http://www.journals.zju.edu.cn/med

基于悬浮芯片技术的 56 种病原微生物的高通量检测

朱海红,蒋汉梁,陈 智,曹清毅,孙 箴,侯晓丽,周林福, 陈 峰,羊正纲,贾红宇,许晓燕 (浙江大学医学院 附属第一医院传染病研究所,浙江 杭州 310003)

[摘 要] 目的:建立高通量、快速、可靠、经济的病原微生物诊断技术平台。方法:设计和合成针对 56 种常见病原微生物的探针和阳性对照,采用悬浮芯片技术,对 56 种病原微生物的阳性标准品进行检测。结果:56 种标准品的检测值显著高于阴性对照,各病原微生物的阳性标准品和各探针之间无交叉反应。结论:建立了高通量、快速、可靠、经济的病原微生物诊断技术平台,为突发传染病的病原体诊断提供技术储备。

[关键词] 微生物学技术;基因表达;悬浮芯片技术;高通量诊断;病原微生物 [中图分类号] R 372 [文献标识码] A [文章编号] 1008-9292(2007)06-0524-07

A high-throughput diagnostic method for detecting pathogenic microbes ZHU Hai-hong, JIANG Han-liang, CHEN Zhi, et al (Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China)

[Abstract] Objective: To develop a high-throughput diagnostic method with suspension array technique for detecting pathogenic microbes. Methods: The probes and positive controls of 56 kinds of pathogenic microbes were designed, synthesized, and used to detect pathogenic microbes with suspension array technique. Results: Fluorescence signals of 56 positive controls were higher than thos of the negative controls, and there was no cross-reaction between the probes and positive controls of different microbes. Conclusion: Based on suspension array technique, the high-throughput diagnostic method may be useful in clinical detection of pathogenic microbes.

[Key words] Microbiological techniques; Gene expression; Suspension array technique; High -throughput diagnosis; Pathogenic microbes

[J Zhejiang Univ (Medical Sci), 2007,36(6):524-530.]

目前传染病仍是危害人类健康、导致死亡的重要原因。2006年全国共报告法定传染病发

病4 608 910 例,死亡10 726 人。报告发病率为352. 48/10 万,报告死亡率为0.82/10 万,病死

收稿日期: 2007-07-16 修回日期: 2007-08-23

基金项目: 浙江省科技厅重大项目(2003C13015); 浙江省医药卫生科学研究基金项目(2006B029).

作者简介:朱海红(1972-),女,副研究员,传染病学专业.

通讯作者:陈 智(1956—),男,教授,博士生导师,从事病毒性肝炎的机制、防治研究以及病原微生物高通量诊断技术研究;E-mail:chenzhi@zju.edu.cn

率为0.23%。

自20世纪70年代以来,全世界相继发现了30多种新的传染病,其中不少传染病为爆发流行,在短期内使数以万计的人罹患疾病并造成大规模的人群死亡。一些多年没有发生的恶性传染病如鼠疫、霍乱、登革热等又死灰复燃。因此,如何有效地对传染病进行控制,将仍然是医学研究领域的重点。

病原微生物的快速检出是及时、准确地预测、预报和预警的关键。只有明确病原微生物后,才能及时、准确地预测、预报和预警,医师和各职能部门才能判断该种疾病的患者是否需要隔离,如何进行消毒切断传播途径,以及是否需要预防接种以提高易感人群的免疫力。如果病原微生物未被及时诊断,那么就会造成在人群中扩散。

因此,只有建立高通量、快速、可靠、经济的病原微生物诊断平台,才能切实有效地控制传染病的发生与流行。本研究利用悬浮芯片(suspension array)技术[1-3],对56种病原微生物的阳性标准品进行检测,探索建立传染病的高通量、快速诊断技术平台,为突发传染病病原体的快速诊断提供技术储备。

