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Resolution has been playing a significant role in landslide susceptibility mapping 
and hazard assessment. Based on geographical information system (GIS) and in-
formation model, the effects of raster resolution on landslide susceptibility map-
ping are studied in a central area of Shenzhen, China. Eight factors are selected to 
calculate landslide susceptibility with eleven groups of different resolutions (5 to 
190 m). It has been found that a finer resolution does not necessarily lead to a 
higher accuracy of landslide susceptibility mappings, while the result of 90 
m-resolution has the best accuracy and the 150 m-resolution has the worst one. 
The accuracy curve is in a shape of “W” along with resolution decreasing: 1) The 
accuracy decreases from 5 to 70 m; 2) and then the best accuracy appears at 90 m, 
which is almost the same as the mean size of landslides in study area; 3) the ac-
curacy decreases again from 110 to 150 m; 4) and finally the accuracy increases 
from 150 to 190 m. The sensitivity analysis indicates that the effects of raster reso-
lution are mainly caused by the resolution impact on landform parameter derivation, 
while factors like geology and human activity are very insensitive to resolutions. A 
further study shows that in flat, ridge, and slope foot terrains, the susceptibility 
mapping result is sensitive to resolution, but in the sloping surface area the sensi-
tivity is much less sensitive to resolution. At last, by choosing study areas with 
different sizes, it has also been found that the optimal resolutions are variable due 
to size of study area. But the study area is larger than a threshold, which is 135 km2 
in this study, and the optimal resolution is almost fixed. 
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Landslide susceptibility mapping is very important in landslide study and risk management engi-
neering. In order to depict the spatial distribution of landslide susceptibility, many influential 
factors, as well as a properly selected mathematical or statistical model are needed. This kind of 



 

study becomes more and more efficient these years, especially after introducing geographical 
information system (GIS), from which a lot of experience has been gained[1―5]. However, before 
processing those influential factors in GIS, digitalization and discretization are necessary. If using 
grid-cells, the selection of cellsize brings forth uncertainties[6,7], and will eventually influence the 
susceptibility mapping. Nowadays, a variety of raster resolutions, significantly different[8,9], are 
used in landslide hazard assessment. Sometimes, it is selected merely considering the size of the 
slope and landslides[2,4]. Little work has been done on the effects of raster resolution on the land-
slide assessment and modeling. Guzzetti et al.[10] suggested that more than one unit could be tried 
and the most suitable one for the problems at hand should be used. Li and Zhou[11] focused on the 
representative diversity of terrain caused by different resolutions of digital elevation model (DEM) 
through hazard assessment. Lee et al.[12] compared landslide susceptibility indexes simulated with 
5, 10, 30, 100 and 200 m resolution data and found 5, 10 and 30 m resolutions had a similar and 
more accurate result in Bour, Korea. Claessens et al.[13] paid extra attention to mass movement of 
shallow landslide hazard, and studied different landslides and their redistribution through different 
resolution DEMs.  

Shenzhen has suffered much landslide damage following heavy rains in recent years. In this 
paper, a central part of Shenzhen was selected as study area to particularly study the effects of raster 
resolution on landslide susceptibility mapping. Eight factors related to landslide, representing 
terrain, geology, hydrology, land cover and human activity, were selected as influential factors. 
Based on information model, landslide susceptibility was calculated respectively for eleven groups 
of datasets, which were derived from eleven different spatial resolutions (5, 10, 30, 50, 70, 90, 110, 
130, 150, 170 and 190 m). All results were compared and the optimal resolution for landslide 
susceptibility mapping in Shenzhen was found. Then, the spatial distribution of resolution sensi-
tivity of susceptibility mapping was studied through information value analysis. At last, by ap-
plying this method to study areas of different sizes, relationship between optimal resolution and the 
area size was discussed. 

1  Study area and data 

The study area, 22°41′24′′N to 22°32′31′′N, and 113°54′29′′E to 114°05′56′′E, is located in the 
central part of Shenzhen, a city in south of China (Figure 1). The area is 342 km2, 40% of which is 
mountain area. The bedrock is mainly composed of granite and diorite. Lying in East Asian monsoon 

 
Figure 1  Study area. 
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region, the average annual temperature is 22.0℃ and the average annual rainfall is 1966 mm. 
Landslides have been a continual problem since 1980’s in this area and they have caused great 
loss of life and property. Rainfall is one of the most significant inducing factors to landslide dis-
aster. The 211 spots in Figure 1 stand for known landslide locations that were gathered from in-
spection reports made by the Bureau of Land and Resources of Shenzhen City. 

