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Major depressive disorder (MDD) is a prevalent psychiatric disease that involves malfunctions of different cell types in the brain.
Accumulating studies started to reveal that microglia, the primary resident immune cells, play an important role in the devel-
opment and progression of depression. Microglia respond to stress-triggered neuroinflammation, and through the release of pro-
inflammatory cytokines and their metabolic products, microglia may modulate the function of neurons and astrocytes to regulate
depression. In this review, we focused on the role of microglia in the etiology of depression. We discussed the dynamic states of
microglia; the correlative and causal evidence of microglial abnormalities in depression; possible mechanisms of how microglia
sense depression-related stress and modulate depression state; and how antidepressive therapies affect microglia. Understanding
the role of microglia in depression may shed light on developing new treatment strategies to fight against this devastating mental
illness.
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Introduction

Major depressive disorder (MDD) is affecting more than 300
million people world-wide, and has become the world’s
leading cause of disability since 2017, according to World
Health Organization. Unfortunately, due to its complexity
and heterogeneity, the etiology and pathophysiology of de-
pression are still not clearly understood. And there is a huge

unmet clinical need for effective treatments for this prevalent
and devastating disease.
Theories regarding the pathophysiological mechanism of

depression have evolved over the last several decades. The
once widely-adopted “monoamine deficiency hypothesis”,
attributing depression to a decreased level of brain mono-
amines (such as dopamine, serotonin and noradrenaline)
(Schildkraut, 1965), cannot fully explain the much delayed
onset and limited efficacy of classical antidepressants. In the
last two decades, the neural plasticity hypothesis of depres-
sion has emerged, according to which depression may result
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from maladaptive plastic changes in the neural circuits in-
volved in mood regulation (Vaidya and Duman, 2001).
Along this direction, impaired neuroplasticity of the pre-
frontal-limbic neuronal circuits (Price and Duman, 2020) and
abnormal activity of the lateral habenula (LHb) in depression
patients and models (Hu et al., 2020a; Yang et al., 2018b)
have been highlighted in recent studies.
Whereas previous models on depression mostly focus on

neurons, much less attention has been paid to another type
of “native resident” cells in the brain: glia. Unlike their
Latin name “glue”, glia do not simply hold neurons to-
gether, but rather, play important roles in modulating neu-
ronal activities and maintaining brain homeostasis (Allen
and Lyons, 2018). Glia mainly consist of astrocytes, oli-
godendrocytes, ependymal cells and microglia. Microglia,
classified based on their unique origin and morphology (see
next session), constantly survey the microenvironment with
their highly motile and ramified processes (Kettenmann et
al., 2011). As the primary resident immune cells acting at
the first line of defense in the brain, microglia have at-
tracted enormous attention during the past decades, due to
their roles in mediating immunoresponses and neuroin-
flammation (Kettenmann et al., 2011; Wolf et al., 2017).
Microglial abnormalities have been implicated in a wide
range of brain diseases, including autism, neurodegenera-
tive disorders (Alzheimer’s disease and Parkinson’s dis-
ease), neuropathic pain and depression (Bohlen et al., 2019;
Salter and Stevens, 2017; Wolf et al., 2017). In particular,
accumulating evidence suggests that inflammation or
stress-triggered dysfunctions of microglia commonly occur
in depression, and these dysfunctions may play a causal role
in disrupting neural functions leading to depression (Yir-
miya et al., 2015).
The topic of this review is on how microglia contribute to

the pathophysiology of depression. We will first discuss the
dynamic properties of microglia under homeostatic and pa-
thological states. We will then review the correlative and
causal evidence describing the relationship between micro-
glial states and depression in both human patients and animal
models. Possible mechanisms on how microglia sense stress
and regulate depressive state will be summarized. Finally, we
will describe the effects of antidepressants on microglia
state, highlighting the effects of a new antidepressant keta-
mine. Understanding microglia-related mechanisms in MDD
will shed light on developing new therapeutic strategies to
treat this prevalent disease.

Ontogeny and development of microglia

Unlike neurons and other glial cell types derived from neu-
roectodermal lineage, microglia are derived from mesench-
ymal lineage. While earlier studies regarded peripheral

monocytes as a source of microglia, recent fate mapping data
clearly demonstrate that microglia originate from yolk sac-
derived erythromyeloid progenitors (Ginhoux et al., 2013;
Ginhoux and Prinz, 2015). They invade the brain rudiment at
embryonic day 8.5–9 in mice using the vasculature before
the formation of blood-brain barrier (Ginhoux et al., 2010;
Gomez Perdiguero et al., 2015; Kierdorf et al., 2013).
Within the brain, microglia development progresses

through proliferation, differentiation and maturation to ac-
quire ramification morphology and homogeneous tiling
throughout the brain (Matcovitch-Natan et al., 2016; Thion
et al., 2018a). Microglia rapidly expand at perinatal and
postnatal stages and fully colonize the brain by the end of the
second week (Bennett et al., 2016; Nikodemova et al., 2015).
In the adult, microglia population is maintained by self-re-
newal, with no replenishment of peripheral circulating
monocytes under steady state condition (Hashimoto et al.,
2013; Mildner et al., 2007). Microglia are emerging as im-
portant contributors to brain development by regulating
neurogenesis, synapse formation and elimination, and neu-
ronal circuit assembly (Kettenmann et al., 2011).

