),

where we use the following: k̂2(u) ≪ k̂2(x) if |x − u| < 1, and a well known estimate
∫ +∞
T

e−t2/4dt

≪ e−T 2/4.

Lemma 3.2. Let χ be a global character of CK .

(1) If N(t) = NL(t) denotes the number of zeros ρ = β + iγ, of ζL(s) with 0 < β < 1 and |γ − t| 6 1,

then we have

N(t) ≪ log dL + nL log(|t|+ 2).

(2) If n(r; s) = nL(r; s) denotes the number of zeros ρ, of ζL(s) with |ρ− s| 6 r, then we have

n(r; s) ≪ 1 + r(log dL + nL log(|s|+ 2)).

(3) If Nχ(t) denotes the number of zeros ρ = β+ iγ, of L(s, χ,K) with 0 < β < 1 and |γ− t| 6 1, then

we have

Nχ(t) ≪ logA(χ) + nK log(|t|+ 2).
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(4) If nχ(r; s) denotes the number of zeros ρ of L(s, χ,K) with |ρ− s| 6 r, then we have

nχ(r; s) ≪ 1 + r(logA(χ) + nK log(|s|+ 2)).

Proof. These are standard results and the proof can be found in a lot of literatures. For examples,

see [13, 21, 23] and [12, Lemma 2.2].

The following is the Siegel zero free region result for L(s, χ).

Lemma 3.3. Let χ be a global character of K. There is a positive, absolute, effectively computable

constant c2 such that

(1) L(s, χ) has no zero ρ = β + iγ in the region

β > 1− c2
−1(logA(χ) + nK log(|γ|+ 2))−1,

γ > (1 + c2 logA(χ))
−1

,

where γ 6= 0.

(2) L(s, χ) has at most one zero in the region

β > 1− (c2 logA(χ))
−1

,

γ 6 c2 logA(χ))
−1.

If such a zero exists, it must be simple and real, and χ must be trivial or quadratic.

Proof. See [13], or [15] and [21].

Before finishing this part, we quote the Deuring-Heilbronn phenomenon here, a discussion of which

can be found in [12, Section 5].

Lemma 3.4 (Deuring-Heilbronn phenomenon). There are positive, absolute, effectively computable

constants c7 and c8 such that if ζL(s) has a real zero β0, then ζL(σ + it) 6= 0 for

σ > 1− c8 ·
log( c7

(1−β0) log(dLτnL) )

log(dLτnL)
,

where τ = |t|+ 2 with the single exception σ + it = β0.

Corollary 3.5. There is a positive, absolute, effectively computable constant c10 such that any real

zero β0 of ζL(s) satisfies 1− β0 > dL
−c10 .

Proof. See [12, Corollary 5.2].

3.2 Standard model

In this part, we will recall the main model of [12] for our method here. We have included the relevant

details for the convenience of the readers.

We need to consider the Artin L-series L(s, φ, L/K) (see [12,13,15,21]), where φ is the character of an

irreducible representation of G = Gal(L/K). We have

−L′

L
(s, φ, L/K) =

∑

p

∑

m>1

ΦK(pm) log(Np)(Np)
−ms

,

where

ΦK(pm) =
1

ep(L/K)

∑

α∈Ip(L/K)

φ(τmα),

where τ = (L/K
p

) is one representative of the Frobenius element corresponding to p, Ip = Ip(L/K) is the

inertial subgroup of the decomposition group Gp = Gal(LQ/Kp) and ep(L/K) = |Ip| is the ramification

index of Q over p.

If p is unramified in L then ΦK(pm) = φ(αm). If L/K is abelian, then all irreducible φ are characters

(and hence by the class field theory, correspond to Hecke characters).
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Lemma 3.6. Let C be a conjugacy class of G and g a representative of C, H = 〈g〉 and E = LH the

fixed field of g. Then we have

(1)

FC(s) := −|C|
|G|

∑

φ irreducible

φ̄(g)
L′

L
(s, φ, L/K) = −|C|

|G|
∑

χ∈Ĝ(L/E)

φ̄(g)
L′

L
(s, χ,E),

where Ĝ(L/E) denotes the group of characters of G(L/E), and

(2)

FC(s) =
∑

p

∑

m>1

θ(pm) log(Np)(Np)−s,

where

θ(pm) =















1, if

(

L/K

p

)m

= C,

0, if

(

L/K

p

)m

6= C,

and |θ(pm)| 6 1 if p ramifies in L.

