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Abstract Since the advent of hyperspectral remote sensing in the 1980s, it has made important achieve-

ments in aerospace and aviation field and been applied in many fields. Conventional hyperspectral imaging

spectrometer extends the number of spectral bands to dozens or hundreds, and provides spatial distribution

of the reflected solar radiation from the scene of observation at the same time. Nowadays, with the fast

development of new technology in the fields of information and photoelectricity sensing, and the popularity

of unmanned aerial vehicle, hyperspectral remote sensing imaging presents the new trends of multimodality

and acquires integration information while keeping high or very-high spectral resolution, especially, high

temporal even real time sensing and stereo sensing. Therefore, three important modes of hyperspectral

imaging come into existence: (1) multitemporal hyperspectral imaging, which refers to the observation of

same region at different dates; (2) hyperspectral video imaging, which captures full frame spectral images

in real-time; (3) hyperspectral stereo imaging, which obtains the full dimension information (including 2D

image, elevation, and spectra) of observed scene. Along this perspective, firstly, the current researches on

hyperspectral remote sensing and image processing are briefly reviewed, and then, comprehensive descrip-

tions of the aforementioned three main hyperspectral imaging modes are carried out from the following four

aspects: fundamental principle of new mode of hyperspectral imaging, corresponding scientific data acquisi-

tion, data processing and application, and potential challenges in data representation, feature learning and

interpretation. Through the analysis of development trend of hyperspectral imaging and current research

situation, we hope to provide a direction for future research on multimodal hyperspectral remote sensing.

Keywords hyperspectral image processing, multitemporal hyperspectral imaging, hyperspectral video

imaging, hyperspectral stereo imaging, multimodal hyperspectral remote sensing imaging
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1 Introduction

In 1980s, the Jet Propulsion Laboratory (JPL) first developed Aerial Imaging Spectrometer named AIS-1,
then developed AIS-2 and Airborne Visible Infrared Imaging Spectrometer (AVIRIS) with 224 spectral
bands range in 0.4–2.5 µm and 9.6 nm spectral resolution [1]. Until now, hyperspectral remote sensing
has made important achievements in aerospace and aviation field and applied in many fields such as sur-
vey and resource monitoring [2,3], crop yield estimation [4,5], environmental monitoring [6,7], ecological
protection [8, 9], military defense and security [10, 11]. Simply speaking, as shown in Figure 1, hyper-
spectral remote sensing is to use hyperspectral imaging spectrometer to collect electromagnetic waves,
which are separated from each other according to different frequencies by the dispersion prism, and then
their energy is recorded in frequency order at some spatial position. Conventional hyperspectral imag-
ing spectrometer can image over some continuous spectral range, and collect data combining image and
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Figure 1 (Color online) Basic principle of hyperspectral remote sensing imaging.

spectrum with higher spectral resolution. The wavelength range of hyperspectral imaging spectrometer
is constantly extending, from visible and near infrared, to infrared/thermal infrared, ultraviolet and ter-
ahertz spectrum for hyperspectral imaging, which will constitute the full-spectrum imaging pattern with
high spectral resolution [12,13]. For example, thermal infrared spectral camera was developed, which can
image in infrared bands with high spectral resolution to detect chemical gas [14, 15].

As the continuous development of hyperspectral remote sensing, a special issue of IEEE Signal Pro-
cessing Magazine comprehensively and deeply introduced the hyperspectral remote sensing imaging sig-
nal processing theory in 2002 [16–20], including corresponding object classification [20], target detec-
tion [17, 18] and spectral unmixing [19]. This special issue established the theoretical foundation of
researches on hyperspectral remote sensing image processing. This stage mainly involved the application
of traditional signal detection theory and pattern recognition in hyperspectral image (HSI) processing.
In 2014, another special issue of IEEE Signal Processing Magazine, titled Signal and Image Processing
in Hyperspectral Remote Sensing, reviewed the important research achievements in hyperspectral remote
sensing processing field, and pointed out main problems such as nonlinearity, heterogeneity, and sparsity
(high dimensionality of hyperspectral data) in the process of hyperspectral signal and image processing.
Current researches in aspects of conventional HSI classification [21] and target detection [22, 23] mainly
involved signal representation-based and machine learning methods. Representation-based methods [24]
basically include compressed sensing (CS) [25, 26], sparse representation (SR) [27, 28], collaborative rep-
resentation (CR) [29,30] and their extension. For example, joint SR [31–33] and joint CR [34,35] consider
the spatial information at neighbouring locations, kernel SR [36, 37] and kernel CR [38, 39] project the
data into a high-dimensional kernel-induced feature space by an implicit nonlinear mapping function.
As for machine learning methods, a representative kind is kernel-based methods and support vector ma-
chines [40, 41]. Especially, multiple kernel learning (MKL) has attracted lots of attention of researchers,
which aims at combining a set of basis kernels into a composite kernel [42,43]. A series of MKL methods,
such as subspace MKL [44–47], sparse MKL [48–51], ensemble MKL [52, 53] and nonlinear MKL [54],
have been developed for HSI and other sensor data classification. Manifold learning for HSI analysis [55]
has also demonstrated potential value for applications including feature extraction [56, 57], segmenta-
tion [58], classification [59, 60], anomaly detection [61, 62], and spectral unmixing [63, 64]. Besides, the
successful application of deep learning method in HSI classification [65] in 2014 led the wave of deep
learning application in HSI interpretation. Since then, a large number of deep learning-based models
have emerged [66–70]. Especially, the advances based on mathematical morphology, Markov random
fields, segmentation, sparse representation and deep learning in spatial-spectral HSI classification are
summarized comprehensively in [70]. More recently, a Special Focus on Deep Learning in Remote Sens-
ing Image Processing of SCIENCE CHINA Information Sciences has been organized, concentrating on
the application of deep learning methods to solve the problems in remote sensing image processing [71–78].

The above Signal and Image Processing in Hyperspectral Remote Sensing issue also pointed out new
 https://engine.scichina.com/doi/10.1007/s11432-020-3084-1
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directions and new challenges in signal processing of HSIs such as object-oriented classification, change
detection of multitemporal, multi-angular HSIs with high spatial resolution [21, 55]. Right after that, a
special issue concerning on Multimodal Data Fusion in multidisciplinary field was organized in Proceed-
ings of the IEEE in 2015, which emphasized the urgency and necessity of developing multimodal data
fusion [79]. Two papers in this issue were relevant to remote sensing image processing [80, 81], which
guided the cutting-edge directions and technologies of multimodal data processing in remote sensing im-
age processing. They focused on two themes, i.e., multimodal remote sensing data fusion and multimodal
remote sensing image classification. Multimodal remote sensing image processing was described as a
multi-source remote sensing data fusion problem under acquiring conditions with multi-sensor, multitem-
poral, multi-angular, and multi-resolution. These two papers summarized the important achievements
of data fusion, classification and unmixing with multimodal remote sensing data, and pointed out the
potential challenges in researches. At the same time, they elaborated the application potentials of new
technologies, for example, the aforementioned MKL for feature level fusion [45, 51, 82–86], sparse dictio-
nary learning [87–91], deep learning for multimodal remote sensing image classification [92–95], domain
adaptation for alignment of data representations [96, 97]. More recently, some researches have begun to
introduce the social media data into the remote sensing [98–101]. Those researches could be treated as
general multimodal remote sensing, which focus on how to integrate the social media data to improve
interpretation ability of remote sensing data.