Characteristics and function of microglial dy-
namics

Without external stimulation, microglia adopt ramified
morphology characterized by small stationery soma but
motile processes that continuously monitor the brain par-
enchyma to maintain brain homeostasis (Kettenmann et al.,
2013). In response to external stimuli, microglia undergo
drastic morphological changes (Kettenmann et al., 2011).
Upon injury or disease, ramified microglia rapidly convert
into amoeboid morphology with swollen soma and shortened
processes, accompanied by increased phagocytic activities
and elevated cytokine production. This process is known as
microglial activation. Activated microglia exhibit diverse
responses to external stimuli and serve as a double-edged
sword: acute microglial activation often facilitates tissue
repair by clearing invading pathogens and cell debris;
whereas sustained microglial activation evokes chronic
neuroinflammation to deteriorate injury and promote disease
progression (Kettenmann et al., 2011).
Similar to peripheral macrophages, two main polarization

states are defined in activated microglia: M1 (classical ac-
tivation) and M2 (alternative activation) phenotypes (Boche
et al., 2013; Saijo and Glass, 2011; Tang and Le, 2016). M1
polarized microglia are usually induced by pro-inflammatory
stimuli (for example, Toll-like receptor (TLR) agonists re-
lated to infection), and adopt the pro-inflammatory state that
produces pro-inflammatory cytokines such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide
(NO) and reactive oxygen species (ROS) etc. By contrast,
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M2 polarization is mainly induced by IL-4 and IL-13, and is
associated with the production of anti-inflammatory cyto-
kines such as IL-4, IL-13, IL-10 and TGF-β. M2 microglia
are also involved in phagocytosis of cell debris, neuron
protection and tissue repair (Boche et al., 2013; Saijo and
Glass, 2011; Tang and Le, 2016).
Of note, the M1/M2 categorization of microglia is not

universally accepted (Ransohoff, 2016), as the binary divi-
sion of microglial activation states may not represent the
heterogeneous microglial molecular profiles in the compli-
cated homeostatic or diseased environment in vivo (Ran-
sohoff, 2016; Wes et al., 2016; Yamasaki et al., 2014).
Below, we will use “pro-inflammatory” or “anti-in-
flammatory” microglia instead to highlight microglial con-
tributions to depression.
The opposite state of microglia activation, microglia de-

cline (also sometimes referred to as dystrophy or senescence)
has also been documented (Saijo and Glass, 2011; Streit,
2006; Yirmiya et al., 2015). It refers to a state of decreased
mitotic activity or number of microglia, with swelling and
de-ramified morphology. This state has been observed in
aging, Alzheimer’s disease, and depressive-like state (Krei-
sel et al., 2014; Streit et al., 2020; Streit et al., 2004). The
decline state is hypothesized to arise from over-activation of
microglia, which disrupts the balance between the microglial
anabolism and catabolism. Microglia may be unable to tol-
erate a high metabolic load and are susceptible to death after
a limited period of activation (Streit, 2006).

In this review, we will discuss the connections between
depression and these three states of microglia: pro-in-
flammatory, anti-inflammatory, and declined state (Figure
1). To be consistent with most published works, we will refer
to the pro-inflammatory state as the main microglia activa-
tion state. The anti-inflammatory responses will be sepa-
rately described whenever appropriate.

Inflammation, microglial abnormalities and de-
pression

Depression and inflammation

Clinical data on depression suggest a strong link between the
disease etiology and inflammation. Inflammation-related
features have been strongly implicated in depression patients
(Miller et al., 2009; Miller and Raison, 2016). In meta-ana-
lysis of depression studies, patients with depression showed
consistently upregulated levels of pro-inflammatory cyto-
kines such as TNF-α and IL-6 (Dowlati et al., 2010; Enache
et al., 2019). In addition to these correlative analysis, there is
also evidence that inflammation may causally contribute to
depressive illness. Pro-inflammatory cytokines, vaccines and
endotoxins, are the three main types of immune stimuli that
have been reported to induce transient depressive mood in
human volunteers. For example, treatment of the pro-in-
flammatory cytokine interferon-α (IFN-α) in healthy volun-
teers causes anxiety and depressive mood, with comparable

Figure 1 Dynamic properties of microglia. Under the homeostatic condition, microglia exhibit small soma and thin, ramified and motile processes. Upon
stimuli, microglia switch to de-ramified morphology with swollen soma and shortened processes. Two major phenotypes of activated microglia have been
identified: proinflammatory microglia (induced by LPS, IFN-γ, etc.) that produce pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), NO and ROS to
promote neuroinflammation and the anti-inflammatory microglia (induced by IL-4 and IL-13) that secrete anti-inflammatory cytokines (IL-4, IL-13, IL-10
and TGF-β). Microglial overactivation may lead to the declined state with microglial apoptosis and loss of microglial number.
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severity to those of depression patients (Capuron et al.,
2009). Similarly, typhoid vaccination also induces depressed
mood in healthy volunteers who show mild acute in-
flammatory responses to the vaccination (Strike et al., 2004).
Injection of the bacterial endotoxin and lipopolysaccharide
in humans leads to elevated levels of plasmal pro-in-
flammatory cytokines and dose-dependent depressed mood
(Grigoleit et al., 2011). These results suggest that im-
munoresponses may play a causal role in the depression
etiology.