Proof. This is an exercise of representations theory. See [13, Section 5].

The previous lemma allows us to reduce the density problem to the case of a cyclic extension, for which

we can use just the abelian L-series of Hecke.

The following lemma (see [13, 15]) describes a functional equation that L(s, χ,E) satisfies.

Lemma 3.7. Let L(s, χ) = L(s, χ,E) be the L-series associated to χ ∈ Ĝ(L/E),

A(χ) = dENE/Q(f0(χ)),

where f0(χ) denotes the finite conductor of χ,

δ(χ) =

{

1, if χ is principal,

0, otherwise.

There are nonnegative integers a = a(χ) and b = b(χ) such that

a(χ) + b(χ) = nE .

Set

γχ(s) =

{

π− s+1
2 Γ

(

s+ 1

2

)}b{

π− s
2Γ

(

s

2

)}a

and

Λ(s, χ) = (s(s− 1))
δ(χ)

A(χ)
s/2

γχ(s)L(s, χ).

Then Λ(s, χ) satisfies the functional equation

Λ(s, χ) = W (χ)Λ(1− s, χ̄),

where W (χ) is a certain constant of absolute 1.

Furthermore, Λ(s, χ) is entire of order 1 and does not vanish at s = 0.

Let

Jj(χ) := − 1

2πi

∫ 2+i∞

2−i∞

L′

L
(s, χ)kj(s)ds

and

Ij := − 1

2πi

∫ 2+i∞

2−i∞
FC(s)kj(s)ds,

where FC(s) is defined in Lemma 3.6.
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By Lemma 3.7, we have

Ij =
|C|
|G|

∑

χ∈Ĝ(L/E)

χ̄(g)Jj(χ), (3-1)

where g is a representative of C.

We have two ways to express Ij . One way is using the inverse Mellin transform and the other is using

the residue theorem.

By the inverse Mellin transform, and we have

Jj(χ) =
∑

p

∑

m>1

χ(pm) log(Np)k̂j(Npm),

since

−L′

L
(s, χ,E) =

∑

p

∑

m>1

χ(pm) log(Np)(Np)
−ms

.

Also, by Lemma 3.6,

Ij =
|C|
|G|

∑

χ∈Ĝ(L/E)

χ̄(g)
∑

p

∑

m>1

χ(pm) log(Np)k̂j(Npm)

=
∑

p

∑

m>1

θ(pm) log(Np)k̂j(Npm).

Lemma 3.8. (1) Jj(χ) = δ(χ)kj(1) −
∑

ρ kj(ρ) + O(nEkj(0)) + O(kj(− 1
2 )(logA(χ) + nE)), where

the sum runs over all the nontrivial zeros of L(s, χ,E), and all the implied constants are absolute and

effectively computable.

(2)

|G|
|C|Ij > kj(1)−

∑

ρ

kj(ρ)− c6

{

nLkj(0) + kj

(

− 1

2

)

log dL

}

,

where the sum runs over all the nontrivial zeros of ζL(s) and c6 is positive, absolute and effectively

computable.

For the proof we need the following proposition.

Proposition 3.9 (The Conductor-Discriminant formula).

∏

χ∈Ĝ(L/E)

A(χ) = dL.

For a proof, see [13, 22].

Proof of Lemma 3.8. For (1), see [13]. The basic idea is to consider the following integral

Jj(χ, T )
△
= − 1

2πi

∫

∂B(T )

L′

L
(s, χ,E)kj(s)ds

= δ(χ)kj(1)− aχkj(0)−
∑

|γ|<T

kj(ρ),

where the sum runs over all the zeros ρ = β+iγ of L(s, χ,E) within the rectangle B(T ): [− 1
2 , 2]× [−T, T ].