1 材料与方法

1.1 探针和阳性对照设计和合成

1.1.1 病原微生物选择:选取《中华人民共和 国传染病防治法》涉及的病原微生物和导致常 见感染的病原微生物:腮腺炎病毒(Mumps virus),呼吸道合胞病毒(Respiratory syncytial virus),流感病毒(Influenza viruses),副流感病 毒 (Parainfluenza viruses), 人 埃 可 病 毒 (Human echovirus),单纯疱疹病毒(Herpes simplex virus),风疹病毒(Rubella virus),脊髓 灰质炎病毒(Human poliovirus),人巨细胞病 毒 (Human cytomegalovirus), 柯 萨 奇 病 毒 (Coxsackievirus), 狂犬病病毒(Rabies virus), 麻疹病毒(Measles virus),人疱疹病毒 3 (Human herpesvirus 3), 西尼罗病毒(West Nile virus), 日本乙型脑炎病毒(Japanese encephalitis virus), 登革病毒(Dengue virus), 汉滩病毒(Hantaan virus),铜绿假单胞菌

(Pseudomonas aeruginosa), 结核分支杆菌 (Mycobacterium tuberculosis), Mycobacterium ulcerans, 霍乱弧菌(Vibrio Cholerae), 炭疽杆菌(Bacillus anthraci),表皮葡萄球菌 (Staphylococcus epidermidis), 金黄色葡萄球 菌 (Staphyloococcus aureus), 流感嗜血杆菌 (Haemophilus influenzae), 肺炎链球菌 (Streptococcus pneumoniae), 无乳链球菌 (Streptococcus agalactiae), 小肠结肠炎耶尔森 菌(Yersinia enterocolitica),单核细胞李斯特 菌(Listeria monocytogenes),无害李斯特菌 (Listeria innocua),猪霍乱沙门菌(Salmonella enterica), 副 溶 血 弧 菌 (Vibrio parahaemolyticus), 禽 流 感 病 毒 (Avian Influenza Virus),输血传播病毒(TTV),肠腺 病毒(Enteric adenoviruses), 刚地弓形虫 (Toxophasma gondii), 梅毒螺旋体 (Treponema Pallidum), 沙眼衣原体 (Chlamydia Trachomatis), 轮 状 病 毒 (Rotavirus),嵌杯状病毒(Calicivirus),星状病 毒(Astrovirus),鼻病毒(Rhinovirus),α病毒 (Alphavirus), 普氏立克次体(R. prowazekii), 东方立克次体(R. tsutsugamushi),人免疫缺陷 病毒 A(HIV-A), 人免疫缺陷病毒 B(HIV-B), 人免疫缺陷病毒 C(HIV-C),甲型肝炎病毒 (HAV),乙型肝炎病毒(HBV),丙型肝炎病毒 (HCV), 戊型肝炎病毒(HEV), 大肠杆菌(E. coli),沙门菌(Salmonella),嗜水气单胞菌 (Aeromonas hydrophila), 空肠弯曲菌(C. jejuni).

1.1.2 特异性探针(probe)设计和合成:通过生物信息学设计并合成 56 种病原微生物的特异性探针,每条特异性探针的 5'→3'依次为:5'-氨 基-TTTTTTTTTTTTTTTTT,病 原微生物特异序列-3',详见表1。