Pro-inflammatory microglia in depression

Both microglia and peripheral immune cells have been im-
plicated in depression-related inflammation (Hodes et al.,
2015; Miller and Raison, 2016; Wohleb et al., 2016). The
peripheral immune cells, in brief, respond to stress-induced
hormone regulations and the innervation of immune organs
by the continuously activated sympathetic neurons in de-
pression (Won and Kim, 2016). The peripheral myeloid cells
are the main source of pro-inflammatory cytokines, which
circulate in the blood and cross the blood brain barrier to
affect microglia (Miller and Raison, 2016). A subpopulation
of myeloid cells, monocytes, can even infiltrate into the brain
under exposure to depression-related chronic stress (Wohleb
et al., 2013).
As the native mediator of inflammatory responses in the

brain, microglia may play more direct roles than peripheral
immune cells in depression. Post-mortem brain studies have
found that the percentage of activated microglia is increased
in the dorsal anterior cingulate cortex of depressed suicides,
compared to those without psychiatric or inflammatory ill-
ness (Torres-Platas et al., 2014). Moreover, positron emis-
sion tomography (PET) examining the levels of translocator
protein 18 kD (TSPO), which correlate with activated mi-
croglia-related neuroinflammation, has been used to monitor
the microglial activation state in vivo in human (Banati,
2002; Rupprecht et al., 2010), yet with mixed results. The
earliest study using [11C] PBR28 as the ligand did not ob-
serve elevation of TSPO in mild-to-moderate depression
patients (Hannestad et al., 2013). However, two studies ap-
plying the ligand [11C]-(R)-PK11195 discovered sig-
nificantly increased TSPO in the right hippocampus of
bipolar patients (Haarman et al., 2014) and in the anterior
cingulate cortex of patients in a major depressive episode
(MDE) (Holmes et al., 2018). Another study using the [18F]
FEPPA ligand also observed significant increase of TSPO
levels in the prefrontal cortex, anterior cingulate cortex and
insula in patients with MDE (Setiawan et al., 2015). While
the inconsistencies may arise from differences in the ther-
apeutic progress of patients, the severity of the cohorts, the
chemical property of ligands, and TSPO elevation are no
longer evident after antidepressant treatment. Together, these

studies demonstrate a close relationship between microglia
activation and depression (Setiawan et al., 2018).
Growing evidence also suggests increased microglial ac-

tivation in inflammatory and non-inflammatory animal
models of depression. Taking the LPS model, the most
commonly used inflammation-induced depression animal
model as an example (Yirmiya, 1996), systematic LPS
challenge not only prominently triggers peripheral immune
responses but also activates microglia in the brain. Upregu-
lated pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) are
observed in multiple brain areas (Hoogland et al., 2015).
Animals (rats and mice) stimulated by LPS exhibited de-
creased preference of sucrose to water and increased im-
mobility in forced swim tests, indicating anhedonia and
behavior despair respectively (Adzic et al., 2015; Guan et al.,
2020). In addition, animals that receive depression-related
stress also exhibit microglial activation along with mor-
phological changes, increased level of pro-inflammatory but
not anti-inflammatory cytokines. For example, acute stress
induces microglial activation in multiple brain regions in-
cluding the hippocampus (Frank et al., 2007; Sugama et al.,
2007), thalamus, hypothalamus (Sugama et al., 2007) and
periaqueductal gray (PAG) (Sugama et al., 2009), whereas
different chronic stresses induce microglial activation in the
medial prefrontal cortex, nucleus accumbens, hippocampus,
PAG and LHb (Brevet et al., 2010; Guan et al., 2020; Hin-
wood et al., 2013; Tynan et al., 2010; Wohleb et al., 2012).
Therefore, pro-inflammatory microglia activation is engaged
in both inflammatory and non-inflammatory animal models
of depression.
Despite of a strong correlation between microglial acti-

vation and depression in both patients and animal models, it
remains challenging to determine whether microglial ab-
normities play a causal role in depression. Using PLX5622, a
colony-stimulating factor 1 receptor (CSF1R) antagonist, to
deplete microglia in vivo, a recent study observed that mi-
croglia-depleted mice are protected from chronic social de-
feat (CSD) stress-induced anxiety and anti-social behaviors
(Lehmann et al., 2019). However, two weeks after the re-
moval of PLX5562 when microglia repopulate to the normal
states, the mice exhibited CSD-related behavioral defects.
Considering that CSD mice have been well-established as a
depression model, this study suggests that microglia may
play a causal role in stress-induced depression.
Additional evidence demonstrating a causal role for mi-

croglial activation in depression comes from minocycline
treatment. Minocycline is an anti-inflammatory tetracycline
that suppresses microglial activation and neuroinflammation
(Maes et al., 2008). Although minocycline treatment does
not induce anti-depressive behavioral effects in naïve mice
(Vogt et al., 2016), it exhibits robust anti-depressive effects
in the rat depression model of chronic unpredictable mild
stress (Zhang et al., 2019). Encouragingly, in an open-label
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study, combinatorial application of minocycline with tradi-
tional antidepressants provide significantly better mood im-
provement in unipolar depression patients, compared with
patients merely taking antidepressants (Miyaoka et al.,
2012), suggesting the contribution of microglial activation to
depression.

Anti-inflammatory microglia in anti-depression

Based on molecular markers, stress seems to predominantly
induce the pro-inflammatory responses in microglia. That’s
why most studies have mainly focused on the role of pro-
inflammatory microglia in depression. Recent studies sug-
gest that anti-inflammatory microglia may play an anti-de-
pressive role (Zhang et al., 2018). Microglia-derived anti-
inflammatory cytokines can oppose the actions of pro-in-
flammatory cytokines, thus reverse depression. For example,
intracerebroventricular infusion of IL-4 antagonizes IL-1β-
induced depressive behaviors in rats via increased nora-
drenergic and serotonergic neurotransmission (Park et al.,
2015). Moreover, drug-induced shift from pro- to anti-in-
flammatory state in hippocampal microglia produces anti-
depressive effects (Duan et al., 2020; Zhang et al., 2017). For
example, salvianolic acid B inhibits LPS-induced pro-in-
flammatory microglia and promotes the anti-inflammatory
phenotypes in vitro (Zhang et al., 2017). When used in vivo,
it decreases the pro-inflammatory cytokines but increases
anti-inflammatory cytokines in the hippocampus and cortex
of CMS-induced depression mouse models. As a result, it
restores the hippocampal neurogenesis and produces anti-
depressive effects (Zhang et al., 2017). Additional drug-in-
duced shift from pro- to anti-inflammatory microglial phe-
notype also exhibits similar anti-depressive effects in chronic
unpredictable mild stress mice (Duan et al., 2020), demon-
strating a beneficial role for anti-inflammatory microglia in
depression.

