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Classification of positively curved homogeneous Finsler spaces:
a new approach in the even dimensional case’
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Abstract: In this paper, we briefly survey the classification of positively curved homogeneous Finsler
manifolds. We propose a new method in the even dimensional case, which proves that an even
dimensional smooth coset space admits positively curved homogeneous Finsler metrics if and only if it
admits positively curved homogeneous Riemannian metrics.
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0 Introduction

0.1 Survey on the classification of positively
curved homogeneous Finsler manifolds
The study on compact Riemannian manifolds
with positive sectional curvature is one of the hottest
projects in geometry and topology. The known exam-
ples are relatively rare and most of them are diffeomor-

phic to homogeneous manifolds. The classification of

W B 497 :2023-10-15
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positively curved homogeneous Riemannian mani-
folds was accomplished in the 1960’ s and 1970 s"'"*.
See references [5-6] for some minor corrections and
[ 7] for a modern proof.

In Finsler geometry, sectional curvature is natu-
rally generalized to flag curvature. So it is important
and natural to classify positively curved homoge-
neous Finsler manifolds, i.e., homogeneous Finsler

manifolds with positive flag curvature. Generally
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speaking, curvatures in Finsler geometry are hard to
calculate, so this project has not been touched for
many years. After 2014, researchers found many cru-
cial techniques in homogeneous Finsler geometry, in-
cluding the homogeneous curvature formula®'", the

submersion technique''"*' , totally geodesic tech-

nique“ﬂ

, etc. Since then, there are many progresses
on the classification of positively curved homoge-
neous Finsler manifolds.

Using the Finsler submersion, normal homoge-
neity and generalized normal homogeneity (i.e., J-ho-
mogeneity) can be defined in Finsler geometry ''*.
All (generalized) normal homogeneous Finsler mani-
folds have non-negative flag curvature and zero S-cur-
vature. In [ 11, 14], the authors proved that a smooth
coset space admits positively curved (generalized)
normal homogeneous Finsler metrics if and only if it
admits positively curved normal homogeneous Rie-
mannian metrics. So the classification list for positive-
ly curved (generalized) normal homogeneous Finsler
manifolds coincides with the following Berger’ s
list "

(1) Compact rank-one symmetric spaces, S" =
SO(n+ 1)/SO(n) with CP" = SU (n+
)/SU (n)U (1)) with HP" = Sp(n+
1)/Sp (n)Sp (1) with n > 0, and OP* = F,/Spin(9);

n>1,

n>0,

(2) Other homogeneous spheres and complex
projective spaces, S* ' = SU (n)/SU (n - 1) with
n>1, §'=U((n)/U(n-1) with n>1, S"'=
Sp(n)/Sp(n-1) with n>0, §*"'=8p(n)U (1)/Sp (n-
HU (1) with >0, S*"'=8p(n)Sp(1)/Sp(n -
1)Sp (1) with n>0, S°=G,/SU (2), S” =Spin(7)/G.,
S”=8pin(9)/Spin(7), and CP™ '=Sp(n)/Sp(n-
HU (1);

(3) Two Berger spaces SU (5)/Sp(2)U (1) and
Sp(2)/SU(2);

(4) SU(3)x SO(3)/U(2) (in Riemannian ge-
ometry, it was missed in reference [ 1] and added by
Wilking “*').

Notice that this list is only complete up to local
isometries. For example, RP" =SO(n+ 1)/0(n)

does not show up because it is locally isometric to the

symmetric S".

Using a homogeneous flag curvature formula
(see Theorem 0.2 below), Xu et al'"?' proved that an
even dimensional smooth coset space admits positive-
ly curved homogeneous Finsler metrics if and only if
it admits positively curved homogeneous Riemannian
metrics. So the classification list for even dimensional
positively curved homogeneous Finsler manifolds co-
incides with Wallach’ s list?' , which consists of
those in Berger’ s list with even dimensions, and
three Wallach spaces, SU (3)/T?, Sp(3)/Sp(1)""
and F,/Spin (8).