In this study, 5-meter resolution DEM data (generated from 1:10000 topographic map), 1:10000 
geologic maps, hydrological maps, road and building distribution maps as well as Satellite Pour 
l'Observation de la Terre (SPOT) were selected as major data sources. All of these were available 
as digital maps. All influential factors are based on or derived from these basic data. Elevation, 
slope and aspect are three kinds of important terrain factors effecting landslide occurrence. They 
were extracted from DEM data directly. Digitalized geological maps could be used for expressing 
information about fault and lithology. Proximity to river was used to measure the influence of 
hydrology. Most slopes in Shenzhen are artificial slopes and human activities play an important 
role in assessment of slope stability. Distance to road or building is used as index of human activity 
of engineering. Vegetation Index (VI), representing land cover, was derived from SPOT images. 

The smallest cell size used in this study is 5 m, the resolution of the original DEM data. The 
biggest cell size used in this study is 190 m, being almost two times the average slope length in 
the study area. We do not apply larger cell sizes in this study because theoretically a larger cell 
will diminish the details in the cell area and practically it will be difficult to identify the real un-
stable slopes from a large cell predicted as highly prone to landslide, which will make the result 
almost inapplicable. 

In order to get multi-resolution data, we resampled the original 5 m resolution DEM to get a 
series of data with ten other resolutions (10, 30, 50, 70, 90, 110, 130, 150, 170 and 190 m. Then 
those 1:10000-scale influential factors were also resampled to the above resolutions. By deriving 
landform and slope parameters from DEMs with different resolution, eleven groups of 
multi-resolution data got available.  

Moreover, to study the relationship between the optimal resolution and the size of study area, 
the study area was cut inward gradually and totally ten study sites (area A to J) were shaped, with 
area sizes being 342, 300, 261, 224, 190, 159, 135, 105, 82 and 62 km2 respectively. 

2  Information model 

Information model is one of the statistic approaches for landslide modelling[10,14] in which many 
factors in relation with landslide occurrence[2,15,16,10] are considered. It was first defined by Yin to 
calculate the susceptibility for the occurrence of a slide[17], and developed by Westen[18]. Now it is 
widely used for landslide danger assessment[19―21]. We choose it to carry out the landslide suscep-
tibility mapping. 

In information model, landslide susceptibilities are represented as Landslide information values 
(LIV) on the corresponding locations. The most considered matter in an information model is the 
available information related to landslides in study area. For each influential factor, after proper 
classification, information value of this factor to landslide occurrence is calculated by 
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where P(y, xi) is the probability for a landslide to occur in the presence of attribute xi and P(y) is the 
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general probability for the landslide occurrence. For the sake of convenience in calculation, sample 
frequencies are usually taken to replace events probabilities, thus eq. (1) is converted to 
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where S is the total area of the landslide occurrence, A is the total study area, Si is the area of 
landslides which are known to have occurred in the presence of attribute xi, and Ai is the area in the 
presence of attribute xi, I(y, xi) is the LIV for factor xi for landslide occurrence. When adding the 
LIV of all influential factors (eq. (3)), comprehensive LIV are acquired.  
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In information model, continuous information indexes have to be properly classified for the aim 
of presentation and comparisons. This work usually depends on the experience of experts[10,22―24]. 
Based on the study of Saha and Lee[25,26], considering the real character and distribution of the 
influential factors, each factor was classified (Table 1). 

Table 1  Factors and classification 
Factor  Classification 

Lithology 
 
 
 

G1 
(Chroismite 
and gneiss) 

G2 
(Extrusive 

rock) 

G3 
(Schist shale 

phyllite) 

G4 
(Redbeds)

G5 
(Quaternary 
loose bed)

G6 
(Clastic rock) 

G7 
(Intrusive 

rock) 
Fault (Distance to  

fault (m)) 
 F1 (0―200) F2 (200―400) F 3 (400―600) F 4 (600―800) F 5 (>800) 

Elevation (m)  H1 (<10) H2 (10―50) H 3 (50―100) H 4 (100―300) H 5 (>300) 
Slope (°)  S1 (0―5°) S2 (5°―35°) S 3 (35°―50°) S 4 (50°―60°) S 5 (>60°) 
Aspect  D 1 (N) D 2 (NE) D3 (E) D 4 (SE) D 5 (S) D 6 (SW) D 7 (W) D 8 (NW) D 9 (Flat)

