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Abstract A graph is called edge-transitive if its full automorphism group acts transitively on its edge set. In

this paper, by using classification of finite simple groups, we classify tetravalent edge-transitive graphs of order

p2q with p, q distinct odd primes. The result generalizes certain previous results. In particular, it shows that

such graphs are normal Cayley graphs with only a few exceptions of small orders.
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1 Introduction

Graphs considered in this paper are assumed to be finite, simple, connected and undirected. Given a

graph Γ, denote by V Γ, EΓ and AΓ the vertex set, edge set and arc set of Γ, respectively. The size |V Γ|

is called the order of Γ. Let AutΓ be the full automorphism group of Γ and X a subgroup of AutΓ. Then

Γ is called X-vertex-transitive, X-edge-transitive, or X-arc-transitive, if X is transitive on V Γ, EΓ or

AΓ, respectively. Moreover, Γ is called half-transitive if AutΓ is transitive on V Γ and EΓ but not on AΓ.

Let val(Γ) denote the valency of Γ. If val(Γ) = 4, then Γ is called a tetravalent graph.

Let G be a group and S a subset of G \ {1} such that S = S−1 := {g−1 | g ∈ S}. The Cayley graph

on G with respect to S is defined with vertex set G and two vertices x and y are adjacent if and only if

yx−1 ∈ S. We denote this Cayley graph by Cay(G,S). It is well known that a graph Γ can be viewed

as a Cayley graph of a group G if and only if AutΓ contains a subgroup which is regular on V Γ and

isomorphic to G, see [2, Proposition16.3]. For an X-edge-transitive graph with X 6 AutΓ, if X contains

a normal subgroup G that is regular on V Γ, then Γ is called an X-normal edge-transitive Cayley graph

of G. Normal edge-transitive Cayley graphs have some nice properties, see [15, 18, 21, 23].

Tetravalent graphs have received much attention in the literature. For example, a classification of

tetravalent arc-transitive abelian Cayley graphs is given in [33], and some characterizations of tetravalent

edge-transitive nonabelian Cayley graphs are obtained in [8, 16, 17]. Let p, q be distinct primes. Some

characterizations of tetravalent graphs of order 4p are obtained in [11,36], and tetravalent half-transitive

graphs of orders p3 and p4 are classified in [10,34], respectively. More recently, a classification of tetrava-

lent half-transitive graphs of order 2pq is presented in [9]. In this paper, we shall classify tetravalent

edge-transitive graphs of order p2q with p, q distinct odd primes.
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Throughout the paper, we always use the following notation. For a positive integer n, denote by Zn,

D2n, An and Sn the cyclic group of order n, the dihedral group of order 2n, the alternating group and

the symmetric group of degree n, respectively. For two groups N and H , denote by N.F an extension

of N by H , by N :H a semi-direct product of N by H , and by N ×H the direct product of N and H .

Moreover, for a group X and a subgroup H ⊆ X , we denote by CX(H) and NX(H) the centralizer and

normalizer of H in X , respectively.

This paper is organized as follows. After this introduction, we give some preliminary results on both

graph theory and group theory in Section 2, and then construct some examples in Section 3. By proving

some technical lemmas in Section 4, we finally present the classification in Section 5.

2 Preliminaries

In this section, we quote some preliminary results which will be used in the subsequent sections.

2.1 Some graph-theoretic results

Let Γ = Cay(G,S) be a Cayley graph of a groupG. Let Ĝ = {ĝ | ĝ : x 7→ xg, for all g, x ∈ G}, Aut(G,S) =

{σ ∈ Aut(G) | Sσ = S}. Then both Ĝ and Aut(G,S) are subgroups of AutΓ. For convenience, we denote

the regular subgroup Ĝ still by G.

Lemma 2.1 (See [12, Lemma 2.1]). Let Γ = Cay(G,S) be a Cayley graph. Then the normalizer

NAutΓ(G) = G:Aut(G,S).

Let X be a group, H a core-free subgroup of X (i.e., H contains no nontrivial normal subgroup of X),

and S a subset of X \ {1}. Then the coset graph, denoted by Cos(X,H,HSH), is defined with vertex

set [X : H ] = {Hx | x ∈ X} such that Hx is adjacent to Hy if and only if yx−1 ∈ HSH . The following

lemma is known, refer to [26].

Lemma 2.2. Let Γ be an X-vertex-transitive and X-edge-transitive graph with X 6 AutΓ. Then Γ ∼=

Cos(X,Xα, Xα{g, g
−1}Xα) for some g ∈ X and α ∈ V Γ, and Γ is connected if and only if 〈Xα, g〉 = X.

Furthermore, if Γ is X-arc-transitive, then Γ ∼= Cos(X,Xα, XαfXα) with f a 2-element of X such that

f2 ∈ Xα.

For a graph Γ and a positive integer s, an s-arc of Γ is a sequence (v0, v1, . . . , vs) of vertices such that

vi−1, vi are adjacent for 1 6 i 6 s and vi−1 6= vi+1 for 1 6 i 6 s − 1. A graph Γ is called (X, s)-arc-

transitive, where X 6 AutΓ, if X is transitive on the set of s-arcs of Γ. If Γ is (X, s)-arc-transitive but

not (X, s+1)-arc-transitive, then Γ is called (X, s)-transitive. In particular, an (AutΓ, s)-transitive graph

is simply called s-transitive.