After decades of observation platform development, hyperspectral remote sensing is extended from air-
borne platform into spaceborne platform with large scale of observation, and even unmanned aerial vehicle
(UAV) platform with more mobility and flexibility. The multiple model or conditions of hyperspectral
data acquisition thus make hyperspectral remote sensing possess the ability to sense with multitemporal,
multi-platform, multi-angle and multi-resolution. With the fast progress of new technologies in the fields
of information and photoelectricity sensing, at the view of imaging pattern, hyperspectral remote sens-
ing imaging presents new trends of multimodality and acquiring integration information while keeping
high or very-high spectral resolution, especially, high temporal even real time sensing and stereo sensing.
New ways of hyperspectral imaging generate new types of hyperspectral remote sensing data such as
hyperspectral video, stereo hyperspectral point cloud. In other words, multimodal hyperspectral remote
sensing is coming. Since hyperspectral remote sensing is growing up from traditional single modality
of spectral imaging to new multimodal ways, the spatial-spectral information collected by single modal
hyperspectral imaging will be extended in both of time (temporal) and 3-dimensional (3D) spatial dimen-
sions. Such a new kind of multimodal hyperspectral data will be highly complex nonlinear, heterogeneous
and sparsity in data representation, feature learning, and interpretation decision.

(1) Nonlinearity. Nonlinearity is a main problem in the conventional hyperspectral remote sensing.
The correlation between different bands of HSI is generally nonlinear because of complex classes and
spatial distribution of landcovers. This phenomenon will be more serious in the multimodal HSI as its
dimension is not only spectra, but also elevation and time. Full dimensions have to be considered while
correlation of different bands of multimodal HSI is analysing. That means the correlation measure will
be more complex than one in the conventional hyperspectral remote sensing.

(2) Heterogeneity. The full dimension of image, spectrum, elevation and time variables is involved in
the multimodal HSI either as whole or as a part. Physical properties and statistical distribution of those
dimensions are greatly different. How to full exploit the information complementarity and well handle
the heterogeneity will be important.

(3) Sparsity. Past researches had revealed that strong sparsity exists in both spatial and spectral
dimension of the conventional HSI. In the multimodal HSI, the more complex nonlinearity and stronger
heterogeneity will result in bigger data sparsity. Furthermore, joint sparse structure become high-order
and more difficult to be modelled and captured.

In this paper, we try to set forth a new perspective of multimodal hyperspectral remote sensing from
the point of imaging detection, and give an overview of relevant data processing as comprehensive as
possible. The multimodal discussed in this paper mainly focuses on hyperspectral imaging. In view of
the limitations of traditional hyperspectral multi-band imaging, the core of multi-modal hyperspectral
imaging is the extension of traditional hyperspectral imaging in temporal and spatial dimensions, i.e., dy-
namic hyperspectral imaging and hyperspectral stereo imaging. Dynamic hyperspectral imaging includes
multitemporal hyperspectral imaging and hyperspectral video imaging. Different from traditional hyper-
spectral imaging which can only obtain the static information of the scene, the dynamic hyperspectral
imaging aims at obtaining the time-varying information of the observed objects. As for hyperspectral
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Figure 2 (Color online) Multitemporal hyperspectral imaging.

stereo imaging, it is different from the traditional hyperspectral imaging in the process of which the
elevation information degenerates, it can obtain 3D spatial information and spectral information simul-
taneously. Thus, the observed real object in remote sensing scene can be described by full dimension of
2D image, elevation, and spectra. Starting with a brief review of traditional HSI processing (Section 1),
new types of hyperspectral remote sensing imaging, including multitemporal hyperspectral imaging (Sec-
tion 2), hyperspectral video imaging (Section 3) and hyperspectral stereo imaging (Section 4), are pre-
sented from the following four aspects one by one: fundamental principle, data acquisition, processing
and applications and major issues in data processing. Finally, conclusion is drawn in Section 5.

The main contribution of this paper mainly has three aspects: (1) The meaning of each new type
of hyperspectral remote sensing imaging has been defined. (2) Typical models dealing with multimodal
hyperspectral remote sensing data have been reviewed detailedly. (3) The major issues in multimodal
hyperspectral remote sensing data processing have been summarized, which lead the way of follow-up
research.

2 Multitemporal hyperspectral imaging

2.1 Fundamental principle

Multitemporal hyperspectral imaging refers to the observation of same region at different dates. It is
designed to utilize the different hyperspectral information obtained at different times for remote sensing
applications. Temporal variable is an important dimension of remote sensing information acquisition.
Temporal-varying spectrum and spatial distribution are of great significance to study change detection of
landcovers and explore its temporal and spatial change pattern. The existing multitemporal remote sens-
ing imaging mostly refers to multispectral images (MSIs) with high spatial resolution, but the spectral
resolution is very low. Compared with the existing multitemporal multispectral remote sensing, multi-
temporal hyperspectral imaging with better temporal resolution and higher spectral resolution will play
more and more important role in precise classification and change detection. Multitemporal hyperspectral
images (MultiTemp-HSIs) can be seen as the continuous extension of hyperspectral data in the temporal
dimension. It means that the description of the data from the image and spectrum dimension (x-image,
s-spectrum) in the original hyperspectral space is extended to higher dimension (x-image, s-spectrum,
t-temporal space). Figure 2 shows the principle of multitemporal hyperspectral imaging.

2.2 Data acquisition

Current ways of multitemporal hyperspectral data acquisition mainly include two kinds: spaceborne and
airborne multitemporal hyperspectral acquisition. Spaceborne MultiTemp-HSIs are mainly collected by
the existing hyperspectral sensors boarded on satellites or the space station observing same area at dif-
ferent time. Spaceborne hyperspectral sensors boarded on satellites mainly conclude EO-1 Hyperion of
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Figure 3 (Color online) Spectral drift in bi-temporal HSIs obtained by the same sensor. (a) The spectrum of the same class in

bi-temporal HSIs; (b) scatter diagram of bi-temporal HSIs.

America, PROBA CHRIS of Europe, ARIES-1 of Australia, GF-5, Zhuhai-1 satellite constellation, and
Tiangong-1 (TG-1) and Tiangong-2 (TG-2) hyperspectral sensors boarded on space station of China.
Airborne MultiTemp-HSIs are acquired by multiple repetitive flights with manned fighter or unmanned
aerial vehicle (UAV) equipped with hyperspectral sensors (such as AVIRIS). The spaceborne multitem-
poral hyperspectral imaging has many advantages such as wide range of observation, more data sources,
stable imaging conditions, and mature processing methods.

2.3 Processing and applications

There are three major applications in MultiTemp-HSI processing: multitemporal classification, multitem-
poral change detection and multitemporal spectral unmixing. Multitemporal classification has attracted
extensive attention of researchers, while there are relatively few studies on multitemporal change detection
and multitemporal spectral unmixing.

2.3.1 Multitemporal classification

Multitemporal classification is defined to train a classifier with one (or several) remote sensing data set and
perform classification task on another data set collected at different dates. Main scientific problems with
the MultiTemp-HSI classification can be mostly categorized into spectral drift and spectral mismatch.