Hydrology 
(Distance to river 

(m)) 
 W1 (0―200 m) W2 (200―400 m) W 3 (400―600 m) W 4 (600~1000 m) W 5 (>1000 m) 

Human activity 
(Distance to road or 

building (m)) 
 P1 (<100) P2 (100―200) P 3 (>200) 

Land cover  Z1 (<10%) Z2 (10%―30%) Z 3 (30%―60%) Z 4 (>60%) 
 

3  Multi-resolution results and comparison  

Using information model, the comprehensive LIV were calculated with different raster resolution. 
And then the susceptibility maps were made (Figure 2) and overlaid by the positions of historical 
landslides to represent the overall relationship between landslide occurrence and LIV. The index 
was classified into 8 classes using “natural breaks”[10]. 

For each spatial resolution, the verification of landslide susceptibility mapping result was done 
by studying the LIV of landslide occurrence positions using the accumulated frequency method 
(Table 2). The LIV of all landslide occurrence locations were picked, normalized and sorted into 
twenty classes in ascending order with the same intervals. Then the accumulative percentage of 
landslide occurrence under each LIV class was calculated. The above analysis procedure was ap-
plied to each susceptibility mapping result respectively to estimate its accuracy. For example, in  
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Figure 2  Landslide susceptibility maps under different spatial resolutions. 

the case of a spatial resolution of 5 m, the area with LIV less than 0.5 contains merely 0.48% of 
total landslide, in other words, 99.52% of the landslide happens in areas with the LIV greater than 
0.5. The area with LIV less than 0.7 contains merely 11.9% of total landslide, i.e., 88.1% of the 
landslide happens in areas with the LIV greater than 0.7. Among all the mapping results, the 
greater LIV the landslide occurrence positions had, the higher accuracy mapping result had. It can 
be clearly seen from Table 2 that 90 m-resolution result is then the best, in which LIV of 0.7 were 
a turn point and 98.1% of landslide occurrence locations had LIV greater than 0.7. 

In order to demonstrate the estimation result more clearly, two more figures are given below. 
Figure 3 shows the overall relationship between the accumulative landslide percentage and cor-
responding LIV, in which each curve stands for a specific resolution. For a given susceptibility 
mapping result, if all landslide occurrence locations are perfectly assigned to LIV of “1”, the result 
is evidently the best and the curve will become horizontal on the bottom with LIV range [0-1) and 
vertical to the right side with LIV of 1, i.e., the area percentage above that curve was 100%; on the  
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Table 2  Accumulative percentage of landslide occurrence under each LIV class  
Accumulative percentage of landslide occurrence (%) 

LIV 
5 m 10 m 30 m 50 m 70 m 90 m 110 m 130 m 150 m 170 m 190 m

0 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.95 
0.05 0.48 0.48 0.95 0.48 0.95 0.95 1.43 0.95 0.95 1.43 0.95 
0.1 0.48 0.48 1.43 0.95 0.95 0.95 2.38 2.86 4.29 3.33 0.95 
0.15 0.48 0.48 1.43 0.95 3.33 0.95 4.29 6.67 5.24 5.71 0.95 
0.2 0.48 0.48 1.90 3.33 5.24 0.95 6.19 11.43 9.52 7.62 0.95 
0.25 0.48 0.48 2.38 3.33 9.05 0.95 7.14 14.76 17.62 10.95 0.95 
0.3 0.48 0.48 2.86 9.05 12.86 0.95 10.48 20.00 27.14 17.14 0.95 
0.35 0.48 0.48 4.76 12.13 19.05 0.95 16.19 25.24 38.57 21.90 0.95 
0.4 0.48 0.48 7.62 14.29 27.62 0.95 23.81 33.81 50.48 31.90 0.95 
0.45 0.48 0.48 15.24 46.67 36.67 0.95 31.43 45.71 59.52 39.05 0.95 
0.5 0.48 1.43 25.24 54.76 45.24 0.95 40.00 52.38 65.24 46.67 0.95 
0.55 0.95 2.86 32.86 57.07 52.38 0.95 50.95 58.57 71.43 56.67 0.95 
0.6 4.29 4.29 46.67 60.02 59.52 0.95 60.48 69.05 76.19 62.86 0.95 
0.65 6.19 8.10 57.14 65.38 65.24 0.95 66.67 76.19 83.81 71.90 1.90 
0.7 11.90 12.86 65.71 69.77 71.90 1.90 73.81 84.29 90.48 77.62 7.62 
0.75 20.95 22.38 81.90 73.33 77.14 6.67 80.48 89.05 93.33 83.81 18.57 
0.8 32.38 40.48 89.05 80.57 84.29 13.81 86.19 91.90 95.24 90.00 35.24 
0.85 57.14 61.43 97.62 93.36 90.48 41.90 92.38 94.29 97.14 95.24 59.52 
0.9 82.38 81.90 99.05 97.62 95.71 68.10 96.19 97.14 98.57 98.10 77.14 
0.95 95.24 95.24 99.05 99.52 97.62 89.05 97.14 98.10 98.57 99.05 93.33 
1 100 100 100 100 100 100 100 100 100 100 100 