The following result characterizes the vertex stabilizers of tetravalent edge-transitive graphs of odd

order, refer to [30] or [17, Lemma 2.5], which will play an important role in our later discussion.

Lemma 2.3. Let Γ be a tetravalent X-edge-transitive graph of odd order, where X 6 AutΓ. Let

α ∈ V Γ. Then either

(1) Xα is a 2-group, and Γ is X-half-transitive or (X, 1)-transitive; or

(2) Γ is (X, s)-transitive with 2 6 s 6 3, and |Xα| | 144. Furthermore, the pair (s,Xα) satisfies the

following table:

s 2 3

Xα A4 6 Xα 6 S4 A4 × Z3 6 Xα 6 S4 × S3

Lemma 2.3 has the following corollary.

Corollary 2.4. Let Γ be a tetravalent X-edge-transitive graph of odd order, where X 6 AutΓ. If X

is insoluble, then Γ is not an X-normal edge-transitive Cayley graph.

Proof. In fact, if Γ : = Cay(G,S) is an X-normal edge-transitive Cayley graph, then G �X is soluble

as |G| = |V Γ| is odd. Now, because X = G:Xα is insoluble, where α ∈ V Γ, we conclude that Xα is

insoluble, which is not possible by Lemma 2.3.
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A typical method for studying vertex-transitive graphs is taking certain quotients. Let Γ be an X-

vertex-transitive graph with X 6 AutΓ. Suppose that X has a normal subgroup N which is intransitive

on V Γ. Let V ΓN denote the set of N -orbits in V Γ. Then the normal quotient graph of Γ induced by N ,

denoted by ΓN , is defined with vertex set V ΓN such that two vertices B,C ∈ V ΓN are adjacent if and

only if some α ∈ B is adjacent in Γ to some β ∈ C. If Γ and ΓN have the same valency, then Γ is called

a normal cover of ΓN .

The following theorem provides a basic method for studying 2-arc-transitive graphs [22, Theorem 4.1].

Theorem 2.5. Let Γ be an (X, 2)-arc-transitive graph, and let N � X have at least three orbits on

V Γ, where X 6 AutΓ. Then N is semiregular on V Γ, X/N 6 Aut(ΓN ), ΓN is (X/N, 2)-arc-transitive

and Γ is a normal cover of ΓN .

For a reduction, we need some information of certain tetravalent edge-transitive graphs of order a

product of two distinct odd primes.

Lemma 2.6. Let Γ be a tetravalent edge-transitive graph of order pq, where p < q are odd primes.

Suppose AutΓ is insoluble. Then the triple (pq,AutΓ, (AutΓ)α) lies in the following Table 1, where

α∈V Γ.

Table 1 Tetravalent edge-transitive graphs of order a product of two distinct primes

pq transitivity AutΓ (AutΓ)α

15 1-transitive S5 Z2
2

21 1-transitive PGL(2, 7) D16

35 3-transitive S7 S4 × S3

55 2-transitive PGL(2, 11) S4

253 2-transitive PSL(2, 23) S4

Remark on Lemma 2.6. Since |V Γ| = pq is odd, Γ is vertex-transitive. By [1,28], no tetravalent edge-

transitive graph of order pq is half-transitive, so Γ is arc-transitive. Furthermore, if p = 3, by [29, p. 215,

Theorem], all tetravalent arc-transitive graphs of order 3q are either as in rows 1, 2 of Table 1, or

isomorphic to the graph G(3q, 2) (see [29, p. 204] for the definition of the graph). However, by [29,

Example 3.4], Aut(G(3q, 2)) ∼= Zq:Z2.S3 is soluble, a contradiction. For the case p > 5, Γ lies in Rows 3–5

of Table 1 by [24, Section 4] and [25, p. 248, Table 1].

2.2 Some group-theoretic results

Lemma 2.7 (See [14, Chapter I, Theorem 4]). The quotient group NX(H)/CX(H) is isomorphic to a

subgroup of the automorphism group of H.

For a given group X , its Fitting subgroup is the largest nilpotent normal subgroup of X . Obviously,

the Fitting subgroup of X is a characteristic subgroup of X .

Lemma 2.8 (See [27, p. 30, Corollary]). Let F be the Fitting subgroup of a group X. If X is soluble,

then F 6= 1 and CX(F ) 6 F .

From a classification of transitive permutation groups of prime degree [6, p. 99], we have the following

lemma.

Lemma 2.9. Let X 6 Sym(Ω) be a transitive permutation group of prime degree p. Then either

X 6 Zp:Zp−1 is affine, or X is almost simple and 2-transitive on Ω.

The next result slightly generalizes [31, Theorem 3.4], and the proof is similar and thus omitted.

Lemma 2.10. Let X 6 Sym(Ω) be a transitive permutation group on Ω, and let pm be a divisor of

|αX |, where α ∈ Ω and p is a prime. If X has a subgroup H such that (p, |X : H |) = 1, then pm divides

|αH |. In particular, if (|Ω|, |X : H |) = 1, then H is transitive on Ω.

Let X = N.H be an extension of N by H . If N 6 Z(X), the center of X , then X = N.H is called a

central extension. A group X is called perfect if X = X ′, the commutator subgroup of X . For a given



296 Pan J M et al. Sci China Math February 2014 Vol. 57 No. 2

group H , if N is the largest abelian group such that X : = N.H is perfect and the extension is a central

extension, then N is called the Schur Multiplier of H , denoted by Multi(H). The Schur multipliers of all

finite simple groups are known, see [13, p. 302].

