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then G contains a spanning 3-ended tree.
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1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). For a set X , the cardinality of X is denoted

by |X |. Given a vertex v in a graph G, we let NG(v) denote the set of neighbors of v in G and let dG(v)

denote |NG(v)|, the degree of v in G. For simplicity, we will write N(v) and d(v) instead of NG(v) and

dG(v). Let H and K be subgraphs of G, we denote the neighourhood of H in G by N(H) and define

NK(H) = N(H) ∩ V (K). G[K] is the subgraph induced by V (K) in G. We write G − K instead of

G−V (K). Let ω(G) denote the number of components of G. A subset U ⊆ V (G) is called an independent

set of G if no two vertices of U are adjacent in G. We define σk(G) = min {d(v1)+· · ·+d(vk) | {v1, . . . , vk}

is an independent set in G}. Clearly, σ1(G) = δ(G) is the minimum degree of G. A K1,r-free graph is a

graph without an induced K1,r subgraph.

Let P [a, b] denote a path connecting a and b in G and define the orientation from a to b the positive

direction of P . Given a vertex x on P , we let x+ denote the successor of x and x− denote the predecessor

of x if they are well-defined. We let x
−→
P y denote the subpath from x to y and y

←−
P x denote the subpath

from y to x on P . Let i and j be nonnegative intergers such that i < j, and we denote the integers from

i to j by [i, j]. For further explanation of terminologies and notation, we refer to [3].

A tree with at mostm leaves is called anm-ended tree. There are several well-known conditions ensuring

that a graph G contains a spanning m-ended tree. Win [11] obtained a sufficient condition related to

independent number for k-connected graph that confirms a conjecture of Las Vergnas. Broersma and

Tuinstra [1] gave a degree sum condition for a spanning m-ended tree.
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Theorem 1.1 (See [11]). Let m > 2 and let G be a k-connected graph. If α(G) 6 k +m− 1, then G

has a spanning m-ended tree.

Theorem 1.2 (See [1]). Let m > 2 and let G be a connected graph of order n > 2. If σ2(G) > n−m+1,

then G has a spanning m-ended tree.

On the other hand, Flandrin et al. [4] obtained a neighborhood union condition for a spanning m-ended

tree. We denote the minimum order of the neighborhoods of an independent set of order m by Nm(G).

Theorem 1.3 (See [4]). Let m > 2 and let G be a connected graph of order n. If Nm(G) > m
m+1 (n−m),

then G has a spanning m-ended tree.

There are also several results for the claw-free graphs and K1,4-free graphs, where a claw-free graph is

a K1,3-free graph. Matthews and Sumner [8] obtained a degree sum condition for a claw-free graph to

have a hamiltonian path. Kano et al. [5] obtained a slightly stronger result than a generalization of it.

Theorem 1.4 (See [5]). Let G be a connected claw-free graph of order n with m > 2. If σm+1(G) >

n−m, then G has a spanning m-ended tree with the maximum degree at most 3.

Recently, Kyaw [6, 7] presented some sharp sufficient conditions for a connected K1,4-free to have a

spanning m-ended tree.

Theorem 1.5 (See [6]). Every connected K1,4-free graph with σ4(G) > n − 1 contains a spanning

3-ended tree.

Theorem 1.6 (See [7]). Let G be a connected K1,4-free graph.

(i) If σ3(G) > |G|, then G has a hamiltonian path.

(ii) If σm+1(G) > |G| − m
2 for an integer m > 3, then G has a spanning m-ended tree.

As for the spanning tree with certain extremal properties in a k-connected K1,4-free graph, Chen and

Schelp [2] gave some degree conditions for the hamiltonicity of a k-connected K1,4-free graph where a

hamiltonian path is just a spanning tree with two leaves.

Theorem 1.7 (See [2]). Let G be a k-connected K1,4-free graph of order n > 3. If σk+1(G) > n+ k,

then G is hamiltonian.

Theorem 1.8 (See [2]). Let G be a k-connected K1,4-free graph of order n. If σk(G) > n+ k+1, then

G is hamiltonian-connected.