 
contrary, if LIV at every landslide location were “0”, the result is evidently the worst and the curve 
will be vertical to the left side with LIV value of 0 and horizontal on the top with LIV range (0-1], 
i.e. the area percentage above that curve was 0. The area percentage above each cure can be used 
as an index for the accuracy of corresponding result. The larger the percentage, the better the ac-
curacy (Figure 4). 

The curve in Figure 4 is basically in a shape of “W” along with resolution decreasing: 1) The 
accuracy decreases from 5 to 70 m; 2) the highest accuracy appears at 90 m; 3) the accuracy de-
creases again from 110 to 150 m; 4) finally accuracy increases from 150 to 190 m. The results 
with 90, 5, 10 and 190 m-resolutions are evidently better than the others while 90 m-resolution 
result is the best and 150 m-resolution one has the lowest accuracy among them all. The averge 
slope length of known landslide in the study area is 83.31 m, which is very close to the optimal 
resolution, 90 m. 

    
Figure 3  Relationship between landslide and corresponding LIV.         Figure 4  The results with different resolutions. 
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4  Analysis of resolution sensitivity  

In information model, the susceptibility is represented by the comprehensive LIV, which is the sum 
of the information values of all influential factors. By studying the change of every factor’s LIV 
along with different resolutions, the sensitivity to resolution of each factor can be analyzed. Figure 5 
was made by subtracting the worst result (150 m) from the best resolution result (90 m). The 
smaller the difference, the more insensitive the factor to resolution. Negative values indicate that 
with the cell size enlarging, the information value increases, vice versa.  

 
Figure 5  Difference of LIV of all influential factors. 

It can be clearly concluded from Figure 5 that among all factors, hydrology, fault, lithology, and 
human activity have similar characters: When the resolution changes, there are little or small dif-
ferences of LIV in most areas, except that in some areas one cell may change from one category to 
an adjacent one because of the resolution variation. The reason could be very simple, that is, 
these factors are planarly or continuously distributed. The values of these factors are not prone to 
the change of cell size. 

As for elevation and vegetation index, there are significant LIV differences in areas where the 
elevation is lower than 10 m or vegetation index is higher than 60%. But in other areas the dif-
ference is very small. The reason for this is also simple. There are only 3 landslide occurrences in 
such areas with the resolution of 5 m. With smaller resolution, one or more landslides will be 
classified into cells that are higher than 10 m or the VI is less than 60%. For example, with the 
resolution of 150 m, there is no landslide occurrence in cells lower than 10 m or with VI higher 
than 60% . This will inevitably affect the LIV of the corresponding cells (eq. (3)). 
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The resolution sensitivity of slope and aspect 
factors is more complex. As for slope factor, the 
LIV difference is significant only in areas like 
ridge or slope foot where slope gradient changes 
drastically. The slope factor is derived from GIS 
by identifying the maximum rate of change in 
value from each cell to its neighbors[27]. Following 
this method, discrepancy appears when calculated 
from different resolution DEMs[28,29], shown in 
Figure 6 in detail. The slope of the central point in 
different resolution DEMs was calculated with the 
same algorithm. But the result varied a lot, from 0° to 53.2°. In this study, thus, the central cell will 
be classified into different categories. And this will inevitably influence the LIV a lot.  

 

 

Figure 6  Slope variance with data resolution. 

Figure 5(h) shows the spatial distribution of LIV difference of aspect factor. It is quite clear that 
the LIV difference of aspect factor is the largest in flat area, which is classified as category D9 in 
Table 1 where there is no aspect available due to very small slope value 0°―2°, with a value of 
−0.4475 (Table 3). The reason for this is the generalization effect of DEMs with different resolu-
tions. With 90 m resolution and 150 m resolution, the areas in category D9 are 3.1 and 4.9 km2 

respectively, with a difference of 1.8 km2, being 58% of 3.1 km2. It means that some areas that 
are not flat with resolution of 90 m become flat with resolution of 150 m due to the generalization 
effect. This will cause the landslide occurrences in the D9 category with 150 m resolution may be 
changing to other categories with 90 m resolution, which inevitably affect the LIV of this cate-
gory significantly. 