The following lemma is probably known. For the completeness of the paper, a proof is given.

Lemma 2.11. Let N be a group of order a prime or a prime square. Let T be a nonabelian simple

group. Then X : = N.T is a central extension. Moreover, X = NX ′ and X ′ = H.T , where H 6 N and

H 6 Multi(T ).

Proof. We first prove that X = N.T is a central extension. If N is a cyclic group, the result is known.

Suppose that N is not cyclic. Then N ∼= Z2
p for some prime p. Let C = CX(N). Then N 6 C and

C �X . Since C/N �X/N ∼= T , we have that either C/N = 1 or C/N = X/N . For the former, C = N ,

then Lemma 2.7 implies T ∼= X/C 6 Aut(N) ∼= GL(2, p). However, by [7, Lemma 2.7], GL(2, p) has no

nonabelian simple subgroup, a contradiction. Thus, C = X , i.e., N ⊆ Z(X), as required.

Now, since X is insoluble, we have X ′ 6⊆N . Then as 1 6= NX ′/N �X/N ∼= T , it follows that X = NX ′

and X ′ = (NX ′)′ = X ′′. Let H = X ′ ∩N . Then H 6 N , X ′/H = X ′/(X ′ ∩N) ∼= X ′N/N = X/N ∼= T

and H ⊆ X ′ ∩ Z(X) = Z(X ′). Hence H 6 Multi(T ) by the definition of the Schur multiplier.

3 Constructions

In this section, we construct some examples which will appear in Theorem 5.3 in Section 5. First, with

the use of [3], one may check up the following example.

Example 3.1. Let G = PSL(2, 17). Then G has a maximal subgroup H ∼= D16 and an involution

g such that |H :H ∩ Hg| = 4 and 〈H, g〉 = G. The coset graph Cos(G,H,HgH), denoted by G153, is

a tetravalent arc-transitive graph of order 153. Furthermore, each tetravalent edge-transitive graph of

order 153 admitting G as an edge-transitive automorphism group is isomorphic to G153.

The following lemma gives a general construction of normal edge-transitive tetravalent Cayley graph

of order p2q, where p, q are distinct odd primes.

Lemma 3.2. Let Γ = Cay(G,S) be an X-normal edge-transitive tetravalent Cayley graph of order p2q,

where p, q are distinct odd primes. Let 1 denote the vertex of Γ corresponding to the identity element of

G. Then either

(i) Γ is (X, 1)-transitive, and S = {a, aσ, aσ
2

, aσ
3

}, where σ ∈ Aut(G) is of order 4; or

(ii) X1 6 Z2
2 and S = {a, aτ , a−1, (a−1)τ}, where τ ∈ Aut(G) is an involution.

Proof. By Lemma 2.1, X1 6 Aut(G,S). Since Γ is connected, 〈S〉 = G and then X1 acts faithfully on

Γ(1) = S, which implies X1 6 S4. If 3 | |X1|, then Γ is (X, 2)-arc-transitive by Lemma 2.3, so X1 is

2-transitive on S. It follows that elements in S are involutions for otherwise an element in S with the

order bigger then 2 and its inverse would form a nontrivial block of X1 on S. However, as |G| = p2q is

odd, G has no involution, which is a contradiction.

Thus, X1 is a 2-group and hence X1 6 D8. Let a ∈ S. If X1 > 〈σ〉 ∼= Z4, then 〈σ〉 is regular on S,

hence S = {a, aσ, aσ
2

, aσ
3

}, part (i) holds. If X1 6 Z2
2, then there exists an involution τ ∈ X1 such that

aτ 6= a or a−1, it follows that S = {a, aτ , a−1, (a−1)τ}, part (ii) holds.

By Lemma 3.2, more specific constructions of the graphs depend on the automorphism group of group

G. Since there are dozens of isomorphic classes of groups with order p2q (refer to [35, p. 317] for p < q

and [4] for p > q), it is inconvenient to give specific constructions case by case. Here, we determine the

graphs where G is a Frobenius group.

Example 3.3. Let Γ = Cay(G,S) be an X-normal edge-transitive tetravalent Cayley graph of a

group G, and let G = 〈a〉:〈b〉 ∼= Zm:Zn be a Frobenius group, where (m,n) = (p2, q) or (q, p2) with p, q

distinct odd primes. Then Γ is X-half-transitive, and S = {bk, (bk)τ , b−k, (b−k)τ}, where τ ∈ Aut(G) is

an involution, (k, n) = 1, and 1 6 k 6 (n− 1)/2.
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Proof. Since G is a Frobenius group, G is center-free. Then, as 〈a〉 ∼= Zm is a characteristic subgroup

of G, it is easy to show that Aut(G) ∼= Zm:Zφ(m), where φ(m) is the Euler phi-function, and each

σ ∈ Aut(G) has a presentation σ : a → ai, b → ajb, where (i,m) = 1, 1 6 j 6 m. In particular, there is

no automorphism of G which maps b to b−1.

Now, by the normality of Γ, G�X and so X1 6 Aut(G,S) by Lemma 2.1. As X is transitive on EΓ,

X1 has at most two orbits on Γ(1), and S = {s1, s
−1
1 }X1 for some s1 ∈ S, where 1 denotes the vertex of Γ

corresponding to the identity element of G. It follows that each element in S has the same order n. Since

n = q or p2, and Sylow p- or Sylow q-subgroups of G are conjugate, s1 is conjugate to bk for some k which

is coprime to n. Then as Cay(G,S) ∼= Cay(G,Sπ) for each π ∈ Aut(G), we may assume that bk ∈ S.