The odd dimensional case is the hardest. Until
now, there are only some partial results. If we require
the metric to be reversible, i.e., any tangent vector
has the same length as its opposite, an odd dimen-
sional smooth coset space admits positively curved in-
variant reversible Finsler metrics if and only if one of
the following possibilities happens '"**'*'. Either it ad-
mits positively curved homogeneous Riemannian met-
rics besides those in Berger’s list with odd dimensions,
it could be an Aloff-Wallach space SU (3)/S"™, or it
belongs to a short list of undetermined candidates'"".
If we require its S-curvature to be vanishing, then all
non-Riemannian homogeneous Randers and (a,f)
manifolds with positive flag curvature and zero S-cur-
vature can be classified """,

0.2 A new approach in the even dimensional case

In this paper, we will provide a new proof for
the following main theorem in reference [ 12]:

Theorem 0.1 A smooth even dimensional co-
set space admits positively curved homogeneous Fin-
sler metrics if and only if it admits positively curved
homogeneous Riemannian metrics.

When the authors of [12] proved Theorem 0.1,
they used the following crucial homogeneous flag cur-
vature formula.

Theorem 0.2'' Let (G/H,F) be a homoge-
neous Finsler manifold, and ¢ = ) + m be a reduc-
tive decomposition for G/H. Then for any linearly in-

dependent commuting pair u,vem =7 ,(G/H),

such that gu(u,[u, ln]m)IO, the flag curvature
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K (0, u,u N\ v) satisfies
2, (U (u,v), U (u,v))

2 b
g.(u, 1) g,(v,v) - g,(u, v)
in which g, is the fundamental tensor for the Minkowski

norm F=F (eH,-): m—R, and U (u, v) is determined

by 2gU(U(u, v), w):gu([u, w]m, v)+gu(u,[v, W]m)’

Y wem.

K(o,u,u/\v):

Using Theorem 0.2, the authors of [ 12] proved
the following lemma.

Lemma 0.3'"*'  Suppose (G/H, F) is an even di-
mensional positively curved homogeneous Finsler
space with compact G and H, then there do not exist
a pair of linearly independent roots a and S of g, such
that a and B are not roots of f), and a + B are not
roots of g.

Wallach called the root pair in Lemma 0.3 strong-
ly orthogonal. All compact G/H without strongly or-
thogonal root pairs are classified in [2], which pro-
duces Wallach’ s list. To summarize, whenever Lem-
ma 0.3 is proved, Theorem 0.2 follows after it imme-
diately.

It is not easy task to prove Theorem 0.2 directly
in [12], or to prove Huang’ s homogeneous curva-
ture formula in [ 8]. So we propose a easier shortcut
to Lemma 0.3, which involves the following observa-
tions. Firstly, the flag curvature for a symmetric Fin-
sler space is easy to calculate'"'. In particular, a sym-
metric Finsler S* x S is not positively curved. Sec-
ondly, if Lemma 0.3 is not valid, then we can find a
homogeneous totally geodesic submanifold G’/H’ of
(G/H, F). The submanifold (G’/H’, F') itself is a pos-
itively curved 4-dimensional homogeneous Finsler
space. Thirdly, we use the following theorem.

Theorem 0.4 Suppose that two homogeneous
Finsler manifolds (G,/H,, F,) and (G,/H,, F,) have
the same reductive decomposition g = § + nt, in
which g = Lie(G,) = Lie(G,) and § = Lie(H,)=
Lie (H,),
Minkowski norm F on m, then (G,/H,,F,) and

such that F, and F, induce the same

(G,/H,, F,) are locally isometric.
Analysis the roots of G’/H’, and apply Theorem
126

0.4, we see that (G’/H’, F') is locally isometric to a
symmetric Finsler S* x §?, which is not positively
curved. The contradiction is found.

This paper is scheduled as follows. In Section 1,
we summarize some necessary knowledge for later
discussion. In Section 2, we prove Theorem 0.4 and

then use it to prove Lemma 0.3.
1 Preliminaries

1.1 Minkowski norm and Finsler metric

A Minkowski norm on a real vector space V is a
continuous function F:V — [0, + ) which meets
the following requirements:

(1) Fis positive and smooth on V' \ { 0 };

(2) F(4y) = 2F (). VA= 0,y e V;

(3) The

fundamental tensor

g, (u,v) =

is positive definite for any

%[Fz(y + su+ )]

st
s=1=0

ye V\{0}

A Minkowski norm is Euclidean if and only if its

van-
=0

1
Cartan tensor C (u,v,w) = E[gyﬂw(”v V)]

ishes identically.