Here, we give a degree sum condition assuring the existence of a spanning 3-ended tree in a k-connected

K1,4-free graph with k > 2.

Theorem 1.9. Let G be a k-connected K1,4-free graph of order n with k > 2. If σk+3(G) > n+2k−2,

then G contains a spanning 3-ended tree.

2 Preliminaries

According to the algorithm used by Zhang in [12], Chen and Schelp defined a concept, i.e., insertible

vertex, in [2] as follows.

Let G be a non-hamiltonian connected graph and C be a maximal cycle of G with an orientation.

Assume that H is a connected component of G−V (C) and {v1, v2, . . . , vh} are h vertices in NC(H) with

xivi ∈ E(G), where xi ∈ V (H) for 1 6 i 6 h. We define the counter-clockwise direction the positive

direction of C. We also assume that v1, v2, . . . , vh are labeled in the order of the positive orientation of

C, i.e., vi ∈ C(vi−1, vi+1). The vertices v1, v2, . . . , vh divide the cycle C into h segments, Qi = C(vi, vi+1]

for 1 6 i 6 h, where the subscripts are taken modulo h.

A vertex wi in Qi is called an insertible vertex if there is a pair of consecutive vertices w and w+ in

C −Qi such that wiw, wiw
+ ∈ E(G). If wi is an insertible vertex, we define I(wi) as some fixed vertex

in C −Qi such that wiI(wi), wi(I(wi))
+ ∈ E(G).

Motivated by the method of segment insertion used by Chen and Schelp in [2], we define segment

insertion with respect to X as follows. Suppose that X := {x1, . . . , xαi
}, where x1, . . . , xαi

are insertible
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vertices of Qi in order along Qi. Let β1 be the largest integer in [1, αi] such that I(x1) = I(xβ1
),

and let β2 be the largest integer in [β1 + 1, αi] such that I(xβ1+1) = I(xβ2
). Continuing in the same

manner, we will have βt = αi for some t > 1. Then we insert the segment C[x1, xβ1
] between I(x1) and

(I(x1))
+, the segment C[xβ1+1, xβ2

] between I(xβ1+1) and (I(xβ1+1))
+,. . ., the segment C[xβt−1+1, xβt

]

between I(xβt−1+1) and (I(xβt−1+1))
+. We call such an insertion a segment insertion with respect to

X and denote it by SI[Qi, X ]. After such an insertion, we obtain a path P ′[x+
αi
, x−

1 ] in G such that

V (P ′) ⊇ V (C[x+
αi
, x−

1 ]) ∪X . We denote SI[Qi, X ] by SI[C[x1, xαi
]] if X = V (C[x1, xαi

]).

In [2], Chen and Schelp gave the following two lemmas.

Lemma 2.1 (See [2]). For each Qi, there is a non-insertible vertex in Qi − {vi+1}.

For each Qi, let wi be the first noninsertible vertex in Qi − {vi+1}. Then the following lemma holds.

Lemma 2.2 (See [2]). Let 1 6 i < j 6 h. Then for ui ∈ C[v+i , wi] and uj ∈ C[v+j , wj ], the following

properties hold:

(i) There does not exist a path Q[ui, uj ] in G such that Q[ui, uj] ∩ V (C) = {ui, uj}.

(ii) For every v ∈ C[u+
i , u

−
j ], if vui ∈ E(G), then v−uj 6∈ E(G). Similarly, for every w ∈ C[u+

j , u
−
i ], if

wuj ∈ E(G), then w−ui 6∈ E(G).

(iii) For every v ∈ C[ui, uj], if vui, vuj ∈ E(G), then v+v− 6∈ E(G).

3 Proof of Theorem 1.9

Let G be a k-connected K1,4-free graph of order n with k > 2 such that σk+3(G) > n+2k− 2. Suppose,

to the contrary, that every spanning tree of G has at least 4 leaves. Let P be a longest path of G. Clearly,

V (P ) ⊂ V (G). We additionally assume that the following conditions hold.

(P1) w(G − P ) is minimum; and

(P2) subject to (P1), |P [a, v]| achieves the minimum, where a is the first vertex of P and v is the first

vertex of P that is adjacent to some vertex in G− P .