Then as b−k ∈ S, we may also assume that 1 6 k 6 (n − 1)/2. Furthermore, as G = 〈a〉:〈bk〉, there is

no σ ∈ Aut(G) such that σ(bk) = b−k, which follows that X1 6 Aut(G) is not transitive on S. Thus, Γ

is X-half-transitive, and by Lemma 3.2, S = {bk, (bk)τ , b−k, (b−k)τ} for some involution τ ∈ Aut(G), as

required.

4 A few technical lemmas

For later discussion, we prove several technical lemmas in this section.

Lemma 4.1. Let X = D2m be a dihedral group. Then X has a 2-transitive permutation representation

on a set Ω with |Ω| > 3 if and only if 3 | m and |Ω| = 3.

In particular, a dihedral group has no 2-transitive permutation representation of degree 4.

Proof. Suppose that X acts 2-transitively on Ω. Then the induced permutation groupXΩ is 2-transitive.

Since X = D2m, XΩ ∼= Zn:Z2 for some n | m, it then follows easily that |Ω| = n = 3.

Conversely, if 3 | m, let H be a subgroup of X such that H ∼= D2m/3 and let ∆ = [X : H ]. Then

|∆| = 3 and X acts 2-transitively on ∆ by the coset action.

The next two lemmas give some properties of tetravalent graphs.

Lemma 4.2. Suppose that X is an insoluble group and p > 5 is a prime. Then there is no tetravalent

X-edge-transitive graph of order p2.

Proof. Suppose, by contradiction, that Γ is a tetravalent X-edge-transitive graph of order p2. Let

α ∈ V Γ. Since val(Γ) = 4, Xα is a {2, 3}-group. Then as |X | = p2|Xα| and X is insoluble, we have 3

divides |Xα|, it then follows from Lemma 2.3 that Γ is (X, 2)-arc-transitive.

Now, by [19, Corollary 1.2(ii)], Γ is a normal cover of ΓN = Kl
pm , where N � X , lm 6 2, and Kl

pm

denotes the l-terms direct product of the complete graph Kpm . Then 4 = val(Γ) = val(Kl
pm) = (pm−1)l,

which implies p = 5, N ∼= Z5 and m = l = 1, i.e., ΓN
∼= K5. Since X = N.(X/N) 6 Z5.S5 is insoluble,

X ∼= Z5.A5 or Z5.S5. Since Multi(A5) = Z2, we have X = Z5 × A5 or (Z5 × A5).Z2. In particular, X

always has a normal subgroup M such that M ∼= A5. If M has at least three orbits on V Γ, then M is

semiregular on V Γ by Theorem 2.5, which implies |M | = |A5| divides |V Γ| = 25, not possible. Thus, as

|V Γ| is odd, M is transitive on V Γ, which is also not possible.

Lemma 4.3. Let Γ be a tetravalent X-edge-transitive graph with odd but not a prime power order,

where X 6 AutΓ. Suppose that N is a nilpotent normal subgroup of X. Then N is semiregular on V Γ.

Proof. Since N is nilpotent, we may suppose that N = N1 × · · · ×Ns, where Ni is a Sylow pi-subgroup

of N for 1 6 i 6 s. Since |V Γ| is odd, pi 6= 2 for each i. Let α ∈ V Γ.

It is sufficient to prove that each Ni is semiregular on V Γ. If there is some Ni which is not semiregular

on V Γ, as pi 6= 2, (Ni)α 6= 1 is not a 2-group, so is Xα. By Lemma 2.3, Γ is (X, 2)-arc-transitive. Now,

as |V Γ| is not a prime power, Ni has at least three orbits on V Γ, it then follows from Theorem 2.5 that

Ni is semiregular on V Γ, a contradiction.

The following lemma classifies certain simple groups, which will be used later.

Lemma 4.4. Let T be a nonabelian simple group such that |T | divides 144p2q, where p, q are distinct

odd primes. Then the triple (T, |T |,Out(T )) lies in the following table:
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Table 2 Nonabelian simple groups of order dividing 144p2q

3-Prime factor 4-Prime factor

T |T | Out(T ) T |T | Out(T )

A5 22 · 3 · 5 Z2 A7 23 · 32 · 5 · 7 Z2

A6 23 · 32 · 5 Z2
2 M11 24 · 32 · 5 · 11 1

PSL(2, 7) 23 · 3 · 7 Z2 PSL(2, 16) 24 · 3 · 5 · 7 Z4

PSL(2, 8) 23 · 32 · 7 Z3 PSL(2, 25) 23 · 3 · 52 · 13 Z2
2

PSL(2, 17) 24 · 32 · 17 Z2 PSL(2, r) (r = p or q)
r(r2−1)

2
Z2

PSL(3, 3) 24 · 33 · 13 Z2

Proof. If |T | has exactly three prime factors, by [13, pp. 12–14], T lies in Column 1 of the table.

Suppose that |T | has four prime factors in the following. Then p, q > 5. If T is a sporadic simple

group, T = M11 by [13, pp. 135–136]. If T = Am is an alternating group, then 7 6 m 6 10, it then easily

follows that T = A7.

Now, suppose T = X(t) is a Lie group, where X is one type of Lie groups, and t = rd is a prime power.

If r = 2, as 25 ∤ |T |, it is easy to show that T = PSL(2, 16) by [13, pp. 135–136].