表1 56 种病原微生物名称、探针序列

Table 1 Name and specific probes of 56 kinds of pathogenic microbes

病原微生物名称	探针编号	探针序列
Mumps virus	P1	5'>CCATGCAGGCGGTCACATTCCRACAACTGC<3'
Respiratory syncytial virus	P2	5'>CACCATCCAACGGAGCACAGGAGAT<3'
Influenza viruses	P3	5'>CTGCAGCGTAGACGCTTTGTCCAAAATG<3'
Parainfluenza viruses	P4	5'>TAGGCCAAAGATTGTTGTCGAGACTATTCCAA<3'
Human echovirus	P5	5'>GCCGAGAAGGTAGCCAAGGGAAAGT<3'
Herpes simplex virus	P6	5'>TCCCAATCGATTTCGCGGGAAGAAC<3'
Rubella virus	P7	5'>CTGGGCTGTCAACGCCTACTCCTCT<3'
Human poliovirus	P8	5'>AGATGGTGTTGGAGAAGATTGGATTTGGGGAC<3'
Human cytomegalovirus	P9	5'>CCTACCACCGCAGTTGCTCTTTCAC<3'
Coxsackievirus	P10	5'>CGGTCTTGTGGGGTTTGCTGATGTT<3'
Rabies virus	P33	5'>ATCCCCGCCGCTTATCCAACCACTA<3'
Measles virus	P34	5'>TGTTTACAGCCCAAGCCGCTCATTT<3'
Human herpesvirus 3	P11	5'>GCGGATTTAGTGATTGTTGGGGATA<3'
West Nile virus	P14	5'>ACCAACGCCATCAGTAGAAGGAGCGAAAAG<3'
Japanese encephalitis virus	P12	5'>TGGAGAAGCCCACAACGAGAAGCGA<3'
Dengue virus	P13	5'>TCTACGGGGCTGCTTTCAGTGGGGT<3'
Hantaan virus	P17	5'>TTTGTTGAGGTTACTGTCACGGCAGATGTT<3'
Pseudomonas aeruginosa	P15	5'>GCTTCATTGATTTTAGCGGAAC<3'
Mycobacterium tuberculosis	P16	5'>TGTCGACCTGGGCAGGGTTCG<3'
Mycobacterium ulcerans	P18	5'>CACCACGCAGCATTCTTGCCGT<3'
Vibrio Cholerae	P21	5'>TCAACCGATGCGATTGCCCAAGA<3'
Bacillus anthraci	P22	5'>TGTACAGGGGGGGGGGGTC<3'
Staphylococcus epidermidis	P23	5'>CACCCGAAGCCGGTGGAGTAAC<3'C
Staphyloococcus aureus	P24	5'>AATGACGCTATGATCCCAATCTAACTTCCACA<3'
Haemophilus influenzae	P25	5'>CACCACTCATCAAACGAATGAGCGTGG<3'
Streptococcus pneumoniae	P26	5'>TGGCGCCCATAAGCAACACTCGAA<3'
Streptococcus agalactiae	P27	5'>ATCAGAAGAGTCATACTGCCACTTC<3'
Yersinia enterocolitica	P28	5'>CAAGCAAGCTTGTGATCCTCCG<3'
Listeria monocytogenes	P29	5">TTCTTGGCGGCACATTTGTCACTGCA<3'
Listeria innocua	P 30	5'>TTCGAATTGCTAGCGGCACACCAGT<3'
Salmonella enterica	P31	5'>TCTGGTTGATTTCCTGATCGCA<3'
Vibrio parahaemolyticus	P32	5'>CGCTACGTTAAGCACCATGCAGAAGACTC<3'
Avian Influenza Virus	P19	5'>TCAACAGTGGCGAGTTCCCTAGCA<3'
TTV	P20	5'>GTGACCCCAAACCTTACAACCCTTC<3'
Enteric adenoviruses	P35	5'>GTAAACACTCCCCACCGTGCCCTCA<3'
Toxophasma gondii	P36	5'>AGTAGTGGCGAACGAGTAGGGATAAGA<3'
Treponema Pallidum	P37	5'>TCTGTTGTGCGTGGCGGGTATGGGGTT<3'
Chlamydia Trachomatis	P38	5'>TTTGCCGCTTTGAGTTCTGCTTCCT<3'
Rotavirus	P39	5'>TCAGCAAACAGATGAGGCGAATAAA<3'
Calicivirus	P40	5'>AAACCTAAAACACCAAAGCCCCACCGACCA<3'
Astrovirus	P41	5'>ATACTCACAAACTTACGGCAAGGCAC<3'
Rhinovirus	P42	5'>GCCTCACAATAAACTAAAAGCCCCAA<3'