Declined microglia in depression

In contrast to microglial activation, microglial decline, first
identified in depressive-like animals by Kreisel et al. (2014),
received much less attention. Studies have observed that
microglia in the hippocampal dentate gyrus (DG) undergo
dynamic changes in the progression of chronic unpredictable
stress (CUS)-induced depression-like behaviors (Kreisel et
al., 2014). At the first several (2–3) days, stress exposure
induces microglial activation and proliferation. At this stage,
blocking microglia activation by minocycline can effectively
rescue the depressive behavior, consistent with discussions
above. However, after weeks of chronic unpredictable stress
stimulation, hippocampal microglia turn into a dystrophic
morphology, with smaller soma and shorter processes. By
then, minocycline cannot rescue the depressive-like beha-

viors anymore. Instead, activating microglia using microglial
activators such as LPS or colony stimulating factors (CSF)
can rescue the depressive phenotypes (Kreisel et al., 2014).
Additional studies also observed microglial loss or dystrophy
in the hippocampal DG region at later stages of three com-
monly used chronic-stress mouse depression models of CUS,
CRS and CSDS (Tong et al., 2017) or microglial decline in
the orbitofrontal cortex of female rats suffering from chronic
restraint stress (Bollinger et al., 2017). Accordingly, acti-
vating microglia or restoring declined microglial number by
LPS (even with the dose that is sufficient to cause depression
symptoms in naïve animals) or CSF stimulation after weeks
of stress exposure reverses depressive behavior (Kreisel et
al., 2014; Tong et al., 2017). A recent study further char-
acterized the time window for LPS-stimulated microglia
activation in anti-depressive effects (Cai et al., 2020). After
35 days of CUS stimulation, a single dose of LPS can reverse
the depressive phenotypes in 5 hours and the effects remain
for at least ten days in mice. A parallel study using the
adolescent intermittent alcohol exposure (AIE) also observed
similar hippocampal microglial decline at late phases of al-
cohol exposure, and antidepressive effects of early-stage
minocycline application and late-stage LPS stimulation (Hu
et al., 2020b). Collectively, these studies demonstrate that
preventing hippocampal microglial decline at late phase
elicits anti-depressive effects.
In summary, pro-inflammatory microglia may directly

contribute to depression; and anti-inflammatory microglia
may antagonize the pro-inflammatory responses to produce
anti-depressive effects. Microglia declination may occur at
later stage of depression due to sustained over-activation of
microglia after chronic stress.

Mechanisms of how stress/depression alters mi-
croglial state

Efforts have been made in the past decades to figure out how
stresses alter microglia activity (Frank et al., 2019). While it
remains unclear which signaling cascade initiates stress-
triggered microglial changes (Wohleb et al., 2016), increas-
ing evidence suggests that several factors, including pattern
recognition receptor (PPR) agonists, neurotransmitters and
neuron-derived cytokines, the endocrine system and the gut-
brain-axis may be involved (Figure 2).
First, exposure to stressors can lead to a pro-inflammatory

environment in the brain that contributes to depression.
Stressors can induce specific molecular patterns of threat
including pathogen-associated molecular patterns (PAMPs,
such as LPS from bacteria and RNA from viruses) and
danger-associated molecular patterns (DAMPs, such as ATP,
heat shock proteins, high mobility group box-1 and etc.)-
mediated signaling to prime microglia and amplify the
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neuroinflammatory responses (Fleshner, 2013). For ex-
ample, repeated electric tail shocks increase the hippocampal
release of high mobility group box-1 (HMGB1), a DAMP
known to induce microglial activation (Weber et al., 2015).
Pharmacological blockade of HMGB1 signaling prevents
stress-induced sensitization of microglial pro-inflammatory
responses (Weber et al., 2015). Moreover, chronic stresses
can induce the expression of PAMP receptors, TLR, on mi-
croglia, thereby augmenting PAMPs mediated pro-in-
flammatory effects (Wohleb et al., 2011). Genetic ablation of
TLR2/4 in mice abolishes repeated social defeat (RSD)
stress-induced social avoidance and anxiety. Selective de-
pletion of TLR2/4 in medial PFC microglial cells mitigates
stress-induced microglial activation and social avoidance
(Nie et al., 2018). These studies suggest that upregulated
PAMPs or DAMPs signaling after stress exposure augments
the inflammatory responses and contributes to depressive-
like behaviors.
Second, neurotransmitters released from aberrant neuronal

activities in depressive states can affect microglial states.
Microglia express a wide range of neurotransmitter receptors
(Pocock and Kettenmann, 2007), including glutamate re-
ceptors, GABA receptors and etc. As demonstrated in cul-
tured microglia, the process morphology and motility are
positively regulated by ionotropic glutamatergic transmis-
sion showing larger dendritic covered area, increased den-
drite length and more dendritic branches, but negatively
regulated by GABAergic transmission with the opposite