Assume r > 3. If T 6= PSL(2, t), by [13, pp. 135–136], we always have t3 divides |T | = |X(t)|, which

contradicts that |T | | 144p2q. So T = PSL(2, rd) and d 6 2. If r = 3, because PSL(2, 3) is not a simple

group and PSL(2, 9) ∼= A6, which are not the cases. Suppose r > 3. Then r = p or q. If d = 1, then

T = PSL(2, r) as in Row 5 of Column 4 of the table. If d = 2, then |T | = 1
2r

2(r2 − 1)(r2 + 1), so r = p

and (r2−1)(r2+1)
2 | 144q. Since (r2 − 1, r

2+1
2 ) = 1 and r2+1

2 is odd and does not divide 9, we conclude that
r2+1
2 = q and hence (r2 − 1) | 144. This implies that r = 5 and T = PSL(2, 25).

Finally, the outer automorphism groups of the groups in Table 2 follow directly by [5].

Remark on Lemma 4.4. If T is a nonableian simple group such that |T | has exactly three prime

factors, then either T lies in the column 1 of Table 2, or T = PSU(3, 3) or PSU(4, 2), see [13, pp. 12–14].

5 Classification

From now on, we always use the following convention: Let Γ be a tetravalent X-edge-transitive graph of

order p2q, where X 6 AutΓ and p, q are distinct odd primes.

Since |V Γ| is odd, X is transitive on V Γ. Let α ∈ V Γ. Then Xα is a {2, 3}-group, and hence X is

a {2, 3, p, q}-group. Obviously, X has no nontrivial normal 2-subgroup, and if p, q > 3, then X has no

nontrivial normal 3-subgroup.

We first treat the case where X is insoluble. For convenience, for a positive integer m = pr11 pr22 · · · prss
and a subset φ of {p1, p2, . . . , ps}, where p1, p2, . . . , ps are distinct primes, we denote mφ =

∏
pi∈φ p

ri
i .

Lemma 5.1. Suppose that X is insoluble. Then one of the following holds:

(1) Γ is of order 45, 63, 75 or 147;

(2) X is almost simple.

Proof. Let N be the socle of X , denoted by soc(X), the product of all minimal normal subgroups of X .

Let M be the soluble radical of X , the largest normal soluble subgroup of X . Let α ∈ V Γ. Because Xα

is a {2, 3}-group, we may suppose that |X | = 2i3jp2q for some integers i, j.

Case 1. AssumeM = 1. Then each nontrivial normal subgroup ofX is insoluble, by [6, Theorem 4.3A],

N = M1 × · · · × Ms, where M1, . . . ,Ms are the all minimal normal subgroups of X . Suppose that

Mk = T dk

k , where Tk is a nonabelian simple group and 1 6 k 6 s.

If Xα is a 2-group or p = 3, then N is a {2, p, q}-group with |N |q = q, obviously N is a simple group

and X is almost simple, part (2) holds. Thus suppose that 3 divides |Xα| and p > 3 in the following. By

Lemma 2.3, |Xα| divides 144, and hence i 6 4 and j 6 2. Furthermore, each Tk lies in Table 2 as |Tk|

divides 144p2q.
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Subcase 1.1. Suppose q = 3. Then |X | = 2i3j+1p2 with p > 5. So s 6 2, and Ti lies in Column 1

of Table 2. In particular, |Ti|p = p and (|Out(Ti)|, p) = 1. If N is a simple group, then CX(N) = 1 and

X 6 Aut(N) = N.Out(N), which implies that p2 does not divide |X |, a contradiction. Thus N is not a

simple group and p2 divides |N |. By Lemma 2.10, p2 divides |αN | = |N :Nα|.

Assume s = 1. Then N = T 2
1 , and T1 lies in column 1 of Table 2. If T1 6= A5, then 23 | |T1|, implying

26 | |N |, which is not possible. Suppose T1 = A5. Then p = 5 and |V Γ| = 75. Since N is the unique

minimal normal subgroup of X , CX(N) = 1, by [6, Exercise 4.3.9] we have X : = N.O 6 Aut(N) = S5 ≀Z2.

It then follows from Lemma 2.10 that N = A2
5 is transitive on V Γ, and hence |Nα| = |N |/|V Γ| = 48.

Furthermore, as Xα/Nα = Xα/(Xα ∩ N) ∼= XαN/N = X/N ∼= O, |O| | 8, and by Lemma 2.3, 32 does

not divide |Xα|, we conclude that |Xα| = |Nα| = 48, which is not possible by Lemma 2.3.

Assume next s=2. ThenN = M1×M2=T1×T2. If T1
∼=T2, then arguing as above, one may draw a con-

tradiction. Suppose T1 6∼=T2. Since Nα > (T1)α × (T2)α, we have that |N :Nα| divides |T1:(T1)α||T2:(T2)α|,

which follows that p divides both |T1:(T1)α| and |T2:(T2)α|. Furthermore, as |T1:(T1)α| divides |N :Nα|,

and |N :Nα| divides 3p2, we obtain that |T1:(T1)α| = p or 3p. Similarly, |T2:(T2)α| = p or 3p, i.e., T1

and T2 have a subgroup with index p or 3p. Checking the candidates in Column 1 of Table 2, by [5], we

conclude that T1 and T2 lie in {A5,A6,PSL(2, 7),PSL(3, 3)}. If Tk = PSL(3, 3) with k = 1 or 2, then 34

divides |N |, not possible; if Tk = PSL(2, 7), then p = 7, and as |T1|p = |T2|p we have T1
∼= T2, not the

case. Thus {T1, T2} = {A5,A6}, p = 5 and |V Γ| = 75. Now, noting that |N |{3,5} = |X |{3,5} = 33 · 52,

by Lemma 2.10, N = A5 × A6 is transitive on V Γ, so |Nα| = |N |/|V Γ| = 288, which is impossible by

Lemma 2.3.