Spectral drift means that spectral variation exists in the data collected by the same sensor at different
date. Most researches focused on the case that the MultiTemp-HSIs are collected by the same sensor.
Under this condition, main problem confronted with multitemporal classification is spectral drift (also
called spectral variation) of the HSIs collected at different dates, caused by different observation conditions
such as illumination, atmosphere, and natural evolution of the scene. Figure 3 shows the spectral drift in
bi-temporal HSIs obtained by Hyperion on the NASA EO-1 satellite over Brookings in March and May
of 2011. Figure 3(a) shows the spectrum of the same class in bi-temporal HSIs. Figure 3(b) exhibits
the scatter diagram of bi-temporal HSIs, where different shapes mean bi-temporal HSIs obtained by the
same sensor over the same geographical area, and different colors denote different land cover types. There
exists an obvious drift in spectral signatures of light blue category from bi-temporal HSIs in the black
boxes, so does the spectral signatures of yellow category and green category in the red boxes.

Many methods have been developed in the past decades to address the aforementioned problem. Previ-
ous studies such as linear regression [102,103], nonlinear image normalization [104], nonlinear histogram
shape matching [105] and multidimensional histogram matching [106] have been done, which focus on
making the statistical properties of image pair similar to each other. Some of multitemporal classification
adopted strategies such as combining evidence theory [107, 108], texture information [109] and multi-
classifier decision fusion system [110]. In some researches, multitemporal classification was achieved by
knowledge transfer [111]. For example, in [112], a feature-level domain adaptation technique based on
dictionary learning was proposed, which maps the spectral features of the source and target HSIs into a
common low-dimensional embedded space through multi-task dictionary learning, so as to align the spec-
tral feature distribution between the bi-temporal hyperspectral data. Laplacian support vector machines
(LapSVM) method was proposed in [113] for solving spectral drift, in which the classifier in LapSVM was
adapted to the new data set via iterative application of the classifier using the clustering condition on
the data manifold. In addition, in order to realize the classification of MultiTemp-HSIs, Yang and Craw-
ford [114] used spatial information of HSIs to regularize the solutions of manifold alignment (MA) and
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Figure 4 (Color online) Spectral mismatch in bi-temporal HSIs obtained by different sensors. (a) Spectrums of the same category

obtained by different sensors; (b) scatter diagram of bi-temporal HSIs obtained by different sensors.

obtained more stable and portable feature representation. They further proposed a multi-scale method
based on clustering pairs instead of marking instances, and considered the retention of local and global
geometric features [115]. Subspace alignment (SA), such as principle component analysis (PCA) and ker-
nel PCA [116], canonical correlation analysis (CCA) [84] and semi-supervised kernel CCA [117], transfer
component analysis (TCA) [97, 118], geodesic flow kernel (GFK) [119], is also a typical kind of method
used for overcoming spectral drift. It maps data into common latent space or into different subspaces and
then builds connections between them. By extending the subspace method to tensor space, the tensor
alignment method [120–122] has also been successfully applied to multitemporal remote sensing image
classification to solve the spectral drift problem. Besides, there are also methods such as active learn-
ing [123], graph-matching [124,125], hidden markov random fields [126], 3D spectral modeling [127,128],
pre-processing or compensating for differences in lighting conditions, transforming spectral signatures
and atmospheric effect [107, 129]. Recent years, deep learning methods become a research hotspot and
has been successfully applied in multitemporal classification [130–132].

Spectral mismatch means that spectral variation exists in the data collected by different sensors.
In practice, MultiTemp-HSIs can also be collected by different hyperspectral imaging sensors. Under
this circumstance, except the spectral drift, different parameters of sensors will cause a new problem,
i.e., spectral mismatch. Spectral mismatch is mainly embodied in the difference of spectrum range,
spectral resolution, central wavelength and number of spectral bands. Figure 4 demonstrates the spectral
mismatch in bi-temporal HSIs obtained by different sensors. The bi-temporal HSIs were collected by
different hyperspectral imaging sensors over the University of Houston, and were released at IEEE GRSS
Data Fusion Contest (DFC) in 2013 and 2018. As exhibited in Figure 4(a), the acquired spectrums of the
same category from the bi-temporal HSIs are inconsistent. Although DFC-2013 can be down sampled to
obtain the same spectral resolution and band number as DFC-2018, central wavelengths of the processed
DFC-2013 and original DFC-2018 are still discrepant, so that the distribution of spectral features of the
bi-temporal HSIs is significantly different, which can be seen in Figure 4(b), especially for the categories
in the black boxes and in the red boxes, respectively. In this case, multitemporal classification based on
only spectral features can be relatively difficult.

So far, by our survey, there are few studies focusing on spectral mismatch. Semi-supervised manifold
alignment [96, 133] and its kernel extension [134] ensure the proximity of the intrinsic structure of man-
ifolds in the alignment space by using labeled samples in each temporal, meanwhile, unlabeled samples
are also introduced into the preserving of manifold structure by using the graph method, realizing the
collaborative classification of heterogeneous multimodal remote sensing data. In [135], a supervised clas-
sification method is proposed based on sparse subspace correlation analysis. This approach is not limited
by data dimensions or data acquisition sensors, and can learn the sparse representation of heterogeneous
data in source and target domains in potential common subspace, so as to realize the transfer learning
between hyperspectral remote sensing images. In [136], a heterogeneous domain adaptation method was
proposed which utilizes the limited samples of hyperspectral data from both source domain and tar-
get domain. This method adopts the method of cross-domain collaborative learning, which is realized
by cluster canonical correlation analysis and random walker algorithm. Aiming at achieving accurate
land cover classification over a large coverage based on the large coverage MSI and locally overlapped
HSI, a cross-modality feature learning framework is proposed which learns the common subspace from
hyperspectral-multispectral correspondences [137].
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Figure 5 (Color online) General flowchart of multitemporal classification.

According to the above review of current research, general processing steps of multitemporal classifi-
cation can be summarized to two main stages as shown in Figure 5, the first step can be boiled down
to spectral alignment or feature learning to make the original features form source and target domain lie
in the same feature space, and the second step is classifier design to discriminate the classes accurately.
However, the problem is that, most of these studies do not take the spatial information into consid-
eration. In [138], a cross-temporal spatial-spectral classification method of HSIs obtained by different
sensors is proposed, namely spatial-spectral multiple geodesic flow kernel learning (S2-MGFKL). Since
the bi-temporal HSIs are captured over the same geographical area, the authors conclude that spatial
features must be useful in the transfer process. Based on the general framework of multitemporal classifi-
cation, spatial feature extraction and alignment steps are added in the framework of S2-MGFKL method.
The whole process can be simply understood as firstly constructing geodesic flows (GFs) with each pair
of the corresponding features from the source and target domain, and then designing different kernel
scale selection schemes respectively for the spectral and spatial features to generate Gaussian MGFKs.
Specifically, each pair of spatial or original spectral features from both domains is used to construct the
GFs, and then, mapping matrices can be obtained which projects the spatial and spectral feature pairs
of MultiTemp-HSIs to the domain-invariant feature spaces [139]. For the original spectral feature pair,
multiple spectral Gaussian GFKs can be built by tuning the kernel scales. For each spatial feature pair,
a spatial GF and a corresponding mapping matrix can be obtained. Based on them, the spatial Gaussian
MGFKs can be constructed whose kernel scales are the same. Note that, the spatial features can be
extracted by the filters of various degrees, and thus one does not need to tune the kernel scales of spatial
MGFKs. All the S2-MGFKs can be combined by any MKL methods and input into SVM to complete
the domain transfer classification task.

