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Quantum error correction plays an important role in fault-tolerant quantum information processing. It is
usually difficult to experimentally realize quantum error correction, as it requires multiple qubits and
quantum gates with high fidelity. Here we propose a simple quantum error-correcting code for the
detected amplitude damping channel. The code requires only two qubits. We implement the encoding,
the channel, and the recovery on an optical platform, the IBM Q System, and a nuclear magnetic reso-
nance system. For all of these systems, the error correction advantage appears when the damping rate
exceeds some threshold. We compare the features of these quantum information processing systems
used and demonstrate the advantage of quantum error correction on current quantum computing

© 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

Quantum computing, as the next generation of information
technology, exploits the superposition principle and quantum
entanglement to solve some difficult problems more efficiently
than classical computing devices. It is widely believed that quan-
tum computing has potential to realize an exponential advantage
for certain problems, such as prime factor decomposition [1] and
principal component analysis [2], over current classical algorithms.
In addition, some pioneering work also connects quantum comput-
ing with other research fields, including quantum simulation, cryp-
tography, and machine learning. Since the concept of quantum
computers came into being, several quantum systems, such as lin-
ear optical systems, nuclear magnetic resonance (NMR) systems,
trapped ion systems, and superconducting circuits, were regarded
as possible platforms to implement quantum computers [3]. Over
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the past decade, hardware for quantum computers has undergone
an astonishing evolution, especially on superconducting circuits
and trapped ion systems. Very recently, Google announced that
they had achieved quantum advantage using a programmable
superconducting processor with 53 qubits [4]. In the field of
trapped ions, IonQ also made a presentation about their quantum
computer with 79 processing qubits [5]. On the other hand, IBM
and Rigetti released their online quantum platforms linking with
real superconducting quantum computers to the public. We are
now entering a new era in quantum technology, namely the Noisy
Intermediate-Scale Quantum (NISQ) [6] era, even with fault-
tolerant quantum computing still a distant dream.

Theoretically, quantum computers could outperform classical
computers dramatically. However, it still presents a major obstacle
that the information encoded on qubits is very vulnerable to the
noise induced by inevitable interaction between the qubits and
the environment. Almost all the proposed physical implementa-
tions encounter quantum errors, including decoherence, imperfect
quantum logic gates, and readout error. A direct approach to
reduce quantum errors is improving the quantum computers on
the physical level. At present, in superconducting quantum proces-
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sors, single-qubit and two-qubit gate fidelities exceed 99.9% and
99.5% [4], respectively. Benefiting from well-developed quantum
control techniques, such as composite pulses [7], refocusing pulses
[8], and the Gradient Ascent Pulse Engineering (GRAPE) algorithm
[9], fidelities of quantum gates can reach even higher accuracy on
NMR quantum computers.

While improving the quantum hardware is in the main focus of
research right now, it is impossible to completely eliminate the
errors in quantum computers. To realize a reliable quantum com-
puter, additional techniques are required. Quantum error correc-
tion (QEC) [10-12], protecting quantum information against
unwanted operations, has spawned considerable interest from
both physicists and mathematicians. Some initial theoretical
results in this field focused on quantum error-correcting codes
(QECCs) [13-17], other approaches are noiseless quantum codes
and decoherence free subspaces [18]. The discovery of QECCs
enhanced the possibility of building a quantum computer and
has further led to the concept of fault-tolerant quantum computa-
tion [17,19,20]. One important QECC is the surface code with a
fault tolerance threshold of 1x 1072 for each error source
[21,22]. Previous experimental progress for some quantum error-
correcting codes demonstrated the power of QECC for several
qubits for linear optics [23], trapped ions [24,25], NMR [26], and
superconducting circuits [27-30]. Measurement-based feedback
[30,31] and other advanced techniques have also been developed
to implement error correction, in order to build a continuous-
time and automatic quantum error correction system.

In this paper, we report on the implementation of a channel-
adapted detected amplitude quantum code using a two-qubit sys-
tem on various platforms: a quantum optical system, the IBM Q
Experience superconducting circuit, and an NMR quantum system.
The experiments on different quantum systems successfully
demonstrate the power of the error-correcting code with observ-
able improvement of the fidelity when the damping rate is larger
than a threshold 7y..