Subcase 1.2. Suppose p, q > 3. Then |X |{p,q} = p2q and s 6 3. Assume s = 1. Then N = T d1

1

and d1 6 2. If d1 = 2, then T1 is an {2, 3, p}-group, and lies in Column 1 of Table 2. However,

as (|Out(T1)|, q) = 1 and X 6 N.(Out(T1) ≀ S2), we conclude that q does not divide |X |, yielding a

contradiction. So d1 = 1 and X is almost simple.

Assume s = 2. Suppose first that both |M1| and |M2| have exactly three prime factors. Then T1, T2 lie

in Column 1 of Table 2 and in particular (|Out(Ti)|, pq) = 1. It is then easy to show that |N |{p,q} = p2q as

|X |{p,q} = p2q. Without lose of generality, we may suppose that T1 is a {2, 3, p}-group and T2 is a {2, 3, q}-

group. Then M1 = T 2
1 and M2 = T2. By Lemma 2.3, we have |T2:(T2)α| = q, and |M1:(M1)α| = p2,

which implies that |T1:(T1)α| = p and (M1)α = (T1)
2
α. Now, noting that |(Tk)α| with 1 6 k 6 2 has two

prime divisors and Nα > (T1)
2
α × (T2)α, it is not possible by Lemma 2.3.

Suppose now that |M1| has four prime factors and |M2| has exactly three prime factors. Then M1 =

T1, M2 = T2, and p2q divides |N |, so N is transitive on V Γ by Lemma 2.10. Then, because p2q =

|N :Nα| divides |T1:(T1)α||T2:(T2)α|, and |(Tk)α| divides |N :Nα| = p2q, we conclude that |T1:(T1)α| = pq,

|T2:(T2)α| = p and Nα = (T1)α × (T2)α. Since T2 lies in column 1 of Table 2 and |T2:(T2)α| = p, we

have T2 = A5,PSL(2, 7) or PSL(3, 3), and (T2)α = A4, S4 or (32:2S4)
2, respectively. Now, by Lemma 2.3,

(T1)α × (T2)α = Nα 6 S4 × S3, we have (T1)α 6 S3. It follows that |T1| = |(T1)α||T1:(T1)α| divides 6pq,

hence T1 is soluble, a contradiction.

Finally, assume s = 3. Then N = T1 × T2 × T3, where T1, T2 are {2, 3, p}-groups and T3 is a {2, 3, q}-

group. It follows that |T1:(T1)α| = |T2:(T2)α| = p and |T3:(T3)α| = q. Noting that (T1)α, (T2)α and (T3)α
are not 2-groups, and Nα > (T1)α × (T2)α × (T3)α, it is not possible by Lemma 2.3.

Case 2. Assume M 6= 1. Let F be the Fitting subgroup of M . Then F �X and F 6= 1 by Lemma 2.8.

We consider ΓF . Let K be the kernel of X acting on V ΓF . Then K = FKα, and hence K is soluble

as Kα is soluble by Lemma 2.3. If val(ΓF ) = 2, then ΓF is a cycle and X/K 6 Aut(ΓF ) = D2m, where

m = |V ΓF |. However, as K is soluble, X is soluble, which is not the case. Thus, val(ΓF ) = 4. Then

K = F and X/F 6 Aut(ΓF ). Further, by Lemma 4.3, F is semiregular on V Γ and hence |F | divides p2q.

If |F | = p2q, then Γ is an X-normal edge-transitive Cayley graph of F , which is not possible by

Lemma 2.4.

Suppose |F | = q. Then ΓF is a tetravalent X/F -edge-transitive graph of order p2. If p = 3, then

|V ΓF | = 9, by [20], ΓF = DW (3, 3) is a deleted wreath graph and Aut(ΓF ) = Z2
3:D8. It follows that Γ is

a tetravalent X-normal edge-transitive Cayley graph of a group isomorphic to Zq:Z
2
3, which is impossible
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by Lemma 2.4. If p > 5, then as X/F is insoluble, a contradiction occurs by Lemma 4.2.

Suppose next |F | = pq. Then F ∼= Zpq and X/F is a permutation group of prime degree p. By

Lemma 2.9, either X/F 6 Zp:Zp−1 is an affine group or X/F is 2-transitive on V ΓF . For the former

case, Γ is an X-normal edge-transitive Cayley graph of a group isomorphic to Zpq:Zp, which is not

possible by Lemma 2.4. Thus, X/F is 2-transitive on V ΓF and so ΓF = Kp. Since val(ΓF ) = 4, p = 5.

As X/F 6 Aut(K5) = S5 is insoluble, we have X ∼= Z5q.A5 = Z5q × A5 or Z5q.S5 = (Z5q × A5).Z2,

and Xα
∼= A4 or S4, respectively. Hence X always has a normal subgroup Y isomorphic to A5, and Γ is

(X, 2)-arc-transitive by Lemma 2.3. If Y has at least three orbits on V Γ, then Theorem 2.5 implies that

Y is semiregular on V Γ, which is not possible as |V Γ| is odd. Thus, Y is transitive on V Γ. However, as

|V Γ| = 25q does not divide |Y | = 60, this is also not possible.