changes (Fontainhas et al., 2011). Microglial activation is
found in close proximity to activated neurons (labeled by c-
Fos staining) in PAG of rats suffering from instant stress
(Sugama et al., 2009). Moreover, neuronal hyperactivity can
recruit microglial processes via NMDAR receptor activa-
tion-triggered ATP release and microglia ATP receptors
(Dissing-Olesen et al., 2014; Eyo et al., 2014). Interestingly,
genetic ablation of P2X7, a microglial ATP ionotropic re-
ceptor, results in anti-depressive effects in mice (Basso et al.,
2009). Consistently, chronic treatment of P2X7 antagonist
reverses anhedonia phenotype in chronic unpredictable stress
mouse models (Iwata et al., 2016b).
Third, a prominent neuron-microglia regulatory pathway

in stress and depression is fractalkine signaling. Fractalkine
(also known as CX3C-ligand 1 or CX3CL1) is a chemokine
mainly expressed by neurons, and its receptor, CX3CR1, is
exclusively expressed in microglia in the brain (Lyons et al.,
2009). Fractalkine attenuates microglial activation and
maintains microglia in a homeostatic state both in vivo and in
vitro (Lyons et al., 2009). Both CX3CL1 and CX3CR1 are
found decreased in the brains of mice after repeated social
defeat (Wohleb et al., 2014; Wohleb et al., 2013). Genetic
ablation of CX3CR1 in mice causes mixed consequences
when mice face different depression-related stresses. In re-
sponse to LPS injection, which activates microglia in the
hippocampus and prefrontal cortex, CX3CR1-deficient
mice, but not the control, show behavioral despair in the tail
suspension test (TST) (Corona et al., 2010). However, in

Figure 2 Possible mechanisms for microglia to sense the stress or the depressive state. Microglia sense molecular changes in the local brain environment,
such as ATP, neurotransmitters or CX3CL1 derived from neurons or astrocytes. Microglia receive stress-related information from the molecular patterns
(PAMPs and DAMPs) through surface pattern recognition receptors, the endocrine system (the hypothalamic-pituitary-adrenal axis), the gut-brain axis, or the
peripheral immune cells, which release inflammatory cytokines that may enter the brain to disrupt the brain homeostasis under stress.
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response to instant non-inflammatory stresses, CX3CR1-
deficient mice are more resilient than the control mice
(Hellwig et al., 2016; Liu et al., 2020; Rimmerman et al.,
2017; Winkler et al., 2017). Moreover, Venlafaxine, a tra-
ditional antidepressant, is able to alleviate depressive beha-
viors in wild-type but not CX3CR1-deficient mice in chronic
despair models (Hellwig et al., 2016), suggesting a sig-
nificant role of fractalkine signaling in microglia-mediated
stress response.
Fourth, the hypothalamus-pituitary-adrenal gland (HPA)

axis may be involved in stress-induced microglial activation
(Sorrells and Sapolsky, 2007). Stress is known to activate the
HPA axis and increase the release of corticotrophin-releasing
hormone (CRH) from the hypothalamus and glucocorticoids
(GC) from the adrenal glands. Elevated levels of stress hor-
mones have been observed in the serum of depressed patients
(Dinan, 1994). Both CRH and GC can prime the pro-in-
flammatory responses in cultured microglia (Wang et al.,
2002). GC-activated NF-κB-Nod-like receptor protein 3
(NLRP3) pathway in hippocampal microglia has been re-
ported to contribute to chronic stress-induced hippocampal
neuroinflammation and depressive-like behaviors (Feng et al.,
2019). Either pharmacological antagonism of GC receptors or
adrenal ectomization blocks stress-induced microglia priming
and decreases the LPS-induced microglial pro-inflammatory
responses (Frank et al., 2012), suggesting that GC may play a
critical role in stress-triggered microglia alteration.
Finally, the gut microbiome may play an important role in

stress-related microglia activation. Microbiota has close
connection to depression in both patients and experimental
models (Cruz-Pereira et al., 2020). The composition of mi-
crobe species is greatly altered in patients with depression
symptoms (Jiang et al., 2015). Alterations in gut microbiome
can directly regulate depressive-like behaviors in mice and
the pathogenesis of MDD (Zheng et al., 2016). Normal gut
microbiota is important for microglial maturation and
homeostasis (Gilbert et al., 2018). Stress-induced gut mi-
crobiota changes can activate microglia. When exposed to
social stressors, such as aggressive conspecifics, the bacteria
species in mouse gut undergoes significant change (Bailey et
al., 2011). Depletion of microbiota or reduced microbiota
complexity changes microglial morphology, with increased
process length, segments and branches, and reduced innate
immunoresponses upon LPS challenge (Erny et al., 2015).
Also, the impact of microbiome on microglia appears to be
sexually-dimorphic, and microglia in male embryos or fe-
male adults are more affected than male adults (Thion et al.,
2018b). In germ-free mice, LPS injection fails to induce
upregulation of TNF-α and Iba1 as well as depression-like
behavior in TST, suggesting that microbiota serves as an
important bridge for LPS to induce microglia changes and
depressive behaviors (Campos et al., 2016). How micro-
biome-induced microglial changes contribute to depression

remains to be further clarified in the future.

Mechanisms of how microglia contribute to de-
pression

Microglia are important neuro-immune sensors of stress, and
stress-elicited microglial alterations can contribute to de-
pression state through various mechanisms, including mi-
croglia-derived cytokines, non-cytokine metabolites and
other possible mechanisms (Figure 3).