Table 3  Statistics of information difference in different slope ranges (90 m resolution DEM) 
Slope range Area (km2) LIV difference mean LIV difference STD LIV difference sum 

0°―2° 134.8 −0.4475 1.3550 −2683.9100 
2°―6° 97.6 −0.0179 0.3926 −78.1513 

6°―15° 68.6 −0.0184 0.1509 −55.2663 
15°―45° 40.2 −0.0423 0.1387 −75.2527 
45°―90° 1.3 −0.0610 0.1740 −3.53898 

 
From the above analysis, we can now conclude that in landslide information model the land-

form factors, such as elevation, aspect, and slope, are more sensitive to resolution than other fac-
tors, such as hydrology, fault, lithology, and human activity, for landform parameters derivation 
are more prone to resolution and the change of parameters with different resolutions will inevita-
bly change the categories of some landside occurrences. This conclusion can also be supported by 
a further STD analysis (Table 4). For each factor, we calculated the STD of the LIV of every cell 
with different resolutions. To be convenient, the analysis was based on the cells of the 5 m reso-
lution grid. 

Figure 7 is the distribution map of difference of comprehensive LIV between 90 and 150 m 
resolutions. It can be seen from the Figure 7 that large difference appears mainly in flat terrain, as 
well as ridge or foot of the slope in mountain area. On the sloping surface, where the slope gradient 
changes gently, the information difference is relatively small. Three large-scale landslides and their 
3D view are also given in Figure 7. 
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Table 4  STD analysis of each factor 
Factor Mean Min Max 

Elevation 0.2567 0.0391 1.4974 
Aspect 0.2554 0.0382 1.8905 
Slope 0.1682 0.0958 1.3953 
Fault 0.0825 0.0193 0.2345 

Hydrology 0.0785 0.0455 0.1625 
Land cover 0.0732 0.0332 2.0497 

Human activity 0.0542 0.0142 0.2308 
Lithology 0.0335 0 0.3042 

 

 
Figure 7  Difference of comprehensive LIV. 

Applying the above analysis method to study areas of different sizes (as mentioned in part 1, 
areas A to J, with area sizes of 342, 300, 261, 224, 190, 159, 135, 105, 82 and 62 km2 respectively), 
the relationship between the size of study area and its optimal resolution is studied. It has been 
found that the optimal resolution varies along with area sizes (Figure 8). A stable optimal resolu-
tion cannot be achieved in study areas with sizes less than 135 km2, i.e., areas G to J (62 to 105 km2). 
In these study areas we can see that differences between multi-resolution results are getting smaller 
and the average accuracy is rising with the study area enlarging. However, for the study areas with 
size of 135 km2 or more, i.e. areas A to F, the optimal resolution stands steady at 90 m (Figure 8), 
which is very close to the average slope scale in the study area, 83.31 m (but we are not sure if 
this is coincident or there is an undiscovered rule). So, we can set 135 km2 as a threshold of study 
area size in Shenzhen. 

5  Discussion and conclusions 

(1) It is pretty clear that spatial resolution affects the accuracy of landslide susceptibility map-
ping and the relationship between them is not singly linear. The tendency to use smaller and 
smaller grid-cells appears unjustified. The best resolution shall be determined considering the 
landslide susceptibility mapping accuracy, the amount of data, and the real landslide scale. 
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Figure 8  Multi-resolution results in different study areas. 

 
(2) The resolution effects on LIV in information model are mainly caused by the resolution 

impact on landform parameters derivation, while the resolution effect on other factors like geology 
or human activity is much less significant. Large differences of comprehensive LIV appear in flat, 
ridge, and slope foot areas. On sloping surface the LIV difference is relatively smaller. 

(3) The optimal resolution for landslide susceptibility mapping varies with the size of the study 
area. When the study area is below a threshold, which is 135 km2 in this study, the optimal reso-
lution is not stable and the best landslide susceptibility mapping accuracy increases with the area 
size enlarging. When the size of the study area is larger than the threshold, there will be a steady 
optimal resolution, 90 m, in this study. 

In this study, it has also been found that the optimal resolution for the whole study area (also 
area A), 90 m, is very close to the average slope scale in the area, 83.31 m. We are still not sure if 
this is just coincident or if there is an undiscovered rule of it. Further studies are necessary to 
make this clear.  
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