Experiments are conducted on two datasets. Brookings dataset contains three HSIs collected by
Hyperion over Brookings, USA. Houston dataset contains two HSIs acquired over the University of
Houston campus and the neighboring urban area by different sensors. In each dataset, an arbitrary
HSI is selected as the source image to classify another image (target image). The experimental results
clearly show that the S2-MGFKL framework can achieve the highest classification accuracy for almost
all the data pairs, which proves its validity. For Brookings dataset, the classification accuracies have
been improved by 2%–9%, which demonstrates that S2-MGFKL model can deal with the spectral drift
problem. For Houston dataset, the classification accuracies have been increased by more than 15%.
Significant improvement has been gotten, while the compared methods cannot perform well, which not
only demonstrates the validity of integrating the spatial features to enhance the domain adaptation effect
of S2-MGFKL model, but also demonstrates the proposed S2-MGFKL model can deal with the spectral
mismatch problem.

2.3.2 Multitemporal change detection

Except for multitemporal classification, multitemporal change detection is another hot topic of researches
on MultiTemp-HSI processing. Multitemporal change detection is to find out changed and unchanged
landcovers, using hyperspectral data collected at different dates but over the same geographic area. As
shown in Figure 6, current studies on multitemporal change detection can be devised into two kinds:
common feature extraction-based methods which can weaken the influence of imaging condition change
on the spectrum in the process of feature extraction, and post-classification methods which detect the
multiple changes by comparing the difference between classification results. Liu et al. [140,141] proposed
and extended hierarchical change detection approaches, and they also explored detecting multiple changes.
Cesmeci et al. [142] integrated spatial and spectral processing into the change detection process. Some
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Figure 6 (Color online) General flowchart of MultiTemp-HSI change detection.

change detection methods aim at finding change residuals in unsupervised way, for example, slow feature
analysis (SFA) [143] and deep SFA [144], and in semi-supervised way [145]. Another operation aims
at detecting change of stacked MultiTemp-HSIs [146]. Object-level change detection (OLCD) [147] and
scene-wide change detection methods [148] have also been presented. Partial change detection algorithms
such as multivariate alteration detection (MAD) were also applicable for radiometric normalization, which
is often an important pre-processing procedure for change detection [149].

2.3.3 Multitemporal spectral unmixing

The spatial resolution of HSIs are generally low, so that spectral unmixing is required. Recent studies are
particularly interesting examples of fusion, as multiple (spatial, spectral, temporal) information modes are
jointly considered by exploiting the possibilities offered by MultiTemp-HSIs [81]. Halimi et al. [150] ana-
lyzed spatial-temporal endmember variability under a Bayesian framework. Thouvenin et al. accounted
for both smooth and abrupt variations [151] and introduced them into an online estimation algorithm
for saving computation memory [152, 153]. Henrot et al. [154] proposed a dynamical model to reduce
computational complexity. Licciardi et al. [155] applied neural networks (NNs) for solving the unmixing
problem. Besides, some researchers investigated unmixing techniques for change detection [156,157], with
sparse techniques [158, 159] and superpixel to integrate the spatial information. Spectral unmixing can
also be applied to seasonal change analysis and cloud removal [160, 161].

2.4 Major issues in data processing

There are two major issues in MultiTemp-HSI processing.
(1) Multi-dimension alignment of MultiTemp-HSI. The spectral drift is confronted by all MultiTemp-

HSI processing including classification, change detection and spectral unmixing. The spectral mismatch is
also an intractable issue if the MultiTemp-HSIs are acquired by different sensors. To achieve MultiTemp-
HSI processing, one must implement multi-dimension alignment to overcome the spectral difference caused
by varying acquisition conditions, which include not only illumination, atmosphere condition and angle of
view, but also spatial resolution, spectral band setting, and even natural evolution of the scene. Besides,
compared to MultiTemp-MSI, high dimensionality, nonlinearity, and coupling of different dimensions will
be more serious in MultiTemp-HSI, leading to more troublesome multi-dimension alignment.

(2) Multilevel change detection. Most of the current researches are focused on how to detect changes.
This can be treated as the first level in fine change detection. More details about the changes are necessary
in many remote sensing applications. For example, how many and which classes have changed (changed
classes), what classes they have changed to (types of changes), and the speed of changes (i.e., fast or slow
changes of these classes). Fine spectral resolution in MultiTemp-HSI will enable the aforesaid appeal of
change detection at different levels and different scales. Furthermore, evolution law could be figured out
by the multilevel change detection. To achieve the multilevel change detection, new theories and methods
should be developed as soon as possible.

3 Hyperspectral video imaging

3.1 Fundamental principle

Traditional hyperspectral imaging spectrometers have to confront a tradeoff between spatial, spectral and
temporal resolutions, which generally capture data at low temporal resolution from airborne or spaceborne
platform. The traditional hyperspectral remote sensing is not suitable for monitoring dynamic scene in a
real-time or near real-time way, although it has been used to observe scene with spatial imagery and high
spectral resolution, such as object classification, object detection and change detection. Recent advances
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Figure 7 (Color online) An example of HSV data. (a) False color image of HSV and spectral profiles of grass and soil; (b) frames

1–3 in the 1st second; (c) frames 1–3 in the 2nd second.

in electronic and sensor design have enabled the development of HyperSpectral Video (HSV) spectrometer,
which can capture full frame spectral images in real-time. It is especially useful for measuring fast and
transient phenomena. As defined in [162], HSV camera can get dozens of hyperspectral data cubes per
second. HSV can provide important time-varying information of image and electromagnetic spectrum
for the dynamic monitoring of interested objects in the scene. Figure 7(a) shows the false color image
of HSV at a moment (left) and the corresponding spectral profiles of grass and soil (right), Figures 7(b)
and (c) exhibit some continuous frames in an HSV.

3.2 Data acquisition

At present, UAV platform-based near real-time hyperspectral video spectrometer has been developed
abroad. American Bodkin Design & Engineering (BD&E) company designed two VNIR video hyperspec-
tral imaging systems. One is VNIR-20B with 1280×1024 CCD imaging area array, which can provide
images with 180×180 pixels and 20 bands range in 425–675 nm. The other is VNIR-90 with less pixels
with 53×34, but it can provide images with 90 bands whose wavelengths range in 500–900 nm. German
Cubert Company designed a frame based non-scanning and real-time imaging spectrometer, which per-
fectly combined spectral accuracy of the spectrometer and fast camera imaging speed. Its unique design
principle is to guarantee the easy access to HSI and obtain real-time video HSI data as well. Canadian
TELOPS Company showed that the infrared hyperspectral imager can be applied to monitor chemical
gas emission and dynamic monitoring. Other companies and institutes such as Surface Optics (SOC),
HySpex, and Specim have also developed their HSV spectrometers.

3.3 Processing and applications

As a new imaging pattern, HSV can capture HSI in real-time or near real-time way, which can provide
important change information of target of interest with respect to spatial and temporal domain. HSV
will play a critical role in the fields where the temporal resolution is highly required, such as disaster
response to oil spills, chemical gas plume detection [14], medical diagnosis [163] and military operations.