Pro-inflammatory cytokines

Multiple pro-inflammatory cytokines, such as TNF-α, IL-6
and IL-1β, derived from both peripheral immune cells and
microglia, can modulate neuronal functions contributing to
the depressive illness.
TNF-α has been reported to modulate synaptic efficacy by

up-regulating the expression of surface α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid receptors (AMPA re-
ceptors, AMPAR), as reflected in the increased ratio of
AMPAR/NMDAR (N-methyl-d-aspartic acid receptor) cur-
rents (A/N ratio) in acute hippocampal slices (Beattie et al.,
2002; Stellwagen and Malenka, 2006). Consistently, genetic
ablation of TNF-α receptor subtype 1 decreases the levels of
synaptic AMPAR and the frequency of miniature excitatory
postsynaptic currents in the hippocampus (He et al., 2012).
Intriguingly, cocaine administration increases TNF-α ex-
pression in the striatum, and incubation of TNF-α on striatum
acute slices reduces A/N ratio of corticostriatal synapse by
decreasing membrane AMPAR expression (Lewitus et al.,
2016; Lewitus et al., 2014). TNF-α-mediated synaptic
modulation may occur in depression-related circuits, since
microglial activation and the up-regulation of TNF-α have
been observed in medial prefrontal cortex, nucleus ac-
cumbens and hippocampus that participate in depression or
stress coping behaviors (Hinwood et al., 2013; Tynan et al.,
2010; Wohleb et al., 2012). A recent study found that TNF-α
is up-regulated in the LHb, a brain region critically involved
in depression, in a mouse model of morphine withdrawal
(Valentinova et al., 2019). Upregulated TNF-α is sufficient to
decrease the A/N ratio of LHb neurons projecting to the
raphe nuclei and account for depression-like social avoid-
ance behavior (Valentinova et al., 2019).
Increased levels of IL-6 are frequently seen in depression

patients and associated psychiatric disorders (Dowlati et al.,
2010; Enache et al., 2019). IL-6 also plays a role in the
central nervous system of depression individuals (Hodes et
al., 2016). When overexpressed or directly injected into the
brain, IL-6 is sufficient to induce depression-like phenotypes
in mice (Sukoff Rizzo et al., 2012). Using antibodies to block
IL-6 signaling in the brain effectively reverses depression-
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like behaviors in these mice. Interestingly, in the presence of
exogenous IL-6, the antidepressant fluoxetine failed to elicit
its anti-depressive effects (Sukoff Rizzo et al., 2012). IL-6
promotes the depression state in the brain mainly through
three pathways below. First, it may regulate monoamine
metabolism. Systematic injection of IL-6 down-regulates
dopamine level in the nucleus accumbens. Second, it alters
synaptic transmission in the prefrontal cortex. IL-6 decreases
synaptic inhibition and excitation ratio in the prefrontal
cortex, which is blocked in the presence of soluble version of
gp130, an IL-6 antagonist (Garcia-Oscos et al., 2015). Third,
IL-6 may modulate synaptic plasticity at the transcriptional
level. For example, the classical IL-6 signaling triggers the
activation of downstream IκB kinase (IKK) signaling cas-
cade, leading to increased spine densities and synapses in the
NAc in susceptible CSDS mice (Christoffel et al., 2011;
Hodes et al., 2016).
A third pro-inflammatory cytokine implicated in depression

is IL-1β, which is involved in both monoamine metabolism
and neurogenesis. The receptor of IL-1β is necessary for the
enhanced serotonin transporter (SERT) activity in response to
LPS stimuli both in cultured cells and in mice (Zhu et al.,
2006; Zhu et al., 2010). The elevated SERT activity increased
uptake of serotonin in the synapse cleft, thus down-regulating
serotoninergic transmission, which may contribute to de-
pression. In addition, IL-1β can modulate neurogenesis to

affect the development of depression (Koo and Duman, 2008).
Cannula injection of IL-1β into the lateral ventricle of the
brain produces depressive-like behaviors in rats (Koo and
Duman, 2008). As hippocampal atrophy is associated with
depression symptoms (Belleau et al., 2019), increased IL-1β
in the hippocampus has been found to be both necessary and
sufficient to suppress hippocampal neurogenesis and induce
depressive behaviors when animals are exposed to acute and
chronic stressors (Goshen et al., 2008). Such effects may be
mediated by IL-1β-regulated transcription through NF-κB
pathway (Goshen et al., 2008).

Upregulated microglial IDO pathway

Indoleamine 2,3-dioxygenase (IDO) is a key enzyme that
catalyzes tryptophan to kynurenine in multiple cell types.
Exogenous inflammatory stimuli including LPS and vaccine,
as well as repeated stress can robustly elevate the level of
IDO in the brain (Corona et al., 2013; Kiank et al., 2010;
O’Connor et al., 2009a; O’Connor et al., 2009b). Induction
of IDO relies on microglia-derived pro-inflammatory cyto-
kines since blocking cytokine such as IFN-γ or TNF-α-
mediated signaling suppresses the up-regulation of IDO in
depression-like animals (O’Connor et al., 2009a). Upregu-
lated IDO and affected tryptophan metabolism have been
implicated in inflammation or stress-induced depressive