A Finsler metric on a smooth manifold M is a
continuous function F:TM — [0, + ©), such that
the restriction of F to TM\0 is smooth and F (x, - ) is
a Minkowski norm for each x € M. Riemannian met-
rics are an important subclass of Finsler metrics,
which only involves Euclidean metrics. That means,
a Finsler metric is Riemannian if and only if its Car-
tan tensor vanishes everywhere.

Let (M, F) be a Finsler manifold. Suppose that
we have x e M, y e T M\ {0}, and a tangent plane
P = span{y, u} C T.M. Then the flag -curvature
K(x,y,P) (or K(x,y,y A\ u)) for the flag triple
(x,y, P) is defined as

gy(Ry(u), u)

g, () g (wu) - g (wy)

When F' is Riemannian, K (x,y, P) is the sectional

K(x,y, P) =

curvature K (x, P). Here R is the Riemann curvature

operator. See reference [19] for its formula and more
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details.
1.2 Homogeneous Finsler manifold and reductive
decomposition

A connected Finsler manifold (M, F) is called
homogeneous if its isometry group / (M, F') acts tran-
sitively on M. Since / (M, F') is a Lie transformation
group, we may present M as G/H, in which G is any
connected Lie subgroup of 7 (M, F') which acts transi-
tively on M.

For a homogeneous Finsler manifold (G/H, F),
we can always find an Ad(H )-invariant linear de-
composition ¢ = ) + m, in which g = Lie(G) and
) = Lie(H). We call it a reductive decomposition.
Usually, we only use the Ad (H )-invariance of a re-
ductive decomposition in the Lie algebra level, i.e.,
[ 5, m] C m. The subspace m can be naturally identi-
fied with the tangent space T, (G/H ) at o = eH, such
that the Ad (H )-action on m coincides with the iso-
tropic H-action on 7,(G/H ). The G-invariant Finsler
metric F' is one-to-one determined by its restriction to
T,(G/H), which is any arbitrary Ad(H )-invariant
Minkowski norm on nt. See reference [ 18] for more
details.

1.3 Symmetric Finsler space and its flag curva-
ture

A connected Finsler manifold (M, F) is called
symmetric if for each x € M, there exists an isometry
s, on (M, F), such that s (x)=x and the tangent
map (s,).: .M — T_M is —id. It can be presented as
a homogeneous Finsler space M = G/H with G =
I (M, F), and it has a Cartan decomposition g = f) +
m ie., a reductive decomposition satisfying
[m, m] C §. Theorem 5.5 in reference [ 18] can be
reformulated as follows.

Theorem 1.1

fold with a connected and simply connected G and a

Let G/H be a homogeneous mani-

connected H. Suppose that it has a Cartan decomposi-
tion ¢ = ) + m. Then any Ad(H )-invariant revers-
ible Minkowski norm on m induces a symmetric Fin-
sler metric on G/H.

Example 1.2 $*x S*=G/H=(SU(2)xSU (2))/
(U(1) x U (1)) has the Cartan decomposition g =

f + m which is orthogonal with respect to the Killing
form of ¢ = a,®a,. Here §) is a Cartan subalgebra of
g, and m = q,, + g, is the linear direct sum of two
Any Ad(H )-invariant

commuting root planes.

Minkowski norm on m is reversible because it is an

(a,, a,) norm "’

, so by Theorem 1.1, any G-invari-
ant Finsler metric on §* x §* is symmetric.

The flag curvature for a Finsler symmetric space
has a simple formula.

Lemma 1.3 Let (g, 0, F,) be a Minkowski
symmetric Lie algebra and (G, H) a pair associated
with (g, o). Suppose there exists an invariant Finsler
metric F on G/H such that the restriction of ' to m is
F,. Then the curvature tensor of F is given by

Ro(u, v)w =— [[u, v], w], Yu,v,we m,

and the flag curvature of the flag (o,y, P),y =0,
y € P, is given by

K(o,y, P) = g,([[l, v], l], v),
where [ = y/F (the distinguished section) and /, u is
an orthonormal basis of the plane P with respect to g,

As a direct corollary of this theorem, only those
which are of compact type and rank one are positively
curved. So we see the following lemma.