For the case that |F | = p2, arguing as above, we have that q = 5, ΓF
∼= K5 and X/F = A5 or S5. Let

Z = F.A5 6 X . By Lemma 2.11, Z = F.A5 is also a central extension. Then, one may easily draw a

contradiction with the same discussion as above.

Finally, suppose |F | = p. Then ΓF is a tetravalent X/F -edge-transitive graph of order |V ΓF | = pq.

So ΓF satisfies Table 1 in Lemma 2.6. If pq = 15 or 21, then |V Γ| = 45, 63, 75 or 147, (1) of Lemma 5.1

holds.

We consider Rows 3–5 of Table 1. If pq = 35 as in Row 3, then X/F 6 Aut(ΓF ) = S7. Noting

that X/F is insoluble, and since X/F is edge-transitive on V ΓF , 70 | |X/F |, we conclude from [5] that

X/F > A7. Similarly, for the cases where pq = 55 or 253, as in Rows 4 or 5, we have X/F > PSL(2, 11)

or PSL(2, 23), respectively.

Now, let T = soc(X/F ) and let Q be a normal subgroup of X such that Q/F = T . Then T =

A7,PSL(2, 11) or PSL(2, 23). Since Out(T ) = Z2 for each T , X = Q or Q.Z2, it is then easy to show

that Γ is Q-edge-transitive. Furthermore, as |Xα:Qα| 6 2, Qα is not a 2-group, then Lemma 2.3 implies

that Γ is (Q, 2)-arc-transitive. Thus by Lemma 2.2, we may suppose Γ = Cos(Q,Qα, QαfQα) for some

2-element f . Because F ∼= Zp, Q = F.T is a central extension. Since p > 5, Multi(A7) = Z6 and

Multi(PSL(2, 11)) = Multi(PSL(2, 23)) = Z2, by Lemma 2.11, we have Q = F × Q′ and Q′ ∼= T . This

implies that each element of Q\Q′ has order a multiple of p. Now, as p > 5, Qα is a {2, 3}-group, and f is

a 2-element, we conclude that Qα ⊆ Q′ and f ∈ Q′. It follows that 〈Qα, f〉 ⊆ Q′ 6= Q, which contradicts

the connectivity of Γ.

The case where X is soluble is considered by the next lemma.

Lemma 5.2. Suppose that X is soluble. Then Γ is an X-normal edge-transitive Cayley graph.

Proof. Since Xα is a {2, 3}-group, |X | = 2i3jp2q for some integers i, j. Let F be the Fitting subgroup

of X . By Lemma 2.8, F 6= 1, CX(F ) 6 F , and F = Op(X) × Oq(X), where Op(X) and Oq(X) denote

the largest normal p-subgroup and q-subgroup of X , respectively. By Lemma 4.3, F is semiregular on

V Γ and hence |F | divides p2q. In particular, F is abelian and CX(F ) = F .

If F ∼= Zp, then X/F 6 Aut(F ) ∼= Zp−1, it follows that p
2 does not divide |X |, which is not possible.

Assume |Op(X)| = p2. Then the quotient graph ΓOp(X) is an X/K-edge-transitive graph of order q,

where K is the kernel of X acting on V ΓOp(X). Then K = Op(X)Kα. Suppose val(ΓOp(X)) = 4. Then

Kα fixes each neighbour of α in Γ as K fixes each orbit of Op(X) in Γ. Then connectivity of Γ implies that

Kα = 1 and so K = Op(X). As |V ΓOp(X)| = q is a prime, by Lemma 2.9, either X/Op(X) 6 Zq:Zq−1

or X/Op(X) is 2-transitive on V ΓOp(X). For the former case, X has a normal subgroup isomorphic

to Op(X).Zq which is regular on V Γ, Γ is an X-normal edge-transitive Cayley graph. For the latter

case, we have ΓOp(X) = Kq, then as val(ΓOp(X)) = 4, it follows that q = 5 and X/Op(X) 6 S5. Now

since X/Op(X) is soluble, q divides |X/Op(X)| and X/Op(X) is transitive on EΓOp(X), we conclude

that X/Op(X) = Z5:Z2 or Z5:Z4. It follows from Lemma 2.10 that X has a normal subgroup which is

isomorphic to Op(X).Z5 and regular on V Γ. So Γ is an X-normal edge-transitive Cayley graph. Suppose

now val(ΓOp(X)) = 2. Then ΓOp(X): = {B1, B2, . . . , Bq} is a cycle of length q, where Bi is adjacent to

Bi+1 in ΓOp(X) for 1 6 i 6 q−1, so the induced subgraph [Bi, Bi+1] is a cycle of length 2p2. This implies

that Kα 6 Z2, K = Op(X) or Op(X).Z2, and X 6 K.Aut(ΓOp(X)) = K.D2q. It follows that X has a

normal Hall {p, q}-subgroup which is regular on Γ, hence Γ is also an X-normal edge-transitive Cayley
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graph. Assume next that F ∼= Zpq . Then ΓF is an edge-transitive graph of prime order p. With the same

discussion as above, one may prove that Γ is an X-normal edge-transitive Cayley graph isomorphic to

Zpq.Zp.