Estimate the integral on each line segment and let T go to the infinity as in [13]. In fact, on the line

segment from − 1
2 + iT to − 1

2 − iT ,

∣

∣

∣

∣

L′

L
(s, χ,E)

∣

∣

∣

∣

≪ logA(χ) + nE(log(|s|+ 2))



246 Wang S Sci China Math February 2015 Vol. 58 No. 2

(see [13, Lemma 6.2]). Thus,

∣

∣

∣

∣

1

2πi

∫ − 1
2+iT

− 1
2−iT

L′

L
(s, χ,E)kj(s)ds

∣

∣

∣

∣

≪ kj

(

− 1

2

)

{logA(χ) + nE}

as

k1

(

− 1

2
+ it

)

≪ k1

(

− 1

2

)

1

1 + t2
, if y ≫ x,

k2

(

− 1

2
+ it

)

≪ k1

(

− 1

2

)

exp(−t2 log x), if x ≫ 1.

To estimate the integral I±(T ) on the horizontal line segments from 2 ± iT to − 1
2 ± iT , one uses the

method of Landau (see [13, Section 6], [12, Section 3] and [14]), obtaining the estimate

I±(T ) ≪ kj(iT )(logA(χ) + nE logT ).

Note that T → ∞, I±(T ) → 0.

Combining these estimates with Proposition 3.9, we obtain (1).

Now (2) is easy to get from (1) since

Ij =
|C|
|G|

∑

χ∈Ĝ(L/E)

Jj(χ)

and

ζL(s) =
∏

χ∈Ĝ(L/E)

L(s, χ,E)

and we can use Proposition 3.9.

Now we are ready to explain how we plan to use the standard model for our purposes.

From the rest of this chapter, assume that y ≫ x if we apply the first kernel function k1(s) and x ≫ 1

if we apply the second one k2(s). Let n = nL/nK which is not less than |G|/|C|.
Thus, by Lemma 3.8(2), we have

Ij >
1

n

(

kj(1)−
∑

ρ

|kj(ρ)|
)

− c6

{

nKkj(0) + kj

(

− 1

2

)(

1

n
log dL

)}

.

Note that

k1(0) =

(

x−1 − y−1

−1

)2

≪ x−2,

k1(−
1

2
) =

(

x− 3
2 − y−

3
2

− 3
2

)2

≪ x−3,

k2(0) = 1, k2

(

− 1

2

)

= x− 1
4 .

Thus, the c6{ } term is bounded by some multiple of

Tj =















x−2

n
log dL, if j = 1,

1

n
log dL, if j = 2.

Furthermore, we have

Ij =
∑

p

∑

m>1

θ(pm) log(Np)k̂j(Npm).
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Thus,

I1 = S1,1 + S1,2 + S1,3 + Ĩ1,

I2 = S2,1 + S2,2 + S2,3 + S2,4 + Ĩ2,

where the symbols mean the following:

Ĩj denotes the sum over the primes outside S, unramifying in L, of degree 1 over K and the Artin

symbol of p under L/K being C such that Np 6 y2 or x3+δ when j = 1 or 2, respectively.

S1,1 denotes the sum over (p,m) with p ramifying in L. S2,1 denotes the sum over (p,m) with p

ramifying in L and Npm 6 x10.

S1,2 denotes the sum over (p,m) with p in S. S2,2 denotes the sum over (p,m) with p in S and

Npm 6 x10.

Sj,3 denotes the sum over (p,m) with Npm not a rational prime.

S2,4 denotes the sum over (p,m) with Npm > x3+δ.

Applying Lemma 3.1, we have

S1,1 ≪ 1

n

log(y/x)

x2
log dL,

S2,1 ≪ 1

n
(log x)

1
2 log dL,

S1,2 ≪ log(y/x)

x2
logNS,

S2,2 ≪ (log x)
1
2 logNS,

S1,3 ≪ nK
(log(y/x))(log y)

x(log x)
,

S2,3 ≪ nKx7/4,

S2,4 ≪ nKx2− δ2

4 log x.

Then the main idea of this model is the following: Pick x, y appropriately. If we assume that for any p

unramifying in L, of degree 1 over K and the Artin symbol of p under L/K being C such that either

Np > y2 or x3+δ when j = 1 or 2 respectively, or p ∈ S or p ramifies in L, then Ĩj = 0 and

1

n

(

kj(1)−
∑

ρ

|kj(ρ)|
)

6 c′6Tj +
∑

v

Sj,v.

However, if the left-hand side dominates over c′6Tj and Sj,v by a sufficiently large constant factor, then

one gets a contradiction.

So the key component of this model is to find a better lower bound for

kj(1)−
∑

ρ

|kj(ρ)|.