2. Model

In a typical quantum information process, like the one shown in
Fig. 1, quantum information might be subject to spontaneous
decay with detected photon emission, which is modelled by the
dectected amplitude channel. Generally, a dectected amplitude
damping channel is composed of an amplitude damping channel
(denoted by ®,p, see the Supplementary materials) and an ancilla
system indicating whether damping has ocurred. The channel can
be described by Kraus operators with an extra qubit,

Oy(p) = > (AipA]) @ [i){lnc

(1)

where Ag = <(1) Or 7)}) and A,
quantum error-correcting codes for the detected amplitude channel
has been discussed in Refs. [32-34]. The simplest code correcting a
single error of the detected amplitude channel needs only two
qubits, and hence can be implemented on a present quantum com-
puter. Based on the analysis in Ref. [32], we firstly encode the initial
state ) = |0) + B|1) onto the basis |+)|+) and |-)|—) using a
controlled-NOT (CNOT) gate followed by two Hadamard gates,

%|0) + BIT) — al-H)|+) + Bl=) ) (2)

For the two-qubit code given by Eq. (2), there are two standard
error correction protocols derived from the parity-check code [35],
denoted by Standard A and B. Additionally, using the polar decom-
position method in the Supplementary materials, we obtain Opti-
mal Recovery which will lead a higher fidelity. The optimal

(8 6/77> The construction of
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recovery operation will depend on the damping parameter 7,
meaning it is a “channel-adaptive” error correction scheme, and
its optimality was proved in Ref. [36].

For the two-qubit code given by Eq. (2), Standard Correction A/B
protocols can be derived as follows:

(1) If ApA; (or A1Ap) happens, discard the qubit on which A; hap-
pened. On the other qubit, apply X to compensate for the phase
error introduced by A; acting differently on |+) and |-).

(2) If AgAo happens, directly decode the two qubits.

(3) If A;A;happens, the quantum state |) is converted to the
state |00). To maximize the fidelity, we transform it to an
equally weighted superposition state %(\0) +|1)). There are
two different schemes to create an equally weighted superposi-
tion state which we refer to as Standard Correction A/B (see
Table S2 online), respectively.

The Optimal Recovery operators are derived in the Supplemen-
tary materials. We find a pair of recovery operations V5 and V4 that
can be implemented by Pauli gates, the Hadamard gate, a CNOT
gate and general single-qubit three-parameter rotation gates. The
two recovery operations have the form V3 = UQH and V, = HU;X,
where

1 —t-1 s-1
U, =
1 (1+t)2+(1—s)2<_S+1 _t_1>7 )
1 —s+1 t+1
U, —
2 (1+t)2+(1—s)2(_t+1 _S+1>7 @

where the parameters s and t are given by

o V2 V2(1-7)
V141 =77

V1+(1 =77
The general setup of the circuit for both Standard Correction A/B
and Optimal Recovery is shown in Fig. 1. Information on the speci-

fic circuits is given in Table S1 (online) and Fig. 3.

and t=

()

3. Scheme and results

Photons as a kind of “flying qubits” are widely used for quan-
tum information processing and simulation. In a linear optics sys-
tem, single qubit operations can be implemented with high fidelity
as photons are essentially decoherence-free and are not affected by
the environment. However, two-qubit gates, like the CNOT gate,
become a challenge as it is difficult to let photons interact. We
are using optical qubits encoded in the polarization degree of free-
dom to demonstrate quantum error correction.

In 2018, IBM Q released a 14-qubit transmon superconducting
quantum processor (Fig. 2b), IBM Q 16 Melbourne, which is acces-
sible via Qiskit, an open-source framework for quantum computing
on IBM Q Experience. The average fidelity of single qubit opera-
tions exceeds 99.0%, and the fidelity of the CNOT operation is
nearly 82.7% to 95.2%. The pulse durations are 100 and 348 ns
for single qubit rotation gates and CNOT gates based on the
cross-resonance interaction, respectively. In addition, two-qubit
gates are only permitted between neighboring qubits that are con-
nected by a superconducting bus resonator (see the inset in
Fig. 2b). More information on the qubits and quantum gates on
IBM Q 16 Melbourne, such as the dephasing times and gate fideli-
ties, can be found on the IBM Q site https://quantumexperience.
ng.bluemix.net/qx/devices.

NMR quantum computing is one of the first proposed schemes
for building a quantum computer with spin-1/2 nuclei, such as 'H
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Fig. 1. (Color online) The model of the quantum communication system with an amplitude damping channel. The encoder maps an arbitrary initial single-qubit state
p = |¥)(y] to the code space using two qubits. Then a detected amplitude damping channel acts on each of the two qubits. Finally we apply the recovery circuit (including
decoding), which discards the second qubit, obtaining a single-qubit output state pr that ideally has a large overlap with the input state |y).