Finally, we treat the remaining case where F ∼= Zq. Then as p2 divides |X | andX/F 6 Aut(F ) ∼= Zq−1,

we have p2 | (q − 1). If p = 3, ΓF is an edge-transitive graph of order 9. By [20], ΓF = DW (3, 3) is a

deleted wreath graph, and Aut(ΓF ) = Z2
3.D8. It then easily follows that Γ is an X-normal Cayley graph

of a group isomorphic to Zq.Z
2
3.

Suppose p > 5. Let H be a Hall {p, q}-subgroup of X . Then |H | = p2q and (|V Γ|, |X : H |) = 1, by

Lemma 2.10, H is regular on V Γ, that is, Γ is a Cayley graph of H . Furthermore, since F < H and

X/F 6 Zq−1 is abelian, we have H/F �X/F , and so H �X . Hence Γ is an X-normal edge-transitive

Cayley graph of H .

A census (not necessarily complete) of tetravalent edge-transitive graphs of order up to 150 is presented

in [32]. By using [3], we confirmed that the items of the order 45, 63, 75 or 147 in the census are complete.

Now, we are ready to prove the main result of this paper.

Theorem 5.3. Let Γ be a tetravalent X-edge-transitive graph of order p2q, where X 6 AutΓ and p, q

are distinct odd primes. Then one of the following statements holds:

(1) Γ is of order 45, 63, 75 or 147, given in [32]. In particular, there are exactly 17 pairwise non-

isomorphic graphs in this case;

(2) Γ ∼= G153, given in Example 3.1;

(3) Γ = Cay(G,S) is an X-normal edge-transitive Cayley graph, and either

(i) Γ is (X, 1)-transitive, and S = {a, aσ, aσ
2

, aσ
3

}, where σ ∈ Aut(G) is of order 4; or

(ii) X1 6 Z2
2 and S = {a, aτ , a−1, (a−1)τ}, where τ ∈ Aut(G) is an involution.

Proof. If X is soluble, by Lemma 5.2, Γ is an X-normal edge-transitive Cayley graph, it then follows

from Lemma 3.2 that part (3) of Theorem 5.3 holds. Suppose that X is insoluble. Then by Lemma 5.1,

either |V Γ| = 45, 63, 75 or 147, or X is almost simple. For the former, by [32] and the remark before

Theorem 5.3, part (1) of Theorem 5.3 holds. Let α ∈ V Γ. Then |X | = |Xα| · p
2q.

Assume |V Γ| 6= 45, 63, 75 or 147 in the following. Then T : = soc(X) is a nonabelian simple group, and

|T :Tα| divides p
2q. If Tα is a 2-group, then T is a {2, p, q}-group. By the remark on Lemma 4.4, either

T = PSU(3, 3) or PSU(4, 2), or T lies in Table 2. If T = PSU(3, 3), then |T | = 25 · 33 · 7, so 3 | |Tα|, a

contradiction. Similarly, one may prove that T 6= PSU(4, 2). Thus, T lies in Table 2 in this case. If Tα is

not a 2-group, so is Xα and hence |Xα| | 144 by Lemma 2.3. This implies |T | | 144p2q, hence T also lies

in Table 2 by Lemma 4.4.

We consider all the candidates in Table 2. If T = PSL(2, 8), then X = PSL(2, 8) or PSL(2, 8).Z3, and

|X | = 23 ·32 ·7 or 23 ·33 ·7, respectively. This implies (p, q) = (3, 7) and |V Γ| = 63, not the case. Suppose

T 6= PSL(2, 8). By Table 2, we always have (|Out(T )|, pq) = 1, then since X 6 T.Out(T ), we conclude

(p2q, |X :T |) = 1. It then follows from Lemma 2.10 that T is transitive on V Γ. So |T : Tα| = p2q, i.e., T

has a subgroup with index p2q.

We claim that T 6= PSL(2, r), in Column 4 of Table 2. In fact, if T = PSL(2, r), then r = q, and

p2 divides q+1
2 or q−1

2 . If p2 divides q+1
2 , then q − 1 divides |Tα|, so Tα = Dq−1 as PSL(2, q) has no

subgroup with order a proper multiple of (q− 1). Now, as Out(T ) = Z2, X 6 T.Z2 = PGL(2, q), we have

Xα = Dq−1 or D2(q−1). On the other hand, since T has four prime factors, Tα is not a 2-group, it follows

that Γ is (X, 2)-arc-transitive by Lemma 2.3. Hence Xα acts 2-transitive on Γ(α), which is no possible

by Lemma 4.1. Similarly, one may also draw a contradiction if p2 divides q−1
2 . Thus the claim is true.

Furthermore, if T lies in Column 4 of Table 2, as p2q | |T |, the only possibility is T = PSL(2, 25).

Hence, either T = PSL(2, 25), or T lies in Column 1 of Table 2 but T 6= PSL(2, 8). Because T has a

subgroup Tα with index p2q, by [5], the following are all the possibilities of couple (T, Tα):

T PSL(2, 17) PSL(2, 25) PSL(3, 3)

Tα D16 S4 or D24 2.S4
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If T = PSL(3, 3), then as Out(T ) = Z2, 2.S4 6 Xα 6 2.S4.Z2, so |Xα| = 48 or 96, which is not possible

by Lemma 2.3. If T = PSL(2, 25), then Tα
∼= S4 by Lemma 2.3. Using [3], one may easily check out

that no example occurs. Thus, T = PSL(2, 17) and Tα = D16. By Example 3.1, Γ = G153, part (2) of

Theorem 5.3 holds. This completes the proof.
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