3.3 Final estimations

In Subsection 3.3, we will prove Theorem 1.1. Let P1(C, S) be the set of primes of K satisfying (1) to (3)

in Theorem 1.1.

From Section 4, we have already seen that the quality of the effective bound depends on the lower

bound of kj(1) −
∑

ρ |kj(ρ)|. However, the possible exceptional zero β0 will cause difficulty. In general,

one will be forced to use the Deuring-Heilbronn. Fortunately, there is nothing new here compared with

the classical case where S = ∅.
To simplify our notation, we define β0 to be the exceptional zero of ζL(s) if it exists, and β0 =

1− (c2 log dL)
−1

otherwise, where c2 is the constant defined in Lemma 3.3, so that ζL(s) has at most one

zero in the interval ( 1− (c2 log dL)
−1

, 1 ).
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In either case,

kj(1)−
∑

ρ

|kj(ρ)| > kj(1)− kj(β0)−
∑

ρ6=β0

|kj(ρ)|.

By using the mean value theorem, we have

k1(1)− k1(β0) =

(

log
y

x

)2

−
(

yβ0−1 − xβ0−1

β0 − 1

)2

>
1

10

(

log
y

x

)2

min

{

1, (1− β0) log

(

y

x

)}

,

k2(1)− k2(β0) = x2 − xβ0+β0
2

>
x2

10
min{1, (1− β0) log(x)}.

First suppose

1− β0 > c7
2(log dL3

nLNn
S )

−2
,

where c7 is the constant defined in Lemma 3.4. In this case, we use the kernel k1(s). (Recall that

n = nL/nK .)

The contribution of the zeros ρ of ζL(s) with |ρ− 1| > 1 is bounded by

∑

|ρ−1|>1

|k1(ρ)| 6
∫ ∞

1

2

t2
dn(t; 1) ≪ log dL,

where n(t; 1) is the number of the nontrivial zeros of ζL with |ρ− 1| > t (see Lemma 3.2).

Next, assume that |ρ− 1| 6 1 for a nontrivial zero ρ = β + iγ 6= β0 of ζL.

If β0 as an exceptional zero exists with

1− β0 6
1

18
c2c7

2(log(dLN
n
S ))

−1
,

then since dL > 3nL/2 for nL > 2, we have

c7

(1− β0) log(dL3n
LNn

S )
>

{(

1

2
c2

)

(1− β0) log(dLN
n
S )

}− 1
2

,

and therefore by the Deuring-Heilbronn (see Lemma 3.5, note that when replace dL by any Q > dL, we

still have this statement),

β 6 1− c8
log{ c7

(1−β0) log(dL3nLNn
S )}

log(dL3nLNn
S )

6 1− c11
log {(12c2)(1− β0) log(dLN

n
S )}

−1

log(dLNn
S )

.

On the other hand, if

1− β0 >
1

18
c2c7

2(log(dLN
n
S ))

−1
,

then by the zero-free region given by Lemma 3.3,

β 6 1− (3c2 log(dL)N
n
S )

−1
.

Hence, we have

β 6 1− c12
log

{

(12c2)(1 − β0) log(dLN
n
S )

}−1

log(dLNn
S )

, (∗)

for some 0 < c12 < c11.

Thus (∗) holds for all the cases.

Let

B = c12
log {(12c2)(1 − β0) log(dLN

S
S )}

−1

log(dLNn
S )

.
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From (∗), we have

|k1(ρ)| ≪ x2(β−1)|ρ− 1|−2 ≪ x−2B|ρ− 1|−2
.

Thus, by Lemma 3.1,

∑

|ρ−1|<1,ρ6=β0

|k1(ρ)| 6 x−2B

∫ 1

B

1

t2
dn(t; 1)

≪ x−2B(B−2 +B−1 log dL)

≪ x−2BB−1 log dL.

As B ≫ (log(dLN
n
S ))

−1
, using the expression of B, we have

∑

|ρ−1|<1,ρ6=β0

|k1(ρ)| ≪ (log(dLN
n
S ))

2

{(

1

2
c2

)

(1 − β0) log(dLN
n
S )

}2c12
log x

log(dLNn
S

)

.

Thus we have shown that

k1(1)−
∑

ρ

|k1(ρ)| >
1

10

(

log
y

x

)2

min

{

1, (1− β0) log
y

x

}

− c13 log dL

− c14(log dL)
2

{(

1

2
c2

)

(1− β0) log dL

}2c12
log x

log dL

, (4A-1)

for some positive constants c13 and c14.