表1(续)

病原微生物名称	探针编号	探针序列
Alphavirus	P43	5'>TAACACCATACGCATACAGACTTCCGCCC<3'
R. prowazekii	P44	5'>GTGAAAGTTGTATTACGACCGCTCCC<3'
R. tsutsugamushi	P45	5'>GGTGAGCAATATGATTGAAGCTGGAG<3'
HIV-A	P46	5'>CAATAACGCTGACGGTACAGGCCAGACAATTAT<3'
HIV-B	P47	5'>CCACAAGATTTAAACACCATGCTAAACACAGTGG<3'
HIV-C	P48	5'>CTGAGCACCTTAAGACAGCAGTACAAATGGCA<3'
HAV	P49	5'>AGACAAAAACCATTCAACGCCGGAGG<3'
HBV	P50	5'>TGATAAAACGCCGCAGACACATCCA<3'
HCV	P51	5'>ATTTGGGCGTGCCCCGC<3'
HEV	P52	5'>CGAACCACACAGCATTCGCCA<3'
E. coli	P53	5'>TGTTTCGACACACTATCATT<3'
Salmonella	P54	5'>TGACTCGTCACACTATCATT<3'
Aeromonas hydrophila	P55	5'>TGGAACGGTCCTGGAAAGGC<3'
C. jejuni	P56	5'>TATAGAGATATACATTACCT<3'

表2 56 种病原体的阳性对照

Table 2 Positive controls of 56 kinds of pathogenic microbes

病原体	阳性对照序列
Mumps virus	5'>GCAGTTGTYGGAATGTGACCGCCTGCATGG<3'
Respiratory syncytial virus	5'>ATCTCCTGTGCTCCGTTGGATGGTG<3'
Influenza viruses	5'>CATTTTGGACAAAGCGTCTACGCTGCAG<3'
Parainfluenza viruses	5'>TTGGAATAGTCTCGACAACAATCTTTGGCCTA<3'
Human echovirus	5'>ACTTTCCCTTGGCTACCTTCTCGGC<3'
Herpes simplex virus	5'>GTTCTTCCCGCGAAATCGATTGGGA<3'
Rubella virus	5'>AGAGGAGTAGGCGTTGACAGCCCAG<3'
Human poliovirus	5'>GTCCCCAAATCCAATCTTCTCCAACACCATCT<3'
Human cytomegaloviru	5'>GTGAAAGAGCAACTGCGGTGGTAGG<3'
Coxsackievirus	5'>AACATCAGCAAACCCCACAAGACCG<3'
Rabies virus	5'>TAGTGGTTGGATAAGCGGCGGGGAT<3'
Measles virus	5'>AAATGAGCGGCTTGGGCTGTAAACA<3'
Human herpesvirus 3	5'>TATCCCCAACAATCACTAAATCCGC<3'
West Nile virus	5'>CTTTTCGCTCCTTCTACTGATGGCGTTGGT<3'
Japanese encephalitis virus	5'>TCGCTTCTCGTTGTGGGCTTCTCCA<3'
Dengue virus	5'>ACCCCACTGAAAGCAGCCCCGTAGA<3'
Hantaan virus	5'>AACATCTGCCGTGACAGTAACCTCAACAAA<3'
Pseudomonas aeruginosa	5'>GTTCCGCTAAAATCAATGAAGC<3'
Mycobacterium tuberculosis	5'>CGAACCCTGCCCAGGTCGACA<3'
Mycobacterium ulcerans	5'>ACGGCAAGAATGCTGCGTGGTG<3'
Vibrio Cholerae	5'>TCTTGGGCAATCGCATCGGTTGA<3'
Bacillus anthraci	5">GACCGCCCGCCCCTGTACA<3"
Staphylococcus epidermidis	5'>GGTTACTCCACCGGCTTCGGGTG<3'

表 2(续)