HSV can be used to solve computer vision tasks with high temporal, spectral and spatial resolution.
At present, HSV interpretation mainly focuses on target behavior trajectory analysis, and the workflow is
displayed in Figure 8, which contains three stages. The last two steps are the most critical: HSV feature
extraction mainly contains key frame extraction, static and dynamic feature extraction; while the target
behavior trajectory analysis basically refers to target detection, recognition and tracking. In [164], the
results showed that the HSV was combined with traditional algorithms to achieve illumination-invariant
motion detection and object tracking in video surveillance. Considering several challenging conditions,
in [165], a framework that combined spectral detection and mean shift algorithm was proposed to track
pedestrians in HSVs. The results showed good robustness against abrupt motion and rapid illumination
changes. It can be seen that HSV is superior to RGB video because of its fine spectral information.
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●  Geometric correction
●  HSV stabilization
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●  Static feature extraction
●  Dynamic feature extraction

●  Target detection
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Figure 8 (Color online) General flowchart of HSV interpretation.

In [166], the research work showed the properties of several hyperspectral imagers from visible through
the long wave infrared (LWIR), which have been developed by BD&E. They used the VNIR hyperspectral
systems to demonstrate tracking of objects and vehicles based on their spectral signatures over time.

In addition, the medium wave infrared (MWIR) hyperspectral system is used to measure and identify
the invisible chemicals gas plume. The detection of chemical plumes is significant for many applications
such as trace-gas emissions, environmental protection, and disaster response. The HSV data have been
gradually applied for the gas plume detection problem, which can capture the potentially invisible gas
plume. The published benchmark HSV sequence data sets were provided by Applied Physics Laboratory
at Johns Hopkins University. The sensors capture the data cube every five seconds with 129 bands whose
wavelengths range from 7.83 µm to 11.7 µm in the LWIR domain. The spatial dimension of each data
is 128×320 pixels. There are several researches on the two benchmark data sets. Some methods focus
on gas target and background separation based on spectral clustering. In [14], PCA was used to reduce
the dimension of the entire video sequence at first, and then Midway method was used for histogram
equalization. Finally, K-mean, spectral clustering, and MBO were used to segment the chemical plume.
Analogously, clustering methods were adopted for classification, where the graphical MBO scheme was
used to track and classify objects in HSV [167,168]. The pixels of the images in the video were considered
as vertices in a graph, and then Nystrom was used to quickly approximate the Eigen-functions of the
graph Laplacian. For the gas tracking methods based on infrared HSV, they can be roughly divided into
three categories according to their basic principle: tracking method based on spectral unmixing [154,169],
tracking method based on low-rank representation [170–172] and other related methods based on image
decomposition [15, 173]. In [170], the authors proposed a low rank representation model for gas plume
detection. It assumed that each frame of HSV can be decomposed into a low-rank and a sparse term,
corresponding to the background and the plume, respectively. The temporal consistency was incorporated
by adding a residual regularization. In addition, the total variation was added to smooth the gas plume in
spatial domain. Furthermore, they proposed a gas tracking method based on low-rank decomposition of
HSV and constraint of overall spatial and temporal variation [171]. Tochon et al. [15] introduced research
results for gas plume detection by hyperspectral video sequences. The temporal redundancy was used to
estimate the location of the plume, and then a binary partition tree was built to retrieve the real location
and extent of the plume in the frame. After that, the work was extended in [173].

However, the processing stage of most aforementioned methods is based on independent pixels or single-
band images. In order to achieve sufficient use of sequential 3D information and inter-frame information,
a sequential tensor decomposition (STD) method for gas tracking is proposed, where a series of 3D
tensors are used to represent HSV [174]. It is assumed that the static background in adjacent frames
has a low-rank property, and therefore, low rank tensors can be used to approximate the background.
However, the moving gas plume cannot satisfy the low-rank hypothesis, and thus it can be expressed by
the obtained error tensors. The STD method uses the obtained low-rank tensors to reveal the gas target
in the whole HSV, so as to track the gas. Let X t denote a frame of HSI obtained at time t, it is a 3-order
tensor and can be decomposed into low-rank tensor At corresponding to the background and error tensor
Et corresponding to the target, that is, X t = At + Et. The decomposition problem of single 3D tensor
X t can be expressed as
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for low-rank and sparsity error components. By introducing the dictionary D
t
n, A

t
(n) can be replaced by

the matrixed result of the sparse coding of it, while D
t−1
n can be updated to D

t
n for time t, considering

that the background components in adjacent frames are similar to each other. Finally, the outputs At

and Et are obtained by converting the corresponding At
(n) and Et

(n) to tensors in all three dimensions and
computing their mean.

In the experiment, the HSV was collected over the scene where the target gas, sulfur hexafluoride, was
being emitted. This HSV consists of 60 frames of infrared HSIs with 128×130 pixels and 127 spectral
bands range from 7.8 µm to 11.8 µm. Compared with several traditional tracking methods, the tracking
results produced by STD method are colorredthe clearest and most similar to the ground truth, while
the receiver operating characteristic (ROC) curve corresponding to tracking result of each frame is also
the closest to the upper left corner. This STD method achieved relatively good results, because it can
not merely take full advantage of the entire information in each frame, but also consider the background
similarity among all the frames.

3.4 Major issues in data processing

There are three major issues in HSV processing.
(1) HSV data modelling. The HSV data are dynamic hyperspectral data cubes and will be very

different from the traditional static hyperspectral data. The difference lies not only in the increment of
data amount, but also in HSV data’s high-dimensionality and heterogeneity of time, spectral and spatial
dimensions. Therefore, the first issue of HSV data processing is to model the complex high-order data.

(2) HSV feature learning. HSV can provide fine spectral resolution to represent the observed scene
compared with most of modern videos. Therefore, spectral properties must be incorporated when tradi-
tional video processing techniques are extended to perform tasks of HSV, such as object detection and
tracking. There are many challenging conditions, such as variations of illumination conditions, rapid
movements and different reflectance properties of the objects in the scene. The high-resolution spectral
features can be used to distinguish the tracked objects according to different reflectance properties of
objects, and also help in building the connection of different temporal, spectral and spatial dimensions
of the objects to be tracked. Therefore, learning effective and discriminative features from HSV will be
important and challenging.

(3) Benchmark HSV data set construction. Benchmark HSV data sets are very rare in science research,
and it is difficult to quantitatively evaluate novel methods owing to lack of ground-truth data. However,
ground-truth data are difficult to determine even by survey and expert knowledge at cost of material
resources and manpower, especially in the face of large data volume and complex scene. Therefore, more
benchmark HSV data sets and corresponding ground-truth data are needed for science research.

4 Hyperspectral stereo imaging

4.1 Fundamental principle

The existing hyperspectral imaging detection can simultaneously obtain spatial distribution and spectral
information of interested objects in narrow band range with high spectral resolution. However, the
traditional hyperspectral remote sensing has to confront information loss in both of spatial and spectral
dimension. It is well known that the observed object in a scene is actually in the 3D space. Therefore, the
real 3D object is degraded to be 2-dimensional (2D), i.e., image, in the imaging process. In this case, the
depth (or height, elevation) would be degraded or even lost. Correspondingly, the spectra of the objects
is also not real, but comes from the degraded 2D images. In other words, the observed real object in
remote sensing scene should be described by full dimension of 2D image, elevation, and spectra.