We now complete the proof of Theorem 1.1 in the case

1− β0 > c7
2(log dL3

nL)−2.

Assume that for any p in P1(C, S), Np > y2. Then

0 = Ĩ1 =
∑

p∈P1(C,S)

(logNp)k̂1(Np)

>
1

10n

(

log
y

x

)2

min

{

1, (1− β0) log
y

x

}

− c13
1

n
log dL − c14

1

n
(log(dLN

n
S ))

2

{(

1

2
c2

)

(1 − β0) log(dLN
n
S )

}2c12
log x

log(dLNn
S

)

− c15,1

{

1

n

1

x2
log

(

y

x

)

log dL

}

− c15,2

{

1

x2
log

(

y

x

)

logNS

}

− c15,3

{

nK

(log y
x )(log y)

x log x

}

− c′6
x−2

n
log dL,

where c15,v{· · ·} comes from S1,v and c′6{· · ·} comes from T1.

Fix any positive constant ǫ, and set y = x1+ǫ, x = (dLN
n
S )

C
for sufficiently large C, one gets that the

first term dominates over the other terms by a large constant factor. Let us check this.

The c14{· · ·} term is bounded by some multiple of

1

n
(log(dLN

n
S ))

2
4−Cc12 = o

(

(log x)
2

n

)

as C goes to ∞, thus it is dominated over by 1
n

(

log y
x

)2
by a large constant factor. Also, this term is

bounded by some multiple of
1

n
(log dL)

2
41−c12C · (1− β0) log dL,
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which is o( (log x)3

n (1 − β0)) as C goes to ∞, thus it is dominated over by 1
n (log

y
x )

3(1 − β0) by a large

constant factor. From the discussion above one can verify this assertion for the c14{· · ·} term.

Since
1

x2
log

y

x
logNS ≪ 1

d2CL
log

y

x
≪ 1

n
log

y

x
,

thus one can verify this assertion for the c15,2{· · ·} term.

Other terms are easy to check. So one draws a contradiction, and we get Theorem 1.1 in this case.

Furthermore, we consider the case

1− β0 6 c7
2(log dL3

nL)−2,

where we will use the second kernel function k2(s). In this case,

log
c7

(1− β0) log(dL3nLNn
S )

>
1

2
log (1− β0)

−1
.

If ρ = β + iγ is a zero of ζL(s) with |γ| 6 1, and ρ 6= β0, then by the Deuring-Heilbronn,

|k2(ρ)| ≪ xβ2+β ≪ x1+β

= x2 exp

{

− c19
log x log (1 − β0)

−1

log(dLNn
S )

}

x2(1− β0)
c19

log x
log(dLNn

S
) ,

for some positive absolute constant c19. Thus

∑

|γ|61,ρ6=β0

|k2(ρ)| ≪ x2(1− β0)
c19

log x
log(dLNn

S
) log(dLN

n
S ).

If ρ = β + iγ is a zero of ζL(s) with |γ| > 1, and ρ 6= β0, we have

|k2(ρ)| 6 x2−γ2 ≪ x.

Thus assume x > 2. Applying Lemma 3.1, we have

∑

|γ|>1

|k2(ρ)| ≪
∑

n>1

N(|2n|)x1+4n−4n2

≪ x log dL
∑

n>1

24n−4n2

+ xnL

∑

n>1

24n−4n2

log(2n+ 1)

≪ x log dL,

where N(T ) is the number of zeros of ζL(s) in the region [0, 1]× [T − 1, T + 1].

Thus

k2(1)−
∑

ρ

k2(ρ) >
x2

10
min{1, (1− β0) log x}

− c20x log dL − c21x
2(1− β0)

c19
log x

log(dLNn
S

) · log(dLNn
S ), (4A-2)

for some absolute positive constants c20 and c21.

We now complete the proof of Theorem 1.1 in the case,

1− β0 6 c7
2(log(dL3

nLNn
S ))

2.