病原体	阳性对照序列
Staphyloococcus aureus	5'>TGTGGAAGTTAGATTGGGATCATAGCGTCATT<3'
Haemophilus influenzae	5'>CCACGCTCATTCGTTTGATGAGTGGTG<3'
Streptococcus pneumoniae	5'>TTCGAGTGTTGCTTATGGGCGCCA<3'
Streptococcus agalactiae	5'>GAAGTGGCAGTATGACTCTTCTGAT<3'
Yersinia enterocolitica	5'>CGGAGGATCACAAGCTTGCTTG<3'
Listeria monocytogenes	5'>TGCAGTGACAAATGTGCCGCCAAGAA<3'
Listeria innocua	5'>ACTGGTGTGCCGCTAGCAATTCGAA<3'
Salmonella enterica	5'>TGCGATCAGGAAATCAACCAGA<3'
Vibrio parahaemolyticus	5'>GAGTCTTCTGCATGGTGCTTAACGTAGCG<3'
Avian Influenza Virus	5'>TGCTAGGGAACTCGCCACTGTTGA<3'
TTV	5'>GAAGGGTTGTAAGGTTTGGGGTCAC<3'
Enteric adenoviruses	5'>TGAGGGCACGGTGGGGAGTGTTTAC<3'
Toxophasma gondii	5'>TCTTATCCCTACTCGTTCGCCACTACT<3'
Treponema Pallidum	5'>AACCCCATACCCGCCACGCACAACAGA<3'
Chlamydia Trachomatis	5'>AGGAAGCAGAACTCAAAGCGGCAAA<3'
Rotavirus	5'>TTTATTCGCCTCATCTGTTTGCTGA<3'
Calicivirus	5'>TGGTCGGTGGGGCTTTGGTGTTTTAGGTTT<3'
Astrovirus	5'>GTGCCTTGCCGTAAGTTTGTGAGTAT<3'
Rhinovirus	5'>TTGGGGCTTTTAGTTTATTGTGAGGC<3'
Alphavirus	5'>GGGCGGAAGTCTGTATGCGTATGGTGTTA<3'
R. prowazekii	5'>GGGAGCGGTCGTAATACAACTTTCAC<3'
R. tsutsugamushi	5'>CTCCAGCTTCAATCATATTGCTCACC<3'
HIV-A	5'>ATAATTGTCTGGCCTGTACCGTCAGCGTTATTG<3'
HIV-B	5'>CCACTGTGTTTAGCATGGTGTTTAAATCTTGTGG<3'
HIV-C	5'>TGCCATTTGTACTGCTGTCTTAAGGTGCTCAG<3'
HAV	5'>CCTCCGGCGTTGAATGGTTTTTGTCT<3'
HBV	5'>TGGATGTGTCTGCGGCGTTTTATCA<3'
HCV	5'>GCGGGGCACGCCCAAAT<3'
HEV	5'>TGGCGAATGCTGTGGTGGTTCG<3'
E. coli	5'>AATGATAGTGTGTCGAAACA<3'
Salmonella	5'>AATGATAGTGTGACGAGTCA<3'
Acromonas hydrophila	5'>GCCTTTCCAGGACCGTTCCA<3'
C. jejuni	5'>AGGTAATGTATATCTCTATA<3'

- 1.1.4 阴性对照: 以质粒 pcDNA3.1 为阴性对照。
- 1.1.5 报道分子(reporter)设计和合成: 5'-biotin-aaaaaaaagtttcccagtaggtctc-3'。
- 1.2 主要仪器及试剂 Liquichip 悬浮芯片系统(Qiagen 公司,德国);直径~5.6 μm 羧基化荧光微球(Luminex 公司,美国);链亲和索一藻

红蛋白(Qiagen 公司,德国)。

- 1.3 方 法
- 1.3.1 探针交联微球:每个探针与相应的微球通过交联反应而连接在一起。 5×10^6 个羧基化微球悬浮于 $50~\mu$ 100 mmol/L 2-(N-morpholino)ethanesulfonic acid (MES),pH 4.5的反应液中,加入 1 nmol 的氨基化的探针分子,