L. Encoder state II. Channel II1. Recovery operation
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Fig. 2. (Color online) Illustration of the different quantum systems. (a) On the optical platform, we utilize a 390 nm femto-second light to pump a sandwich beamlike phase-
matching p-barium-borate (BBO) crystal to generate pairs of polarization entangled photon as qubits. (b) IBM Q 16 Melbourne, consisting of 14 superconducting qubits
connected via microwave resonators, together with the coupling structure (the photo of quantum processor comes from “IBM Q 16 Melbourne backend specification V1”.
Retrieved from https://quantum-computing.ibm.com). (c) The four qubits on the Crotonic acid are given by the spin-1/2 nuclear spins of '*C. Each of the four spins couples to
the other three.

or 3C. With a time-varying radio frequency (RF) field and the free iment, we used a Crotonic acid specimen. The four qubits on the
evolution between the different spins, arbitrary unitary transforms Crotonic acid are represented by the spin-1/2 *C nuclear spins,
can be implemented in the NMR quantum computer. In our exper- labeled as C; to C4 as shown in Fig. 2c. The decoherence times of
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the Crotonic acid are T; ~ 1500 ms and T5 ~ 550 ms. All NMR
experiments were carried out on a Bruker DRX 600 MHZ spectrom-
eter at room temperature.

For the three quantum systems, quantum optical platform, IBM
Q superconducting circuit and NMR system (see the Supplemen-
tary materials), we have implemented different variants of quan-
tum error-correction for the detected amplitude damping
channel. In this model of decoherence, an excited state decays to
the ground state with some probability. Monitoring the system,
one obtains the additional classical information whether the sys-
tem has decayed or not. Owing to the features of the different sys-
tems, we first adapt our scheme to the particular device and
decompose the quantum circuits into basic gates native for each
system. In Fig. 3, we give the quantum circuits that we employed
in the realistic experimental process.

As shown in Fig. 2a, a 390 nm femto-second light (frequency-
doubled from a 780 nm mode-lock Ti:sapphire pulsed laser with
a pulse width of 150 fs and repetition rate 76 MHz) pumps a sand-
wich beamlike phase-matching p-barium-borate (BBO) crystal to
generate pairs of polarization entangled photon %(|HV) + |VH))

in the spontaneous parametric down-conversion (SPDC) process.
Based on the entangled photons source, whose fidelity is
0.9917 £ 0.006, we can prepare the desired encoded state for the
six different states (see the Supplementary materials) by using
polarization beam splitters (PBS), half wave plates (HWP), and
quarter wave plates (QWP). The detailed configurations are given
in Table S2 (online).

As illustrated in the middle part of Fig. 2a, for the optical plat-
form we use an interferometer to implement the detected ampli-
tude damping channel [37]. Here two beams displacers are used
to construct an interferometer [38,39]. For the operator Ay, the
amount of damping 7y is adjusted by rotating HWP1 placed
between two BDs by the angle 0, with sin® 20 = 1 — }. And, regard-

ing A;, the rotated angle of HWP1 and y has a relation y = sin® 20.

(a)
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The two interferometers together (middle part of Fig. 2a) simulate
the four error pattern: ApAg, AoA1, A1Ao, and A,A;. In the error cor-
rection part, we use the method of Refs. [40-42] to implement an
all-optical CNOT gate, which is constructed by partially polarizing
beam splitters (PPBS) and HWPs. To quantify the quality of the
CNOT gate, we perform quantum process tomography showing
that the fidelity between the implemented and the ideal gate is
about 88.5% [43]. The errors are mainly caused by the mode mis-
match of the Hong-Ou-Mandel (HOM) interferometer. In our
experiment, the error patterns and the corresponding recovery
operations are given in Table S1 (online), where the gates H and
X can be easily realized by rotating the HWP by 22.5° and 45°
respectively. The detailed information about the damping channel,
the CNOT gate, and the case without error correction are given in
the Supplementary materials.

On IBM Q and the NMR system we use two ancilla qubits to
implement the two-qubit detected amplitude channel. The qubits
of IBM Q 16 Melbourne and the Crotonic acid (see Fig. 2b and c)
meet the required coupling structure (other quantum chips from
IBM Q do not match this connectivity map). To be more concrete,
Q5,Q4,Q5,Q9 on IBM Q 16 Melbourne are selected because the
average error rates of CNOTs between those qubits are lower than
others (Q5,Qg are used for the encode qubits and Qg,Qq are for
ancillas). On the NMR system, we select C,,Cs for the encode
qubits and C;,C,4 for ancillas. Generally, there are three parts in
the quantum circuit, encoder, amplitude channel, and recovery cir-
cuit (containing the decoder) in the IBM Q and the NMR experi-
ments, as shown in Fig. 3b. First, we prepare the initial state |i)
by a single qubit rotation of Q5. A CNOT gate and two Hadamard
gates compose the encoder. With controlled-y-rotation gates
Ry(0) acting on the ancillas and CNOT gates acting on the encoded
qubits, we can simulate the two-qubit detected amplitude channel
[12]. The relation between the damping ratio y and the rotation