Let a and b be the first and the last vertexes of P along its orientation respectively, and H be a

component of G− P . Let v1, . . . , vt be the neighbors of H on P in the order along the orientation of P

with yivi ∈ E(G), where yi ∈ H for i ∈ [1, t].

Let G∗ be the graph obtained from G by adding a new vertex v0 and joining it to every vertex of G.

Set C := v0a
−→
P bv0. Then C is a longest cycle of G∗. The vertices v0, . . . , vt divide the cycle C into t+ 1

segments. Let Qi = C(vi, vi+1] for 0 6 i 6 t, where the indices are taken modulo t+ 1.

From Lemma 2.1, there exists a non-insertible vetex in Qi − {vi+1} for each Qi. Let wi be the first

non-insertible vertex in Qi − {vi+1} and let W = {w0, w1, . . . , wt}.

Claim 1. We have a = w0 and b 6∈ N(wi) for i ∈ [0, t− 1].

Proof. Suppose, to the contrary, that a 6= w0. Then a is an insertible vertex in Q0. The existence of the

path a+
−→
P I(a)a(I(a))

+−→
P b contradicts (P2). Thus a = w0. Note that b ∈ Qt and wib

+ = wiv0 ∈ E(G),

we have wib 6∈ E(G) for i ∈ [0, t− 1].

Lemma 3.1. Let I be an independent set of H. Then the following inequality holds,

t
∑

i=0

dP (wi) +
∑

x∈I

dP (x) 6

{

|P |+ t− 1, if I 6= ∅,

|P | − 1, if I = ∅.

Proof. We define a function τ from V (G∗) to Z+ such that τ(v) = |N(v) ∩W |. For each A ⊆ V (G),

τ(A) =
∑

v∈V (A) τ(v).

To prove Lemma 3.1, it suffices to show that

τ(P ) +
∑

x∈I

dP (x) 6

{

|P |+ t− 1, if I 6= ∅,

|P | − 1, if I = ∅.
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For I = ∅, we will show that τ(P ) 6 |P | − 1. From (i) of Lemma 2.2, W is an independent vertex set.

Then the cycle C is a disjoint union of intervals T = C[c, d] with c, d+ 6∈ N(W ) and V (C[c+, d]) ⊆ N(W ).

Notice that V (C[c+, d]) = ∅ if c = d. Such intervals are called W-segments.

From Claim 1, the endvertex b has at most one neighbour wt in W . Since v0 ∈ N(W ) and w0 is the

successor of v0 on C, v0 is the last vertex of some W -segment denoted by T0. Set

T0 =

{

C[b, v0], if b 6∈ N(wt),

C[u, v0], if b ∈ N(wt),

where u ∈ V (C[wt, b
−]) satisfying that N(W ) ∩ V (C[u, v0]) = V (C[u+, v0]).

Firstly, we show that τ(T0) = |T0|+ t− 1.

If b 6∈ N(wt), we have |T0| = |C[b, v0]| = 2, τ(v0) = t+1 and τ(b) = 0, then τ(T0) = t+1 = |T0|+ t−1.

If b ∈ N(wt), from Lemma 2.2(ii) and Claim 1, every vertex in T0 − {u, v0} is only adjacent to wt in

W . For v ∈ T0 − {u, v0}, τ(v) = 1. Then we can also have

τ(T0) =
∑

v∈T0−{u,v0}

τ(v) + τ(v0) = (|T0| − 2) + (t+ 1) = |T0|+ t− 1.

Next, we show that τ(T ) 6 |T | for every W -segment T other than T0.

Let T be such a W -segment. From Lemma 2.2(i), there is an integer l such that T ⊆ C[wl, w
−
l+1],

where the indices are taken modulo t+ 1. Without loss of generality, we assume that T ⊆ C[w1, w
−
2 ].