Lemma 1.4 Any homogeneous Finsler mani-
fold which is locally isometric to a Finsler symmetric
S*x 8§ =(SU(2)xSU(2))/(U(1)*x U (1)) is not
positively curved.

1.4 Totally geodesic submanifold

A submanifold N in a Finsler manifold (M, F) is
called totally geodesic, if for any x € N and y € T . N\
{0}, the geodesic c(t) on (M,F)
¢(0)=xand ¢(0) = y is contained in N (at least for ¢

satisfying

sufficiently close to 0). Denote by F |N or simply F,

the induced Finsler metric on N. The flag curvature
K" for (M, F) and the flag curvature K" fora totally
geodesic (N, F |N) have the following relation (see
Proposition 2.2 in reference [ 11]).

Lemma 1.5 Foranyxe N, ye TN\ {0} and
tangent plane P C T N containing y, KF‘“(x,y,P) =
K"(x,y,P).

The common fixed point set Fix (S, M ) of a fam-
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ily isometries S on (M, F') is a closely imbedded total-
ly geodesic submanifold. In particular, when (M, F)
is a compact homogeneous Finsler manifold, we have
the following consequence of Corollary 11.5.7 in ref-
erence [ 19].
Lemma 1.6 Let (G/H,F) be a homogeneous
Finsler manifold with compact G and H, K a closed
subgroup in H and G’ the identity component of the
Then

normalizer N, (K). connected

Fix, (K, G/H) of the fixed point set Fix (K, G/H),

component

which contains o = eH, is the homogeneous totally
geodesic submanifold G'- o = G'/(G' N H).

2 Proofs of the main results

2.1 Proof of Theorem 0.4
Without loss of generality, we may assume G,
and G, are connected Lie groups.

Firstly, we prove Theorem 0.4 when G, /H, is a
universal cover of G, /H,. To be more precise, we as-

sume that G, is the universal cover of G,, and denote
by # the covering map from G, to G,, which is a Lie

group homomorphism. For G, /H, to be simply con-

nected, H, must be the identity component of
7~ '(H,). Then 7 induces a smooth covering map 7:
G,/H, > G//H,, 7wn(g,H,)=n(g,)H,. We will
prove 7' F, = F,, i.e., T is a local isometry.

Since both tangent spaces at o, = e, H, € G,/H,
and o, =

gent map w,: M = TZ(GZ/HZ) — TOI(GI/HI) =m be-

o

e,H, € G,/H, are identified as m, the tan-

comes the identity map.
So for any wem = TOZ(GZ/HZ), we have

F (r.(u))=F(u)=F,(u). That means

TF\l; 6m = Falr > i-e., the local isometry is
. JH,

2

valid at the origin.

Since 7 is a Lie group homomorphism, we have
7°g,=n(g,)° Tisvalid everywhere on G,/ H,, (1)
for any g, € G,. In equation(1), we have used g, and
7 (g,) to denote their actions on G,/H, and G, /H,
respectively. The invariance of F|, and F, provides

F2|r7,” G,y gz* (Fz‘rﬂ (GI/HI))
£ 2 2

and
128

”(gz)*(Fl‘T" (GI/HI)) = FI|T o (GH)
1 Tr‘gz )Hl .

So we may differentiate equation( 1) and get
Fyl; 1, (G = g, (F2|T01(GZ/H2)) =g (7 (F1|r”‘(olyl))) =

2

ﬁ-*(n’(gz)*(Fl|Tol(Gl/Hl))) = 77’-*(171|THy

i (G,/H,))’
2,y )HI

i.e., @ is a local isometry at each g,H, € G,/H,. This
proves Theorem 0.4 when GZ/H2 is the universal cov-
erof G, /H,.

Nextly, we prove Theorem 0.4 in the general sit-
uation.