angle 6 is y = sin®(0/2). Measuring the ancilla qubits reveals which
type of error occurred. If the result is |0),A; has occurred on the

al++) + Bl--)

a—5—2

(b)

|0) ®
) Y B3—P
0y —b S

|0) R ®

Fig. 3. (Color online) Quantum circuits for our experiments. (a) The optical platform. After generating pairs of entangled photon, we prepare the desired encoded state
of + +) + B| — —) with polarization beam splitters and wave plates, see Table S2 (online). The detected amplitude damping channel is depicted by &. In the error correction
part, we implement Standard Correction A (see the Supplemental materials) using four single qubit rotations and a CNOT based on a HOM interferometer. For the
reconstruction of the decoded state, we use post-selection on the other qubits. (b) The circuit for IBM Q and the NMR system. Artificial amplitude damping channels are
implemented by a controlled-y-rotation from the encoded qubits to the ancillas and the subsequent CNOT gates. Measuring the ancilla qubits at the end reveals which error
has occurred. The single-qubit gates V4, V,, V3, and V, in the recovery circuit depend on the particular error. To simplify the circuit, we run experiments with all settings and
use post-selection on the corresponding measurement results of the ancillas. At the end, we use single-qubit state tomography on the second qubit to reconstruct the density

matrix.
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corrsponding encoded qubit, while A; has occurred when the result
is |1). Recovery circuits optimized for IBM Q 16 Melbourne and the
NMR system are shown in Fig. 3b. To extract the quantum density
matrix of the decoded qubit, we use quantum state tomography
(QST) and post selection (see the Supplementary materials), mea-
suring the output of the same quantum circuit in different bases.
For the IBM Q experiments, we construct the circuit with three-
parameter single qubit rotation gates Us(0, 4, ¢) and CNOT gates.
For the NMR experiments, we generate the pulse sequences of
the encoder, two-qubit amplitude damping channel, and recovery
circuit using an optimized shape pulse sequence with a total time
of 61 ms.

The main experimental results for the three systems are shown
in Fig. 4. The fidelity of the effective communication channel is
plotted as a function of the damping parameter 7. For the three dif-
ferent systems, we show the effective regions for which Optimal
Recovery respectively (Standard Correction A for the optical plat-
form) yields a higher fidelity than using no error correction. With-
out error correction, the optical platform shows a great advantage
in comparison to the other two systems, with the performance of
IBM Q being the lowest. However, with error correction, the situa-
tion changes dramatically. For the optical platform, the state fide-
lity drops already a lot at y = 0, while adding error-correcting only
slightly reduces the fidelity at y = O for IBM Q. Exhibiting the lar-
gest effective region (lighter blue), our error correction scheme
exhibits a good performance on the NMR system, and the maximal
improvement at y =~ 0.6 reaches approximately 0.2. For IBM Q, the
improvement (red region) is smaller, but it is still given for a large
range of damping parameters 7. For the optical platform, error cor-
rection improves the overall fidelity only a little for y > 0.83.

On the optical platform (see Fig. S4 online) we perform experi-
ments with Standard Correction A and without correction. At the

0.95

0.85)

o
i
o

Channel fidelity

0.55)

Effective region on NMR

. Effective region on IBM Q N

Effective region on optical platform

0 0.2 04 0.6
Damping ratio (y)

A 'BM Q-without correction

0.8 1.

OP-without correction A NMR-without correction
@ BM Q-optimal recovery (@ OP-standard correction @ NMR-optimal correction
Fig. 4. (Color online) Comparison of the error correction capacity on the different
systems. The red, green, and blue regions characterize the effective region enclosed
by the fidelity curves for IBM Q, the optical platform (OP), and the NMR system,
respectively. The solid and dashed lines are polynomial fits to our experimental
data. The solid lines represent Optimal Recovery, and the dashed lines correspond
to the case “without corrections”. For IBM Q and the optical platform, when the
damping ratio y is small, Optimal Recovery (Standard Correction A) performs worse
initially because of the limited fidelity of the additional encoding operations. When
the damping ratio ) increases, Optimal Recovery reveals its capacity gradually.
Average error bars are about 1.1% for IBM Q [44], 0.4% and 0.7% for the optical
platform and NMR system (see Figs. S4a, S5a, and S6a online).
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mercy of the bad fidelity of implementing the CNOT by HOM inter-
ference, we find that at lower damping probabilities
(y = 0.17 — 0.83), the fidelity for the state without correction is lar-
ger than with standard correction. However, if the damping prob-
ability y is larger than 0.83, standard error correction will be better.
This demonstrates some limited improvement using quantum
error correction.