Assume that for any p in P1(C, S), Np > x3+δ. Then

0 = Ĩ2 =
∑

p∈P1(C,S),Np6x3+δ

(logNp)k̂2(Np)
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>
x2

10n
min{1, (1− β0) log x}

− c20
1

n
log dL − c21

1

n
x2(1− β0)

c19
log x

log(dLNn
S

) · log(dLNn
S )

− c22,1

{

1

n
(log x)

1
2 log dL

}

− c22,2{(log x)
1
2 logNS}

− c22,3{nKx
7
4 } − c22,4{nKx2− δ2

4 (log x)} − c′6 log dL,

where c22,v{· · ·} comes from S2,v and c′6{· · ·} comes from T1.

Fix any positive constant ǫ′, and set x = dCL for sufficiently large C. One gets that the first term

dominates over the other terms by a large constant factor. Let us check this.

First be aware that by the Deuring-Heilbronn (see Corollary 3.5), and the fact that dεL ≫ log dL ≫ nL

for any ε > 0, the first term dominates over nKx2−α for C sufficiently large for any α > 0.

The c21{· · ·} term is bounded by some multiple of

1

n
x2(1 − β0)

c19C log(dLN
n
S )

as C goes to ∞, and thus it is dominated over by the first term.

Since

(log x)
2
logNS ≪ x

2
1+ǫ′ ,

thus one can verify this assertion for the c22,2{· · ·} term.

Other terms are easy to check now. So one draws a contradiction, and we prove Theorem 1.1 in

this case.

The proof of Theorem 1.2 is also similar with slight modification. Just consider ζK(s)L(s, χ) instead

of ζK(s) and we can imitate [12] to prove, and moreover use dKN(χ)NS instead of dKN(χ).

4 Landau method

In this section, we will prove Theorem 4.1 (see Theorem 1.3). We are using Landau’s idea (see [14]), and

the proof also follows [17, 31].

Theorem 4.1. Let π and π′ be two unitary cuspidal automorphic representations of GLd(K). Let S be

a finite set of finite places of K, and Q = max(C(π), C(π′)) and assume that the bound for Ramanujuan

for π and π′ are < R.

Then if π 6∼= π′, there exists a place v of K such that πv 6∼= π′
v, v /∈ S and

Npv 6







CQ1+ǫN ǫ
S , d = 1,

CQ2d+ d(d−2)
dH+1 +ǫN

d3(2R+H)
dH+1 +ǫ

S , general d,

where C is some effectively computable constant only depending on arbitrarily chosen number H > 2R,

ǫ > 0, K and d.

Proof of Theorems 4.1 and 1.3. Before we start, we pose a condition on π and π′: Let δ < 1/2 be any

given positive number, and we write the infinite part of L(s, π̃ × π′) as:
∏d2nK

j=1 ΓR(s+ bj(π̃ × π′)).

AA-Additional Assumption. The horizontal distance from ±H and 0 and all bj(π̃×π′) inside C/Z

are all greater than δ, namely, for each integer N , |H −N | > δ and | ±H −N − Rebj(π̃ × π′)| > δ.

We want to prove Theorem 4.1 with the assumption (AA) first.

Form

S(X, π̃ × π′, S) =
∞
∑

n=1

aπ̃×π′,S(n)ω

(

n

X

)

,
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where aπ̃×π′,S(n) is the n-th coefficient of the incomplete L-function

LS(s, π̃ × π′) =
∏

v/∈S

L(s, π̃v × π′
v) =

∞
∑

n=1

aπ̃×π′,S(n)n
−s

and the weight function ω(x) defined as a smooth function which may be specified as [31],

ω(X) =























0, x 6 0 or x > 3,

e−1/x, 0 < x 6 1,

e−1/(3−x), 2 6 x < 3,

6 1, all x.

Consider the Mellin transform

W (s) =

∫ ∞

0

ω(x)xs−1dx,

which is an analytic function of s. Fix σ < 0 and let s = σ + it then

W (s) ≪A,σ
1

(1 + |t|)A
,

for all A > 0 by repeated partial integration. By Mellin inversion,

ω(x) =
1

2πi

∫

(2)

W (s)x−sds,

where the integration is made along the vertical line Res = 2.