Figure 3 Possible mechanisms underlying microglial contribution to depression. Pro-inflammatory microglia contribute to the development of depression
by releasing pro-inflammatory cytokines and increasing the production of quinolinic acid and nitric oxide to inhibit neurogenesis and modify neuronal
transmission. Anti-inflammatory microglia may participate in neuroprotection via secreting anti-inflammatory cytokines to promote neurogenesis. Microglia
may also contribute to depression through synaptic pruning and interacting with astrocytes.
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behaviors (Parrott et al., 2016a; Parrott et al., 2016b; Ver-
donk et al., 2019).
By converting tryptophan to kynurenine, upregulated IDO

increases the kynurenine/tryptophan ratio and skews the
kynurenine metabolism towards production of quinolinic
acid, an NMDA receptor agonist (Lugo-Huitron et al., 2013).
Increased activity of IDO and levels of quinolinic acid has
been observed in rodent models of depression, especially in
those induced by overt inflammation (Parrott et al., 2016a;
Parrott et al., 2016b; Verdonk et al., 2019). Upregulated
quinolinic acid may lead to a modified NMDAR-dependent
synaptic transmission in neuronal circuits involved in the
development of depression. Interestingly, lower level of
plasma quinolinic acid has been shown to be a predictor of
better mood improvement after ketamine application in
treating resistant depression patients (Verdonk et al., 2019).
In addition, enhanced IDO consumes more tryptophan and
reduces substrates for tryptophan hydroxylase to produce
serotonin (Dantzer, 2017). By increasing kynurenine and
quinolinic acid production but decreasing serotonin synth-
esis, IDO upregulation promotes NMDA neurotransmission
but suppresses serotoninergic neurotransmission. IDO in-
hibition can abrogates LPS-induced depressive-like beha-
viors in LPS depression mice model (Dobos et al., 2012),
suggesting that IDO-mediated tryptophan metabolism plays
a pivotal in inflammation-induced depression.

Microglia-derived NO and ROS

NO is a neurotoxic metabolite produced through the NO
synthase (NOS) pathway in activated microglia, neuron and
endothelial cells (McLeod et al., 2001; Wolf et al., 2017). By
propagating the production of ROS, NO can further enhance
microglial activation and production of pro-inflammatory
cytokines (Kudlow et al., 2016). NO can also modulate
monoaminergic and glutamatergic transmission (Dhir and
Kulkarni, 2011). Therefore, NO may be implicated in de-
pression pathophysiology by affecting both pro-in-
flammatory cytokines production and neuronal
transmissions. Further studies are worth carrying out to
elucidate more detailed mechanisms on specific circuits and
evaluate the anti-depressive effects of inhibiting NO and
ROS signaling.

Other microglial mechanisms

Other than the immune-related functions, microglia also
have non-immune functions such as synaptic pruning, lim-
iting the number of neural precursor cells (NPCs), or re-
moving debris after cell death (Cunningham et al., 2013;
Neniskyte and Gross, 2017; Wang et al., 2020; Wilton et al.,
2019; Wolf et al., 2017). Some of these non-immune func-
tions may contribute to depression pathophysiology. For

example, given that synaptic plasticity and change of spine
numbers occur in multiple brain regions in depression-like
animals (Duman and Duman, 2015; Sheline et al., 2019), it is
likely that microglia-mediated synaptic elimination may be
involved in these processes. In addition, it has been shown
that microglia limit the number of NPC by phagocytosis to
keep neurogenesis in order during development (Cunning-
ham et al., 2013). In adult animals, quiescent microglia tend
to protect NPCs whereas pro-inflammatory activated mi-
croglia damage NPCs in numbers and functions (Su et al.,
2014). Considering that hippocampal neurogenesis is critical
for antidepressant response (David et al., 2009; Hill et al.,
2015), it may also be relevant to examine whether microglia
interaction with NPCs may impact antidepressant response.
Activated pro-inflammatory microglia have been shown to

induce neurotoxic reactive astrocytes (A1) (Liddelow et al.,
2017), therefore microglia may also contribute to depression
via interaction with astrocytes. Astrocytes can participate in
depression pathophysiology through decreased glutamate
up-take, impaired neurotrophic support, and disrupted glu-
cose energy metabolism (Wang et al., 2017). Recent re-
searches also point out novel mechanisms, involving either
menin-related astrocyte-mediated neuroinflammation (Leng
et al., 2018), or astroglial-Kir4.1-mediated potassium buf-
fering and regulation of neuronal burst firing in the LHb (Cui
et al., 2018). It would be interestingly to investigate whether
stress-induced pro-inflammatory microglia contribute to
depression by inducing astrocyte dysfunctions.
In addition, a molecule exclusively expressed in microglia

in the brain and has been closely associated with Alzheimer’s
disease (Ulland and Colonna, 2018), the triggering receptor
expressed on myeloid cells-2 (TREM2), has recently been
found to regulate microglia activation and the development
of depression. In LPS or CSDS induced depression models,
M1 microglia activation is accompanied by significantly
decreased TREM2 in the LHb; and region-specific knock-
down of TREM2 in the LHb induces local microglial M1
phenotypes and depressive-like behaviors (Guan et al.,
2020). Since Trem2 deficiency causes increased microglial
autophagy vesicles by inhibition of mTOR signaling (Ulland
et al., 2017), its decrease in the LHb may affect local mi-
croglial metabolism and lead to microglial misregulation.

Effects of antidepressants on microglia

Traditional antidepressants, including the selective serotonin
reuptake inhibitors (SSRIs), serotonin/norepinephrine re-
uptake inhibitors (SNRIs), tricyclic antidepressants (TCAs)
and monoamine oxidase inhibitors (MAOIs), have been
shown to have an impact on microglial activation and neu-
roinflammation (Kopschina Feltes et al., 2017).
Clinical studies on inflammatory level of antidepressant
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treated patients and animal models found a significant al-
ternation of inflammation after the treatment, as SSRI
treatment attenuates the serum levels of multiple in-
flammatory cytokines including TNF-α, IL-6 and IL-1β in
depression patients (Hannestad et al., 2011), suggesting the
anti-inflammatory properties of traditional antidepressants.
Studies on animal models of depression also found that an-
tidepressant treatment alleviates microglia-mediated neuro-
inflammation: in rat models of learned helpless, the SSRI
imipramine was found to decrease the number of stress-in-
duced microglia activation in the hippocampal hilus (Iwata et
al., 2016a). While these microglial changes may be sec-
ondary to antidepressant-induced modification of neuronal
circuits, some ex vivo studies showed more direct evidence
that SSRIs and tricyclics suppress LPS-induced production
of TNF-α in cultured BV-2 murine microglia (Hwang et al.,
2008; Tynan et al., 2012). Since the cytokine levels have
been correlated with the efficacy of the antidepressant
treatment in patients such that higher levels of IL-6 and TNF-
α are more frequently seen in SSRI-resistant patients than
SSRI-responders (Lanquillon, 2000), anti-inflammation may
be an essential aspect for SSRI’s function (O’Brien et al.,
2007).
However, several studies have reported conflicting results

