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There has been an explosion of research activities and clinical
investigations on the use of artificial intelligence (AI) in oncology
during the past decade. This is driven primarily by technological
advances in computing power and sophisticated AI algorithms, as
well as the availability of a large amount of digitized data gener-
ated during routine cancer care. AI has the potential to transform
clinical oncology by enabling more accurate and efficient diagnosis
and providing clinicians with personalized treatment options for
cancer patients. Here, we highlight some specific applications of
AI in clinical oncology, which include improving cancer detection
and diagnosis, aiding in prognostication and risk stratification,
and predicting treatment responses and outcomes of cancer
patients (Fig. 1). We will discuss the remaining challenges and
future outlooks of translation and adoption of AI for clinical
oncology.

AI is an umbrella term broadly used to describe various tech-
niques of machine intelligence capable of performing human tasks.
Machine learning is a sub-field of AI that refers to algorithms that
can learn from data and perform tasks without explicit program-
ming. These range from simple decision trees to more complex
random forests and have been used in the medical literature for
several decades. Deep learning, yet another sub-field of AI and
machine learning, has recently emerged as a powerful technique
that can automatically learn feature representations or patterns
from unstructured data (such as images) and generate useful pre-
dictions through multiple layers of artificial neural networks [1,2].
This collection of sophisticated AI algorithms including machine
learning and deep learning has found numerous and ever-expand-
ing real-world applications ranging from robotics and computer
vision to natural language processing. AI is poised to have a posi-
tive impact on human society for decades to come.

In clinical oncology, the most promising applications of AI have
been focused on improving cancer screening, detection, and diag-
nosis using a variety of imaging modalities including clinical pho-
tographs, radiology scans, and pathology slides. In a pioneering
study, Esteva et al. [3] trained a deep learning model, specifically
a deep convolutional neural network, for the classification of skin
lesions using clinical photographs. The model achieved a diagnos-
tic performance on par with board-certified dermatologists for dis-
tinguishing skin cancer from benign lesions as well as for
identifying melanoma, the deadliest skin cancer. AI has also been
used for real-time detection of gastrointestinal malignancies on
endoscopy images with a sensitivity similar to that of expert endo-
scopists [4]. Additionally, it has been demonstrated that AI tools
can be used to detect and diagnose breast cancer in mammograms
[5] and lung cancer in computed tomography scans with an accu-
racy comparable or superior to that of practicing radiologists [6]. In
digital pathology, AI has been shown to improve the diagnostic
accuracy and efficiency of time-consuming tasks such as the detec-
tion of cancer metastases in lymph nodes on whole slide images
[7].

In addition to improving cancer detection and diagnosis, AI can
also aid in prognostication and improving risk stratification of can-
cer patients beyond tumor-node-metastasis (TNM) staging. In a
large international study, Skrede et al. [8] developed a deep learn-
ing model to predict survival outcomes after primary colorectal
cancer resection from digitized hematoxylin and eosin-stained sec-
tions. The model was extensively evaluated in independent patient
populations, outperformed established molecular and morpholog-
ical prognostic markers, and gave consistent results across tumor
and nodal stage. Electronic health records provide a rich resource
for understanding the impact of treatment interventions for
diverse patient populations. Recently, Morin et al. [9] developed
an AI framework for continuous learning from health data while
capturing and integrating longitudinal clinical records of cancer
patients. They demonstrate that natural language processing of
clinical notes could be used to continuously update estimates of
an individual’s prognosis throughout the disease course.

AI may enable molecular characterization of tumors such as
predicting clinically actionable cancer-driver mutations from rou-
tine diagnostic images. For instance, it has been shown that AI
models may predict the genomic mutations in non-small cell lung
cancer from radiology images and hematoxylin and eosin-stained
tissue slides [10,11]. Such technologies may be useful in practical
situations when tumor tissue is insufficient or unavailable for
genomic sequencing. Additionally, this can be deployed in a low-
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Fig. 1. Examples of potential applications of AI in clinical oncology. (Created with BioRender.com).
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resource setting to triage patients for molecular profiling using
routinely available clinical images.

One of the most tantalizing applications of AI is the ability to
predict therapeutic response and benefit, which has important
implications for personalized treatment strategies. Different from
cancer screening applications whereby AI can be used as an
adjunctive tool to assist expert diagnosticians, recommending
treatment bears much more substantial consequences. Thanks to
decades of basic and translational research, it has now been well
established that the tumor microenvironment plays an important
role in cancer initiation and progression and is a key determinant
of treatment response and resistance. Built on this biological
knowledge, Jiang et al. [12,13] developed an AI approach to non-
invasively evaluate the immune and stromal tumor microenviron-
ment status from radiological images and further showed that the
model could predict benefits from chemotherapy in gastric cancer.
This approach could not only overcome the practical limitations of
insufficient tissue specimens but also address the fundamental
issue of sampling bias due to intratumor spatial heterogeneity.

Although significant progress has been made in the develop-
ment of AI for clinical oncology, there remains a huge gap in
demonstrating the value of AI for improving patient outcomes.
Many obstacles must be overcome before the impact of AI in clin-
ical oncology can be realized. Below, we will discuss some of the
key challenges and potential solutions to these problems, which
include data availability, technical validity, interpretability, clinical
validity, clinical utility, clinical adoption, and real-world
application.