HyperSpectral image and elevation (HSE) is a new type of remote sensing data which can meet the
above requirement, as shown in Figure 9. It is obtained by newly developed hyperspectral imaging spec-
trometer, which is designed to acquire such a full dimension of static hyperspectral data. For example,
multispectral LiDAR and hyperspectral LiDAR can get multiband point clouds and provide full infor-
mation of images, elevation and spectra. The hyperspectral LiDAR combines the three dimensional,
active, and foliage penetrating capabilities of monochromatic LiDAR systems with the spectral imaging
capability of hyperspectral imaging sensor. As a novel active remote sensing technique, HSE system
offers the potential to directly provide spectral information for each recorded 3D point, independent of
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Figure 9 (Color online) HSE: a full dimensional hyperspectral imaging.

solar illumination. Since the geometry and spectral information of the target can be obtained by a single
measurement, this technology will extend the scope of imaging spectrometer into 3D spectral sensing.

HSE has obvious advantages over the fusion of passive spectral data with structural information of
monochrome LiDAR. First and foremost, since the instantaneous field of view (IFOV) of the laser pulse
is relatively small, the spectrum of each point is independent of any other point along the point ray, and
the spectral mixing within each measured point cloud is minimal. Secondly, since LiDAR can detect
multiple targets in a single point cloud ray, which will partially block the transmission beam in a single
transmission, the spectrum of each echo is range resolved. The fusion of passive spectral images with
monochromatic LiDAR images cannot achieve this, because the pixels of the passive sensor are not range
resolved and will irreversibly mix the spectra of the constituent block voxels, possibly mounting the
perspective error in the process. Next, owe to the active property of HSE, the spectrum is unaffected by
illumination conditions such as shading, uncertain vertical atmosphere, or secondary scattering effect. In
addition, HSE’s ability to operate day and night solves the problem of passive hyperspectral imaging at
night. Last but not least, registration between the spectral and elevation information is not required.

4.2 Data acquisition

To obtain HSE data, three ways will be available recently and in near future. First, some prototype
systems of multispectral LiDAR and hyperspectral LiDAR have been developed, which can be treated as
multiband imaging LiDAR (M-LiDAR). The multi-/hyper-spectral LiDAR gets the point clouds and the
corresponding intensity images at different wavelengths. Those multiband point clouds can be registrated
and combined either as a false color point cloud or to jointly use for object interpretation. Supercontinuum
laser source can produce directional broadband light by making using of cascaded nonlinear optical
interactions in an optical fiber [175]. The commercial availability of supercontinuum laser technology has
led into a number of applications in recent years. Among them, the HSE is a representative product [176].
In contrast to passive remote sensing systems that rely on reflected solar radiation, HSE utilizes its
own active white light source generated by a supercontinuum laser source to measure the 3D location
(x, y, z) on the surface of the object, and measures the return intensity of different wavelengths through
diffraction grating. HSE images the environment by explicitly associating a vector in spectral space with
each vector in 3D world space, and produces a 3D point cloud with hyperspectral laser return intensity
(LRI): (x, y, z, R(λ)), where R(λ) is the laser return intensity as a function of the wavelength λ.

The second way is to generate the full dimension of HSE data by data alignment. By means of data
processing algorithms, HSE data can be generated with separate hyperspectral data and LiDAR point
cloud.

The third way is to develop integrated hyperspectral LiDAR system. The integrated hyperspectral
LiDAR (Int-Hyper-LiDAR) aims to get the hyperspectral point cloud at once. This kind of hyperspectral
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Figure 10 (Color online) UAV multispectral LiDAR system.

LiDAR data will include only one point-cloud, but each point will have spectral information. The data
will be real 3D spectra.

At the very beginning, the response of multispectral LiDAR was simulated by using monochromatic
LiDAR data based on assumptions about material distribution and spectra [177]. A measurement system,
which is composed of a spectrometer, a cutting-edge technology, white-light supercontinuum laser source
and a commercial monochromatic LiDAR system, was presented to produce a virtual hyperspectral Li-
DAR dataset by fusing the backscattered reflectance spectra and distance information [178]. For the
past few years, several prototypes of multispectral or hyperspectral LiDAR systems have been developed,
which are mainly laboratory based. The University of Edinburgh has demonstrated for the first time a
multispectral LiDAR with four wavelengths (531, 550, 660 and 780 nm) that can be used for detailed
structural and physiological measurements of forest ecosystems [179]. Heriot-Watt University designed
another four-wavelength prototype multispectral LiDAR system (531, 570, 670 and 780 nm) [180]. In-
tending for the remote sensing of vegetation reflection, a four-laser multispectral canopy LiDAR system
(555, 670, 700 and 780 nm) was designed [181]. The Finnish Geodetic Institute (FGI) exploited and
constructed the first prototype of a full waveform terrestrial HSE, which can measure 3D point clouds
included with eight-channel hyperspectral backscattered reflectance (542, 606, 672, 707, 740, 775, 878 and
981 nm) for each point [182]. The first operational multispectral airborne laser scanning (ALS) system
with three channels (532, 1064 and 1550 nm) was launched by Teledyne Optech (Ontario, Canada) in
late 2014 with the product name Titan [183]. Each channel produces a separate point cloud, and mul-
tispectral intensity values are not originally available for single points. Preprocessing procedure is thus
needed before the multispectral information can be utilized.

A new set of UAV multispectral LiDAR system has been implemented in [184] with the support of
National Natural Science Foundation of China, which belongs to the second data acquisition approach.
The main sensors of this system are LiDAR detectors and multispectral cameras, which are stably fixed
and mounted on the UAV using a rigid framework, as shown in Figure 10. Synchronous data acquisition
of LiDAR and multispectral camera is realized by a synchronous pulse trigger, so that the system can
acquire 3D point cloud and 2D MSI simultaneously. Then, multi-/hyper-spectral point cloud data can be
obtained by spatial consistency sampling and multidimensional integrated data generation. To the best
of our knowledge, this is the first multi-dimensional information remote sensing detection system which
integrating multispectral camera and LiDAR on an UAV platform.

In order to verify the actual performance of the system, field data acquisition experiments were carried
out in three places using the developed UAV platform based spectral-stereo imaging detection system,
as shown in Figure 11. The first place is Gurigesitai National Nature Reserve in West Wuzhumuqin
Banner in Xilin Gol League, Inner Mongolia Province (central geographic coordinates: 118.713799◦E,
44.485341◦N), where the main species of vegetation include Artemisia Frigida Willd, Chinese wild rye, and
achnatherum splendens. The second place is Yellow River Delta National Nature Reserve in Dongying,
Shandong Province (119.068910◦E, 37.816394◦N), where the main species of vegetation include Tamarix
Chinensis, Suaeda salsa, and Spartina Alterniflora. The last place is Shankou Mangrove National Ecology
and Nature Reserve in Beihai, Guangxi Province (109.760954◦E, 21.497706◦N). The species of mangrove
include Avicennia Marina, Rhizophora Stylosa, and Bruguiear Gymnorrhiza. Taking the experimental
area of the Shankou Mangrove National Ecology and Nature Reserve as an example, the relevant data

 https://engine.scichina.com/doi/10.1007/s11432-020-3084-1



Gu Y F, et al. Sci China Inf Sci February 2021 Vol. 64 121301:14

(a) (c)(b)

Figure 11 (Color online) Field test area. (a) Gurigesitai National Nature Reserve; (b) Yellow River Delta National Nature

Reserve; (c) Shankou Mangrove National Ecology and Nature Reserve.