加人 25.0 μg 的交联剂 N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide (EDC) (Pierce Chemical, Rockford, IL)后,避光反应 30 min,再加人 25 μg 交联剂 (EDC),再避光反应 30 min。反应结束后,用0.02% Tween-20 液洗一次,在用0.1% SDS 液洗涤一次。最后,将标记有探针的微球悬浮于 TE,pH 8.0(10 mmol/L Tris-HCl,1 mmol/L EDTA),2~8℃避光保存^[4]。

1.3.2 杂交和上机检测: 0.2 ml 的 eppendorf 管中,加入38 μl 的5×SSC 杂交液(内含每一种 标记有型特异性探针的微球各5000个),加入 12 μl 1.67 μmol/L 的阳性对照或阴性对照 (1.67 μmol/L 浓度),12 μl 1.67 μmol/L 的报 道分子reporter 1.67 μmol/L。在PE 9600 PCR 仪上,95 C变性5 min,55 C杂交15 min。反应结 東后,在 96-well microtiter plates (Millipore Corporation, Bedford, MA 01730 USA)上,100 μl 2×SSC/0.02% Tween-20 液洗涤微球两 次。最后,将重悬于 75 μl 2×SSC/0.02% Tween-20 液。加入 25 µl 藻红蛋白(Streptavidin-R-phycoerythrin, 10 μg/ml 溶于 2× SSC/0.02% Tween-20)。避光室温反应5 min。 每个反应设3 复孔。最后,在Luminex100analyzer 上进行检测[4]。

1.3.3 两组数据比较进行t 检验,P<0.05 为有统计学意义。

2 结 果

2.1 56 种病原微生物阳性对照的检测值均数 按表 1 顺序分别为 2893,1167,2725,4089,2325,4229,3036,3131,4171,3875,6779,3343,4174,4285,5446,7028,7270,4291,6289,5286,7224,7563,3636,3154,3974,5767,5121,5411,7060,5992,6658,2327,5535,4945,3516,4090,5051,7061,4517,2559,4423,2719,5365,4575,5164,4360,4184,4563,4124,5261,4809,5382,5873,5863,5071,6045。

2.2 56 种标准品的检测值均数 按照表1顺序分别为 6392,5595,3764,5941,5761,6042,5952,6573,5666,7388,5367,6714,6436,4171,5418,5268,3031,5757,6928,4705,5740,5620,

6380,5593,4849,6669,3691,5208,4090,4363,3940,3903,5226,5061,7212,5239,6366,3913,4031,5102,4693,5165,5723,6350,4381,4505,4611,4458,5769,5638,3806,6197,4127,4422,5553,3516.

阴性对照的检测值低于100,平均值为56。 56 种标准品的检测值高于阴性对照,有统 计学意义(P<0.05),各病原微生物的阳性标 准品和各探针之间无交叉反应。

3 讨论

本研究选择了《中华人民共和国传染病防治法》所涉及传染病的病原体,以及常见的一些消化道、呼吸道感染的病原体,结合生物信息学设计了探针,采用悬浮芯片技术,对56种病原微生物的阳性标准品进行了检测。本诊断技术为突发传染病病原体的诊断提供了技术储备。

病原微生物的快速检出在感染性疾病的诊 治中具有决定性作用。这将对指导临床诊断、合 理用药以及疾病控制产生积极影响。但是,目前 临床常用方法的检验项目大多不是针对病原体 核酸,如病原微生物分离培养和药敏试验等耗 时长:病原微生物培养的检测时间在2~21 d 之间,药敏试验的检测时间也在2 d 以上。传统 的酶联免疫吸附试验(ELISA)检测的抗原需要 较高的滴度才可以检测到,而特异性抗体在传 染病早期尚未出现或滴度很低,需等到恢复期 或后期才能检测到,造成诊断困难。并且,突发 未知病原体的传染病时,其抗原抗体的制备需 要较长时间,短时间内难以迅速研制成功诊断 试剂。且这些方法都是各种病原体单独检测,通 量较低。因此,在许多情况下不能满足临床要 求,更远远达不到快速诊断和传染病预报的要 求。研发一种可以高通量、快速、灵敏、经济的检 测病原微生物的方法迫在眉睫。