Then we have

S(X, π̃ × π′, S) =
1

2πi

∞
∑

n=1

aπ̃×π′,S(n)

∫

(2)

W (s)

(

n

X

)−s

ds

=
1

2πi

∫

(2)

XsW (s)LS(s, π̃ × π′),

where the interchange of the summation and the integral is guaranteed by the absolute convergence along

the real line σ = 2. By the standard arguments, plus the fact that all incomplete L-functions of nontrivial

characters are entire of order 1, we may shift the integral line to get

S(X, π̃ × π′, S) =
1

2πi

∫

−H

xsW (s)LS(s, π̃ × π′)ds,

where H > 0 is to be specified later.

Let

LS(s, π̃ × π′) =
∏

v∈S

L(s, π̃v × π′
v),

and

L∞(s, π̃ × π′) = L(s, π̃∞ × π′
∞)

the gamma factor of the Rankin-Selberg product L-function. Then we have the following functional

equation

LS(s, π̃ × π′) = W (π̃ × π′)N(π̃ × π′)
(1/2−s)

G0(s)G1(s)L
S(1− s, π × π̃′),

where W (π̃ × π′) is the root number of χ which has absolute value 1,

G0(s) =
L∞(1− s, π × π̃′)

L∞(s, π̃ × π′)

and

G1(s) =
LS(1− s, π × π̃′)

LS(s, π̃ × π′)
.

We need to estimate G0(s) and G1(s) along the vertical line σ = −H , avoiding to the pole of them. (To

be continued.)
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Lemma 4.2. Under the assumption (AA), we have

(1)

G0(−H + it) ≪H,d,K,δ (1 + |t|)nKd2(1/2+H)
d2nK
∏

j=1

(1 + |bj(π̃ × π′)|).

(2) G1(−H + it) ≪H,d,K,δ,ǫ′ N
d2(2R+H)+ǫ′

S .

We quote the following results on gamma function for which the proof can be found in a lot of analysis

textbooks.

Lemma 4.3 (Stirling formula).

|Γ(σ + it)| =
√
2πe−

π
2 |t||t|σ−1/2

(

1 +Oσ,δ,A

(

1

1 + |t|

))

,

for all |t| > A > 0 and s = σ + it away from any poles by at least distance δ.

Proof of Lemma 4.2. (1) Write bj = bj(π̃ × π′) = uj + ivj , and we have bj(π × π̃′) = bj(π̃ × π′) = bj
= uj − ivj . Put s = σ + it.

G0(s) =
L∞(1− s, π × π̃′)

L∞(s, π̃ × π′)

= π−d2nK/2+d2nKs
d2nK
∏

j=1

Γ((1 − s+ bj)/2)

Γ((s+ bj)/2)

≪σ,δ,d,K

d2nK
∏

j=1

|t+ vj |
1−σ+uj

2 − 1
2

|t+ vj |
σ+uj

2 − 1
2

≪σ,δ,d,K

d2nK
∏

j=1

|t+ vj |1/2−σ
.

Hence, under the assumption (AA),

|G0(−H + it)| ≪σ,d,K,H,δ (1 + |t|)d
2nK(1/2+H)

d2nK
∏

j=1

(1 + |bj |)1/2+H
.

(2) For each v ∈ S, write L(s, πv) =
∏d

j=1(1− av,jq
−s
v ) and L(s, π′

v) =
∏d

j=1(1 − a′v,jq
−s
v ). Then

L(s, π̃v × π′
v) =

∏

j,k=1,...,d

(1− av,ja
′
v,kq

−s
v )

and hence L(s, πv × π̃′
v) =

∏

j,k=1,...,d(1− av,ja′v,kq
−s
v ),

G1(s) =
LS(1 − s, π × π̃′)

LS(s, π̃ × π′)

=
∏

v∈S

L(1− s, πv × π̃′
v)

L(s, π̃v × π′
v)

=
∏

v∈S

∏

j,k=1,...,d

1− av,ja
′
v,kq

−s
v

1− av,ja′v,jq
s−1
v

.

Note that by the assumption on the Ramanujuan bounds and the results on it (see [1, 18]), we have

|av,j |, |a′v,k| < qRv ≪ q
1/2−1/(d2+1)
v . Hence,

|G1(−H + it)| 6
∏

v∈S

(

1 + q2R+H
v

1− q
−(H+2/(d2+1))
v

)d2
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6
∏

v∈S

(

2q2R+H
v

1− 2−(H+2/(d2+1))

)d2

6 2|S|d2

N
d2(2R+H)
S (1− 2−(H+2/(d2+1)))

−d2|S|

≪d,K,ǫ′ N
d2(2R+H)+ǫ′

S .