(a) (c)(b)

Figure 12 (Color online) Field test data of Shankou Mangrove National Ecology and Nature Reserve. (a) MSI (false color);

(b) LiDAR point cloud; (c) stereo multispectral point cloud.

collected are shown in Figure 12, in which Figures 12(a)–(c) are respectively MSI (false color), LiDAR
point cloud and stereo multispectral point cloud data (spectrum-spatial 3D integrated data).

4.3 Processing and applications

When it comes to HSE data processing, joint utilization of multi-/hyper-spectral images and LiDAR
data have to be mentioned. Before the integrated HSE data can be obtained, joint utilization of multi-
/hyper-spectral images and LiDAR data were widely studied, which aims at overcoming the problem of
information loss in the data acquisition process of single sensor, so that more accurate interpretation of
observed scene can be obtained.

4.3.1 Joint interpretation of multi-/hyper-spectral images and LiDAR data

Generally speaking, the process of joint interpretation is divided into three steps as shown in Figure 13:
feature extraction to extract multi-level features, feature fusion to fuse the extracted heterogonous fea-
tures effectively, and joint classification to discriminate landcovers accurately. The research on joint
interpretation of multi-/hyper-spectral images and LiDAR data mainly focuses on feature fusion and
joint classification.

The feature fusion methods of multi-/hyper-spectral images and LiDAR data can be summarized
into four categories: feature stack methods, subspace-based methods, manifold learning-based methods
and deep learning methods. Feature stack is the simplest and easiest way to implement feature fusion.
This strategy forms an extended feature vector for each pixel in the remote sensing scene by stacking
the height and intensity feature extracted from the LiDAR data after the spectral band of the multi-
/hyper-spectral image [185]. In order to fully mine the discriminant information in multi-/hyper-spectral
images and LiDAR data, morphological profiles (MPs) [186], attribute profiles (APs) [187] and extinction
profiles (EPs) [188] are often used for multi-/hyper-spectral images and LiDAR data fusion because of
their simple calculation efficiency, and can provide accurate classification results. However, stacking the
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Figure 13 (Color online) General flowchart of joint interpretation of multi-/hyper-spectral images and LiDAR data.

spectral features, spatial features and elevation features extracted from the multi-/hyper-spectral and
LiDAR data will increase the feature dimension of the samples, thus causing two major difficulties for
subsequent classification tasks: dimension disaster and high computational complexity. The subspace-
based methods can avoid the dimensionality disaster and improve the computational efficiency. Such
methods also have the characteristics of improving the signal-to-noise ratio and the classification accuracy.
Subspace-based methods assume that features extracted from multi-/hyper-spectral and LiDAR data can
be represented in a low-dimensional subspace. In the original subspace model, both the basis of subspace
and the characteristics after fusion are unknown and need to be estimated. In [189], orthogonal total
variation component analysis (OTVCA) was introduced [40] into the subspace model to estimate the
basis of subspace and the features after fusion simultaneously. Besides, based on the prior information of
the spatial structure of remote sensing scene, constraint term was added to the subspace model to make
the features after fusion smooth to the object expression. In [190], the authors took the two-dimensional
wavelet basis as the basis of the subspace and used a sparse subspace model to model multi-/hyper-spectral
images and LiDAR data fusion. Sparse and low-rank component analysis (SLCA) was used to solve the
problem, and l1 norm constrained wavelet coefficients were used to make the fused feature sparse in two-
dimensional wavelet space. Manifold learning has also been used in multi-modal data fusion. Except for
the aforementioned semi-supervised manifold alignment, in [191], the authors proposed a multi-feature
learning framework, which can embed linear features and nonlinear features, combine the similarity
measure information of samples in multi-feature space, and obtain the manifold distribution of samples
in multi-feature space. Liao et al. proposed a series of multi-source sensor data fusion frameworks based
on graph model. They adopted unsupervised [192], semi-supervised [193], supervised [194, 195] way to
construct the graph model for each attribute feature extracted from multi-/hyper-spectral images and
LiDAR data, and then, the fused graph is used to solve the manifold embedding mapping matrix to obtain
the intrinsic characteristics of remote sensing scene in the low-dimensional space [192, 195]. At present,
deep learning is developing rapidly in the field of remote sensing. Models of deep structure have the ability
to extract high-order, multi-layer, abstract features from the input data, which are usually invariant to
the nonlinear distribution of samples in the original space, and thus, deep learning methods are also
applied to multi-/hyper-spectral images and LiDAR data fusion. Ghamisi et al. [188] fused the spatial,
spectral and elevation features extracted from multi-/hyper-spectral images and LiDAR data by using
the graph model, and input these fused features into a convolutional neural network (CNN) for higher-
order feature extraction. In order to use the spatial and elevation information of multi-/hyper-spectral
images and LiDAR data more effectively, Chen et al. designed a dual-channel deep learning model for
the two data sources. In each channel, a CNN is used to extract features from a data source, and finally,
a fully connected deep neural network is used to fuse and classify heterogeneous features output from the
two channels [196]. On this basis, a three-channel deep learning model is designed for spatial, spectral
and elevation features [197]. Zhang et al. [198] proposed a patch to patch convolutional neural network
(PToP CNN), which takes HSIs and LiDAR data as input and extracts the spatial, spectral and elevation
information of remote sensing scenes end-to-end.

As for joint classification of multi-/hyper-spectral images and LiDAR data, the flexible base kernel
design and task-oriented model solving potential of MKL [199] have provided a complete set of theories
for heterogeneous feature fusion. The spectral, spatial and elevation features extracted from HSIs and
LiDAR data by local filtering, can be used together by composite kernel method, which can distinguish
various features and fully mine the complementary information among them [200]. Li et al. [191] designed
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a parameterless multi-feature learning method based on attribute morphological features and subspace
multidimensional logistic regression, and applied the method to HSIs and LiDAR data multi-attribute
feature learning. Aiming at the problem of high feature dimension and limited training samples in the
joint classification of multi-/hyper-spectral images and LiDAR data, Zhang et al. [201] proposed an
integrated multi-kernel active learning method. This approach can obtain more useful information for
classification from unlabeled samples through active learning, and integrate the output probability of
several multi-kernel classifiers by the principle of maximum divergence. Deep learning-based methods
usually have a complete framework including feature extraction, fusion and classification, which have
been described in the end of Subsection 4.3.1.

4.3.2 HSE data processing

Before retrieving spectral information about objects from LRI, the dimensionless and sensor specific
LRI values must be radiometrically calibrated and range- and angle corrected. After that, the spectral
information of each point cloud can be retrieved from LRI values. The information content of the new
type data is vast and creates new prospects for various applications. (1) The HSE data enables a new
class of spectral laser indices to be calculated as analogues to spectral indices derived from passive remote
sensing data. Fueled by the increasing spectral availability, the biophysical and chemical surface properties
can be mapped with HSE systems. This will promote the development of precision agriculture and the
protection of cultural heritage. (2) HSE may also improve the separation of ground from vegetation
returns and leaves from woody materials, which ultimately will improve the accuracy of LiDAR based
land cover classification, automatic point cloud classification, and biomass estimates. (3) HSE may also
improve the accuracy of terrain mapping. Fueled by the penetration characteristics of water at different
wavelengths, the water depth estimate can be carried out by using HSE system, which can achieve the
seamless terrain mapping coastal zone.