We denote by él the universal cover of G,, by
T, é] — @, the corresponding covering map, which
is a Lie group homomorphism, and by H, the identity
component of z~'(H,). So ﬁl is a closed connected
Lie subgroup generated by the Lie subalgebra f) in G~l.
Then G~l/ﬁ, is the universal cover of G,/H,.

Obviously, we have Lie(él) = Lie(G,) = g,
Lie(H,) = Lie(H,) = ). Since we have [b, ln] cm
and ﬁl is connected, the decomposition g = ) + m
is Ad (ﬁl) -invariant, i.e., it is a reductive decompo-
sition for él/l-i,. The Ad (h?1 )-invariance of the
Minkowski norm F on m implies

g ([woul,v)+g (u,[w,v])+2C (u,v,[w,y]) =
0, VYyem\{0},u,vem,welb,

in the Lie algebra level, which is equivalent to the
Ad (ﬁl)-invariance of F. To summarize, the
Minkowski norm F on m induces a G~1-invariant Fin-
sler metric £, on G,/H,. Previous argument proves that
(G,/H,, F)) is locally isometric to (Gl/ﬁl, F)).

By similar argument, we can find a universal
cover G~2/H2 for G,/H,, and a éz—invariant Finsler
metric F, on G,/H, which is locally isometric to F,.

Finally, we have G~l = éz because they are both
connected and simply connected and have the same
Lie algebra. We have H, = H, because they are con-
nected Lie subgroups generated by the same Lie sub-
algebra. We have P:l = P:Z because they are induced
by the same Minkowski norm F, with respect to the
same reductive decomposition g = [) + m for (?l/l-?I =
G~2/ﬁ2. To summarize, (G,/H,, F,)and (G,/H,, F,) are
locally isometric through (G,/H,, F,)=(G,/H,, F,).
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This ends the proof of Theorem 0.4.
2.2 Proof of Lemma 0.3

Let (G/H, F) be a positively curved homoge-
neous Finsler manifold, where G and H are compact
Lie groups. The dimension of G/H is even implies
that rank G = rank #'"?). Then we can find a Cartan
subalgebra t of g, which is contained in ). We fix a
Ad (G)-invariant inner product <-,-> . on g. For

simplicity, we use < -, - > .

.« to identify root sys-
tems 4 and 4, of g and §) respectively as subsets of
t\ {0 }. We denote by g =0 + m the reductive de-
composition for G/H, which is orthogonal with re-
spect to < -, -> .. It is compatible with the root plane

decomposition g =t + 2 a,, in the sense that each

aeA“

root and root plane of {) are also root and root plane of
g respectively, and m is the linear direct sum of
those root planes g,, with a ¢ 4 \4 .

Assume that there exist a pair of linearly inde-
pendent roots o and g in 4 \4, such that a + f are
not roots of g. Denote t’to be orthogonal complement
of Ra + Rp in t and denote 7', the torus generated by
t’ By Lemma 1.6, Fix, (T, G/H)=G'-0=G'/H' =
G/(G'N H), whereg'= Lie(G’) =t'® qg"withg” =
Ra+RB+g., +6, h'=Lie(H)=t®h" with h"=
Ra+ Rf. Let G" be the connected subgroup generated
by g in G. It is a compact Lie subgroup because its
Lie algebra g" = a,®a, is compact semi-simple.
Since G'=G"T" and T’
Fix, (7', G/H), Fix, (T',G/H)=G"-0=G"/H" where
the Lie algebra of H" = G" N H'is )", and the sub-

acts trivially on

, is G"-invariant.
ix (T'.G/H)

manifold metric F ‘F

Because " = a,@a, and )" is a Cartan subalge-
bra of g, it has the same Cartan decomposition as
S?x § =(SU(2)xSU(2))/(U (1) x U (1)) in Ex-

ample 1.2. By Theorem 0.4 and Theorem 1.1,

b (o) is locally isometric to a Finsler symmetric
ix, (7"

S?x § =(SU(2)x SU(2))/(U (1) x
U(l)). By Lemma 1.3, F

metric  on

i, oy 1S not positively

curved. This is a contradiction to Lemma 1.4 because

(G/H, F) is positively curved.
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