Fig. S5 (online) shows the result for IBM Q averaging 4096 runs
for 16 sample points. For y € [0.0,0.36), no correction yields a
higher fidelity than Optimal Recovery since “without correction”
involves only two qubits. Generally, it is ubiquitous to QEC that
the encoded states get worse initially as the encoding operations
reduce the fidelity. The blue star plotted at y = 0.36 in Fig. S5a (on-
line) indicates the intersection when the overall fidelity of “Opti-
mal Recovery” equals “without correction”. When the damping
parameter y increases, both Standard Correction A and Standard
Correction B show the capacity of error correction, but neither out-
performs Optimal Recovery.

The results for the NMR system are show in Fig. S6 (online).
Optimal Recovery, Standard Correction A, as well as Standard Cor-
rection B show substantial improvements in comparison to “with-
out correction”, indicating the power of quantum error correction.
Furthermore, the state fidelity curves for Standard Correction A
and Standard Correction B exhibit faster decay than the curve for
Optimal Recovery, revealing that Optimal Recovery is indeed the
best error correction scheme for the detected amplitude damping
channel, which matches the theoretical results.

4. Discussion and conclusion

The experiments mainly demonstrate the potential to realize
quantum error correction on a quantum computer in the NISQ
era by implementing an optimal error-correcting code for detected
amplitude damping on IBM Q, an optical platform, and an NMR
system. All experiments provide evidence that the advantage of
quantum error correction can even be revealed on a present quan-
tum computer, with only a few qubits and faulty quantum gates.
For all three systems, Optimal Recovery shows eventually an
improvement in comparison to “without correction”. On the other
hand, for small damping parameters 7, the correction scheme does
not come into effect on the optical platform and on IBM Q.

Our experiments also reveal the underlying relation between
the ability of quantum control and the performance of quantum
error correction. In a typical quantum information process, quan-
tum errors mainly stem from imprecise readout, decoherence,
and faulty CNOT gates.

Firstly, we consider the influence of imprecise readout. The
readout error for the optical platform and the NMR system can
be neglected because for these systems, the precision of readout
is close to 99.9%. On the IBM Q platform, however, the average
error rate of readout is nearly 5.0%, see Table S3 (online). Appar-
ently, the readout error only contributes a fraction of the entire
infidelity in our experiments.

The qubit quality, especially the coherence time, is also an
important factor for the performance of the quantum error-
correcting code. A rough estimate for the state V%(|O> + [1)) shows

that the decoherence error contribution from T, for IBM Q and the
NMR system are 3.5% and 9.9%, respectively (see the Supplemen-
tary materials). Therefore, the decoherence is not the main source
of the infidelity in IBM Q experiments, but may cause the dominant
error in the NMR system.

For the optical system, substantial infidelity is contributed by
the CNOT based on HOM interference. When adding the CNOT to
the recovery circuit, the total shot numbers of photons will be sup-
pressed by the PPBS crystal. We denote the phenomenon by shot
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loss. If we use ideal probabilities that the errors happen instead of
the real probabilities in the experiments to reconstruct the effec-
tive density matrix, the correcting effect will enhance, see Fig. S6
(online). A similar effect occurs for IBM Q because of cross-
resonance CNOT gates. This phenomenon stems from ZZ-
crosstalk in the superconducting qubit chips [45]. To reconstruct
the density matrix with ideal probabilties, even Standard Correc-
tion A shows the capcity to improve the channel fidelity in
Fig. S6 (online). However, in the NMR experiments, we use the
GRAPE algorithm to generate the total pulse sequence with a pre-
cision of 99.9%, which gives a great improvement to CNOTs and
other operations.

In conclusion, our experiments demonstrate that the quality of
CNOT mainly influences the performance of quantum error correc-
tion. CNOT operations, at the core of both encoder and decoder,
play a unique role to generate entanglement in both quantum error
correction and quantum computing. Our results motivate further
investigations to improve the precision of CNOT operations and
indicate the route towards viable quantum error correction in
the NISQ era.
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