The related structure, location and measured spectrum show many prospects for agriculture and
forestry applications of HSE. It could reliably and automatically detect many kinds of vegetation re-
lated to stress status, light-use efficiency of tree crowns [202,203], nitrogen contents estimation [204–206],
biochemical parameters monitoring [207], chlorophyll level estimation [208, 209]. The HSE data with
spectral and 3D spatial information simultaneously enhance the ability of target characterization and
classification [210, 211]. According to the classification objects, the classification methods using multi-
/hyper-spectral LiDAR data can be divided into two categories: image-based methods and point cloud-
based methods. At present, most researches use image-based method to process multispectral LiDAR
data. Firstly, the height image and intensity image of each band are generated by using multispectral
point cloud data, and then traditional image processing methods can be used for classification. At present,
Mahalanobis distance (MD) classifier [212], maximum likelihood classifier [213,214], SVM [215,216], ran-
dom forest [212, 217] and decision tree classifier [218] are all used for rasterized multi-spectral LiDAR
image classification. Some researchers directly classified the multi-spectral point clouds to realize the
three-dimensional spatial classification of remote sensing scenes. In [219], the distribution information
of the target in the three-dimensional space was extracted by PCA, and then was inputted into SVM
with the multi-band intensity information for classification. Ekhtari et al. [220, 221] separated single
echo point cloud from multiple echo point clouds when classifying multi-spectral point clouds. Com-
pared with the image-based methods, the classification of point clouds can achieve higher classification
accuracy [221–223].

In [224], in order to improve the ability of 3D land cover classification using multispectral point
clouds, a geometric-spectral feature extraction model named tensor manifold discriminant embedding
(TMDE) was proposed based on tensor representation. This model contains two parts. (1) Tensor
representation of unorganized multispectral point clouds. Each point is represented as a second-order
tensor, which is the information source for subsequent feature extraction. (2) Tensor-based feature
extraction. Through keeping the intraclass samples’ distribution and maximizing the distance between
categories, the multilinear mapping matrices are obtained, which can project the second-order tensors
into the feature space to extract the discriminative geometric-spectral features.

Given a training set X = {Xi}, i = 1, 2, . . . , N in high-dimensional space R
I1×I2×···×IM , the purpose

is to search for N mapping matrices
{

Um ∈ R
Pm×Im , Pm < Im,m = 1, 2, . . . ,M

}

that map Xi into Yi ∈
R

P1×P2×···×PM , i = 1, 2, . . . , N . The intraclass neighborhood graphGa and interclass neighborhood graph
Gb are constructed firstly. Based on the maximum margin criterion (MMC) [225], the final objective
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Figure 14 (Color online) Classification maps obtained by using (a) multispectral features, (b) multispectral features, DEM and

DSM, and (c) multispectral features and nDSM.

function can be obtained as follows:

argmin
Y1,Y2,...,YN







N
∑

i,j

Ga(i, j) · ‖Yi − Yj‖
2
F
−

N
∑

i,j

Gb(i, j) · ‖Yi − Yj‖
2
F







. (2)

This problem can be solved by the eigenvalue decomposition, the solution U
∗
m ∈ R

Pm×Im is given by
Pm eigenvectors associated with the least Pm eigenvalues. All the samples can be thus mapped into the
low-dimensional features space by mode-k product as Yi = Xi ×1 U

∗
1 ×2 U

∗
2 × · · · ×M U

∗
M .

Based on the field test data of Shankou Mangrove National Ecology and Nature Reserve, we combined
the 2D spatial, spectral and elevation (digital elevation model (DEM), digital surface model (DSM),
normalized digital surface model (nDSM)) information to carry out the classification experiment, and
the classification accuracies can reach more than 90%. Figure 14 shows the classification maps obtained
by using different features. Figure 14(a) is obtained by using multispectral features. Figure 14(b) is
obtained by using multispectral features, DEM and DSM. Figure 14(c) is obtained by using multispectral
features and nDSM. The spectral difference between bruguiear gymnorrhiza and rhizophora stylosa was
significant, and thus they can be well distinguished even only using multispectral features. However,
for the avicennia marina and aegiceras corniculatum, their spectral characteristics are similar, and their
growth is mixed and stratified. By combining the elevation information, the classification performance
of these two kinds of mangroves has been improved.

4.4 Major issues in data processing

Expanding the use of LiDAR data to incorporate the spectral information has great potential to advance
4D (x, y, z, R(λ)) research and applications about HSI. On the road to realize this potential, ongoing
researches have to confront the following two major issues.

(1) Accurate spectral reflectance retrieval of HSE. HSE intensity is affected by many factors, for
example, incidence angle, an uncertain illumination condition, imaging range/distance. Radiometric
calibration of HSE intensity is an important prerequisite for subsequent applications, such as land cover
classification and object detection. Study in [202] illustrates the nonlinear relationship between target
reflectance and reported HSE intensity. Therefore, retrieving the reflectivity information from HSE
intensity values is the first step of research for HSE. Existing empirical radiometric calibration and
relative models need to be improved, or new methods need to be presented to retrieve accurate spectral
reflectance of the target.

(2) Analysis and display of HSE. Data volumes of HSE datasets are large, and will increase with the
expansion of the spectral dimension. Hence, there is a need to develop the management and analy-
sis approaches for the new HSE data. Existing softwares can only display 3D information (x, y, z) or
(x, y,R(λ)) at the same time. How to display the 4D information (x, y, z, R(λ)) provided by HSE will
become an important content.
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5 Conclusion

Recently, hyperspectral remote sensing presents new trends and is progressively developing from tradi-
tional two-dimensional detection to multi-dimensional, real-time and stereoscopic remote sensing. In this
paper, the current researches on hyperspectral remote sensing and image processing have been reviewed.
After that, three typical modes of advanced hyperspectral remote sensing have been introduced in de-
tails, including MultiTemp-HSI with multitemporal hyperspectral imaging, HSV with real-time spectral
imaging and HSE with 3D spectral imaging. The introduction to the multimodal HSI covers the funda-
mental principle, data acquisition, processing and applications, and major issues in data processing for
each mode.

The multimodal HSI remote sensing is really emerging. To meet the potential challenges, involv-
ing highly complex nonlinearity, heterogeneity and sparsity in data processing, and lack of benchmark
dataset for scientific research, on the one hand, researchers should develop new theories and methods for
multimodal and multidimensional signal processing; on the other hand, it is also important to extend
the existing theories and methods in conventional hyperspectral remote sensing by combining with new
data processing techniques to solve the new challenges raised by the multimodal HSI. High-order tensor
representation has a good potential for the data representation of complex multimodal HSI, since 3-order
tensor has successfully applied in HSI interpretation [226, 227]. Deep learning can be used to help with
establishing framework of feature learning, however, there are relatively few emerging multimodal hyper-
spectral data, and thus how to make the model overcome the dependence on a large number of training
samples needs further study. Furthermore, with aid of the multimodal hyperspectral remote sensing and
new applicative processing approaches, new ways of object interpretation, such as 3D change detection,
real-time object tracking and dynamic scene understanding will be attractive and achievable.
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