A prerequisite to building reliable AI models is the availability
of large amounts of high-quality data. This is especially true for
developing state-of-the-art deep learning models that are highly
complex and flexible with many more parameters to fit than the
number of data points. However, due to several reasons including
privacy concerns as well as logistic and administrative issues,
access to data has been challenging in healthcare. In addition to
forming multi-institutional collaborations on an ad hoc basis, sys-
tematic efforts will be required for building large datasets with
representative patient populations. There is slow but steady pro-
gress in data sharing with a number of publicly available data
repositories such as The Cancer Imaging Archive that could facili-
tate the training and validation of AI models. From a technical per-
spective, new AI techniques may offer a viable solution by
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obviating privacy concerns. Federated learning allows for models
to be trained from multi-institutional datasets without requiring
access to data but instead by sharing model parameters.

In clinical practice, data are typically acquired and collected
with varying protocols across different institutions and healthcare
systems. Therefore, it is important to ensure that AI models are
robust to these technical variations and reproducible across
heterogeneous datasets. A prominent example is radiology AI,
wherein many imaging-based features (and models capturing
these features) are highly sensitive to variations in scan protocols
and parameters. To address these issues, Wu et al. [14] proposed
radiological features of tumor morphology and spatial heterogene-
ity that are specially designed to ensure comparability across
diverse tissue contrast and imaging modalities. Using an interna-
tional heterogeneous dataset of 1682 patients from 12 cohorts,
they identified four radiological tumor subtypes that demonstrate
distinct prognoses after conventional therapies and predict
response to immunotherapy.

For high-stake decisions such as cancer diagnosis and treat-
ment, clinicians would demand to know why the model makes a
certain prediction, and the interpretability of AI becomes a critical
issue. While it is entirely feasible to train AI models directly from
input, this data-driven approach results in black-box models that
lack intuitive understanding or clear reasoning behind their pre-
dictions. It will be crucial to incorporate pathobiology into the
design of deep learning models to enhance interpretability.

To establish the evidence for clinical validity, AI models should
be prospectively validated in clinical trials. The lack of rigorous val-
idation represents one of the largest hurdles toward the clinical
translation of AI. To date, the overwhelming majority of published
studies on medical AI are performed using retrospective analysis of
existing datasets. While this is the most convenient place to start,
retrospective studies particularly on AI are subject to various forms
of bias that may lead to overly optimistic results. There is an unmet
need for prospective validation of AI models to ensure
reproducibility and generalizability in diverse patient populations.
One strategy to establish high-level evidence for clinical validity is
by leveraging data from completed large multi-center phase III
clinical trials conducted by national or international cooperative
oncology groups. It is crucial that the AI models have already
been fully developed and are locked down before performing
validation.
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Once clinical validity has been established, the next key mile-
stone is to demonstrate clinical utility. Depending on the particular
applications in oncology, this can include increasing cancer detec-
tion yield and diagnostic accuracy, improving patient survival or
quality of life, and reducing healthcare costs and resource utiliza-
tion. The gold standard for establishing clinical utility is random-
ized controlled trials (RCT) comparing outcomes in patients
randomly assigned to AI-driven intervention vs. standard of care.
There is a paucity of AI-based RCTs published to date and a few
studies have shown improved detection of adenoma in endoscopy
compared with standard clinical care [15]. For certain endpoints
such as improved survival, these trials can be very expensive and
time-consuming to conduct. Nevertheless, this will provide the
highest level of evidence for clinical utility, which is often needed
for regulatory approval and clinical adoption.

When AI models have been extensively validated, they may be
finally adopted and deployed for real-world clinical use. A number
of issues should be taken into consideration. How AI models inter-
face with the end users can significantly impact clinical adoption.
The optimal strategy should be designed to facilitate and encour-
age human-AI interaction and collaboration. The effect of AI on
clinicians’ performance will need to be carefully evaluated to avoid
or mitigate potential automation bias. One unique aspect of AI is its
evolving nature in that AI models are capable of adapting to new
data and may change over time. Therefore, the performance of AI
should be continuously monitored post-deployment. Finally, there
are ethical and legal implications of deploying AI models in the
real-world setting, which have been discussed elsewhere in detail.

Moving forward, the next-generation AI will be able to leverage
the complementary power of multi-modal datasets to maximize
the value of precision oncology. In proof of principle studies, AI
models that integrate clinical data, radiological images, pathology
slides, and genomics features have been shown to achieve superior
performance than single-modal AI for predicting treatment
response, e.g., neoadjuvant chemotherapy in breast cancer and
immunotherapy in lung cancer [16,17]. Additional data modalities
such as endoscopic or surgical images may also be incorporated
into specific applications whenever available. Another promising
avenue of future investigation is to design customized neural net-
work architectures that are informed by biological principles, and
these fully interpretable AI models may enable preclinical discov-
ery and clinical prediction in cancer patients. It is important to rec-
ognize that the most effective use of AI is augmenting, rather than
replacing clinician’s capabilities. We envision that future applica-
tions of AI will need to shift from human vs AI to human-AI collab-
oration, and the optimal strategies to integrate AI into a clinician’s
workflow should be explored in order to improve cancer diagnosis
and treatment while minimizing harm.

For any technological advance, clinical translation and adoption
are a long winding road fraught with risks and challenges, and AI is
no exception. However, we believe that these challenges are not
insurmountable and can be effectively tackled with given sufficient
resources and dedication from all stakeholders. We are hopeful
that close multi-disciplinary collaboration between AI researchers
and clinicians along with technological innovation in AI algorithms
and the ever-growing availability of digitized data should bring AI’s
impact to fruition. The future of AI in clinical oncology is bright.
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