高通量的基因芯片技术的出现,给临床检测带来了很大的希望。但是传统的平面的基因芯片在临床应用一段时间后,也逐渐暴露出其存在的灵活性较差、检测所需的时间较长、重复性不够理想、价格昂贵等不足。

近年来,出现了一种基于微球体的高通量检测方法[1-3]。该项技术是利用微球体作为载体,荧

光检测仪作为检测平台,对核酸和蛋白质等生物大分子进行高通量测定。不同的微球体单元可以标记上比例不同的 2 种荧光(均用红色激光检测)作为单元的地址。当不同单元的微球体依次通过荧光检测仪时,仪器对检测到的 2 种荧光的比例进行分析,从而判断其属于何种单元。因此,不同的微球体单元可以放在同一管中通过荧光检测仪,由计算机软件根据荧光比例判断其单元地址。这些不同单元的微球体标记上不同的探针,就可以检测不同的病原微生物。目前市场上的微球的 2 种荧光分别有 10 种浓度, 共有 100 种微球。因此,该技术可以实现临床的高通量、快速检测病原微生物的要求。

这项技术的优点在于:①通量高,有100种微球,可同时进行100种靶分子诊断;②液相环境有利于抗原抗体反应;③检测所需标本量少,本技术用0.1ml的血清就可进行10种以上病原微生物的检测;④可靠性高,本技术是对多个微球体荧光信号进行单独检测后,用配套的软件进行统计分析,使检测结果更加精确、可靠;⑤重复性好,不同地址的微球体分别标记后系,再分装成小份,用于分别检测各标本,各的份性质完全一致;⑥灵活性强,不同种类的分别标记后再混合的,所以在临床使用时,可以根据不同患者、不同疾病或其他不同需求,从中选择特殊组合的探针,临时搭配所需要的微球,使个体化的检测成为可能。

由于不同病原微生物的探针反应的最佳条件不一致,建立高通量诊断技术时需要将所有 56种病原微生物的探针放在一起进行反应,因 此需要筛选出适合同一个反应体系的 56 种病原微生物的探针。而且,根据生物信息学设计的理论上可行的探针,实际应用中是否可行需要通过实验验证。本项目以 5 个病原微生物为一组,采用逐步增加的方法筛选 56 种病原微生物的探针。每个病原微生物至少设计了三条探针,将实验结果显示特异性差的探针剔除,替换上候补探针,最终获得可在同一反应体系中均有较好结果的 56 种病原微生物特异性的探针(见表1)。

References:

- [1] FULTON R J, MCDADE R L, SMITH PL, et al. Advanced multiplexed analysis with the FlowMetrix system [J]. Clin Chem, 1997, 43: 1749-1756.
- [2] DUNBAR S A, VANDER ZEE C A, OLIVER K
 G, et al. Quantitative, multiplexed detection of
 bacterial pathogens; DNA and protein
 applications of the Luminex LabMAP system
 [J]. J Microbiol Methods, 2003, 53; 245-252
- [3] IANNONE M A, TAYLOR J D, CHEN J, et al.

 Multiplexed single nucleotide polymorphism
 genotyping by oligonucleotide ligation and flow
 cytometry [J]. Cytometry, 2000, 39:131-140.
- [4] JIANG H L, ZHU H H, ZHOU L F, et al. Genotyping of human papillomavirus in cervical lesions by L1 consensus PCR and the Luminex xMAP system [J]. J Med Microbiol, 2006, 55: 715-720.

「责任编辑 张荣连〕