Here we use the estimation a|S| ≪K,d,ǫ′ N
ǫ′

S .

Proof of Theorem 4.1. The proof is still under the asumption (AA).

Now

S(X, π̃ × π′, S)

=
1

2πi

∫

(−H)

XsW (s)W (π̃ × π′)N(π̃ × π′)
1/2−s

G0(s)G1(s)L
S(1 − s, π × π̃′)ds

=
1

2πi

∫

(−H)

XsW (s)W (π̃ × π′)N(π̃ × π′)
1/2−s

G0(s)G1(s)

∞
∑

n=1

aπ̃×π′,S(n)

n1+H
ds

=
1

2πi

∞
∑

n=1

aπ̃×π′,S(n)

n1+H

∫

(−H)

XsW (s)W (π̃ × π′)N(π̃ × π′)
1/2−s

G0(s)G1(s)n
s+Hds.

Here the interchange of the sum and the integral is guaranteed by the absolute convergence of the

Dirichlet series, rapid decay of W (s).

Note that when H > 2R, we have

∞
∑

n=1

∣

∣

∣

∣

aπ̃×π′,S(n)

n1+H

∣

∣

∣

∣

6 ζK(1 +H − 2R)

by the arguments in the preliminary subsection on Bound for Ramanujuan.

Applying Lemma 4.2, and the estimation above, we have

S(X, π̃ × π′, S) ≪H,K ζK(1 +H − 2R)

∫

(−H)

|XsW (s)W (π̃ × π′)N(π̃ × π′)
1/2−s

G0(s)G1(s)d s|

≪H,K,δ,ǫ X
−HN(π̃ × π′)

1/2+H

×
d2nK
∏

j=1

(1 + |bj(π̃ × π′)|)1/2+H
N

d2(2R+H)+ǫ
S

∫

(−H)

W (s)(1 + |t|)(1/2+H)nKd2

d t

≪H,K,δ,ǫ X
−HC(π̃ × π′)

1/2+H
N

d2(2R+H)+ǫ
S .

To establish the theorem, we need to bound S(X, π̃,×π′, S) below. Now assume that πv
∼= π′

v for all

v /∈ S such that Npv 6 3X . Then S(X, π̃ × π′, S) = S(X, π̃ × π, S).

Now, we have S(X, π̃× π, S) ≫K,d X1/d/(log(X))− |S| since by the prime number theory, when X is

large, there is a prime pv of K such that X < qdv < 2X (prime number theorem and Bertrand), where

qv = Npv.

Thus, by Proposition 2.5, S(X, π̃×π, S) is greater than e−1 multiples of the primes pv of K of degree 1

outside S such that X 6 pv 6 2X , when

X > 4A|S|2, S(X, 1, S) ≫K,d X1/d/(log(X)),

for large A > 0.

Then we have, when X > 4A|S|2,

X1/d/(log(X)) ≪K,d,δ S(X, π̃ × π, S) = S(X, π̃ × π′, S)

< C′X−HC(π̃ × π′)
1/2+H

N
d2(2R+H)+ǫ
S ,



Wang S Sci China Math February 2015 Vol. 58 No. 2 255

for some C′ depending on H , K, d, δ.

Therefore,

XH+1/d−ǫ ≪ǫ X
H+1/dlog(X)

−1 ≪H,K,d,ǫ,δ C(π̃ × π′)
1/2+H

N
d2(2R+H)+ǫ
S

and thus

X ≪ǫ,H,K,d,δ C(π̃ × π′)
H+1/2

H+1/d−ǫN
d2(2R+H)
H+1/d−ǫ

S , (4.1)

X < CQ2d+d(d−2)
dH+1 +ǫN

d3(2R+H)
dH+1 +ǫ

S , (4.2)

where C depends on ǫ and K, d, δ and H > 2R. As X < 4A|S|2 ≪ǫ,A,K N ǫ
S , Theorem 4.1 follows under

the assumption (AA).

Now for general H , we can choose small δ depending only on K, d and ǫ such that the assumption

(AA) holds always for some H ′ in place of H with |H ′ − H | < δ/2. Then we still get the theorem

for H ′ in place of H . Since H ′ here can be taken sufficiently closed to H , we still get the theorem for

such H .
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