that traditional antidepressants may actually increase in-
flammatory load in the brain. For instance, administration of
an SSRI citalopram into mice elevates the levels of TNF-α in
the prefrontal cortex, and the anti-inflammatory agent ibu-
profen can inhibit its antidepressant effects (Warner-Schmidt
et al., 2011). The MAOI phenelzine also enhances microglia-
mediated immunoresponses (Chung et al., 2012). Studies
need to be carried out to further clarify those conflicting
results. Brain-region specificity and the heterogeneity of
depression models and patients need to be taken into ac-
count.
In recent decades, a new antidepressant drug, ketamine,

has revolutionized the field of antidepressant research owing
to its rapid action and strong efficacy on treatment-resistant
depression (Krystal et al., 2019). Ketamine’s antidepressant
mechanisms may involve disinhibition of glutamatergic
neuronal activity in the mPFC (Homayoun and Moghaddam,
2007), elevated brain-derived neurotropic factor (BDNF)
(Autry et al., 2011) and protein synthesis (Li et al., 2010),
increased AMPAR-mediated synaptic transmission and sy-
napse formation (Moda-Sava et al., 2019), and disinhibition
of the reward center by blocking NMDAR-dependent neu-
ronal burst firing in the LHb (Cui et al., 2019; Yang et al.,
2018a). Several studies also suggest a role of ketamine in
suppressing microglia-mediated neuroinflammation. In a
mouse chronic restraint stress model, ketamine administra-
tion inhibited microglial activation in the hippocampus and
reduced the plasma levels of pro-inflammatory cytokine le-
vels (Tan et al., 2017). In addition, ketamine treatment sig-

nificantly reduced LPS-induced production of TNF-α, NO
and IL-1β in cultured microglia (Chang et al., 2009; Shiba-
kawa et al., 2005). A recent study found that partial depletion
of microglia by a CSF1R antagonist PLX3397 blocked both
the rapid (within 3 hours) and sustained (up to 2 days) an-
tidepressant effects of (R)-ketamine, an isomer of ketamine
with potent antidepressant effects, suggesting that the anti-
depressant effects of ketamine may be partly attributed to
microglia-related mechanisms (Zhang et al., 2020).
The anti-inflammatory effects of ketamine may be related

to the inhibition of extracellular signal-regulated kinase
(ERK1/2) and toll-like receptor that promote the synthesis of
pro-inflammatory cytokines (Chang et al., 2009; Mei et al.,
2011). Molecular profiling of human-derived microglial
culture shows that STAT3, a member of major immune-re-
lated STAT protein factors, is significantly enriched after the
treatment of ketamine or its metabolite hydroxynorketamine
(HNK) (Ho et al., 2019). The increased STAT3 protein is
then translocated into the nucleus to modulate downstream
transcriptions and triggers the up-regulation of BDNF,
postsynaptic density protein 95 (PSD95) and synapsin I
(SYN1) to alter neuronal plasticity. Those synaptic mod-
ifications can be hypothesized as key antidepressive me-
chanisms in hippocampus and PFC, although corresponding
ketamine-microglia interaction researches with region spe-
cificity have not been performed yet.

Concluding remarks

Microglia are key immune sensors in the brain. Accumu-
lating evidence demonstrate that microglia sense depression-
related stressors and elicit immunoresponses and neuroin-
flammation that contribute to the development of depression.
While progresses have been made in understanding the role
of microglia in depression, several concepts still remain
elusive. First, it remains critical to determine, in a specific
region or circuit, whether microglia are the primary re-
sponders to stresses, or the secondary effectors after stress-
induced neuronal changes. Second, it is essential to track
microglial dynamics at different stages in different brain
regions to acquire a solid spatiotemporal profile of micro-
glial phenotypes along the development of depression. Third,
more mechanistic understandings are needed on how stress-
induced changes in microglial cellular pathways lead to de-
velopment of depression. Although the concept of microglial
heterogeneity in different brain regions has been discussed
(Kettenmann et al., 2011; Olah et al., 2011), it has not been
incorporated in latest studies to reveal the differences of
microglial contribution to depression targeting various neu-
ronal circuits or brain regions. For this purpose, region-
specific manipulations of microglia are needed to understand
its role in depression. While viral tools have been widely
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applied to studies on neurons and astrocytes, they work
poorly on microglia, which are refractiled to recombinant
adeno-associated virus (Balcaitis et al., 2005; Rosario et al.,
2016). Some microglia-compatible viral tools such as lenti-
virus and adeno-associated virus have been recently at-
tempted and achieved some success (Guan et al., 2020; Maes
et al., 2019; Nie et al., 2018). Overall, new tools or drugs that
enable microglia-specific manipulation in a brain-region-
specific manner in vivo are in high demand. Further under-
standing of the interplay between microglia, neuroin-
flammation and depression will help to develop new
therapeutics to mitigate depression.
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