If |T | = 1, then τ(T ) = 0. So assume that |T | > 2. From Lemma 2.2(ii),

N(w1) ∩ T,N(w0) ∩ T,N(wt) ∩ T, . . . , N(w2) ∩ T

form consecutive closed subintervals of T (possibly some of them are empty) which can only have their

endvertices in common. We assume that T = {c, c1, . . . , cs} such that c 6∈ N(W ) and ci ∈ N(W ). We

claim that there exists at most one vertex ci in T such that |N(ci) ∩W | > 2.

Suppose that |N(ci) ∩ W | > 2 for some i ∈ [1, s]. Say wj1 , wj2 ∈ N(ci) for some j1 6= j2. From

Lemma 2.2(i), ci 6∈ V (C[v+2 , w
−
2 ]). Thus ci ∈ V (C[w+

1 , v2]). We claim that 1 ∈ {j1, j2}. Suppose not.

If ci 6= v2, then from Lemma 2.2(iii), G[{ci, c
−
i , c

+
i , wj1 , wj2}] is an induced K1,4, a contradiction. Hence

ci = v2. But in this case, G[{ci, c
−
i , y2, wj1 , wj2}] is an induced K1,4, also a contradiction.

Thus w1 ∈ N(ci), and there exists at most one j 6= 1 such that wj ∈ N(ci). Thus τ(ci) 6 2 and

τ(cj) = 1 for j ∈ [1, s]− {i}. Hence

τ(T ) 6 2 + (s− 1) = s+ 1 = |T |. (3.1)

To sum up,

τ(C) =
∑

T 6=T0

τ(T ) + τ(T0) 6
∑

T 6=T0

|T |+ |T0|+ t− 1 = |C|+ t− 1.

Hence

τ(P ) = τ(C) − τ(v0) 6 (|C|+ t− 1)− (t+ 1) = |C| − 2 = |P | − 1.

On the other hand, for I 6= ∅, we will show that

τ(P ) +
∑

x∈I

dP (x) 6 |P |+ t− 1.

Let I be an independent set inH . Obviously,N(I)∩V (P ) ⊆ {v1, . . . , vt}, where V (P ) = (
⋃t−1

i=0 V (P [wi,

w−
i+1])) ∪ V (P [wt, b]). Then

τ(P ) +
∑

x∈I

dP (x) =

t−1
∑

i=0

(

τ(P [wi, w
−
i+1]) +

∑

x∈I

dP [wi,w
−

i+1
](x)

)

+ τ(P [wt, b]).

For i ∈ [0, t− 1], we take τ(P [wi, w
−
i+1]) +

∑

x∈I dP [wi,w
−

i+1
](x) into consideration.
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Without loss of generality, we choose P [w1, w
−
2 ]. Firstly, we consider the W -segment containing v2

which is denoted by Tv2 .

If τ(v2) = 0, then {v2} is the first vertex of Tv2 . From Lemma 2.2(i), every vertex other than v2 in Tv2

is only adjacent to w2 in W . In this case, τ(Tv2) 6 |Tv2 | − 1. Since G is K1,4-free, v2 can be adjacent

to at most two distinct vertices in I. Otherwise, if z1, z2, z3 ∈ N(v2) ∩ I, then G[{v2, v
−
2 , z1, z2, z3}] is an

induced K1,4, a contradiction.

By inequality (3.1), for any W -segment T in P [w1, w
−
2 ] other than Tv2 , τ(T ) 6 |T |. Then

τ(P [w1, w
−
2 ]) +

∑

x∈I

dP [w1,w
−

2
](x) =

∑

T 6=Tv2

τ(T ) + τ(Tv2) + dH(v2)

6
∑

T 6=Tv2

|T |+ |Tv2 | − 1 + 2

= |P [w1, w
−
2 ]|+ 1.

If τ(v2) 6= 0, by inequality (3.1), τ(T ) 6 |T | for any W -segment T in P [w1, w
−
2 ]. We claim that v2 can

be adjacent to at most one vertex in I. Suppose, to the contrary, that v2 is adjacent to two distinct vertices

z1 and z2 in I. Let wj be a vertex in W that is adjacent to v2. If j = 1, then G[{v2, w1, v
+
2 , z1, z2}] is an

induced K1,4, a contradiction. Otherwise, G[{v2, wj , v
−
2 , z1, z2}] is an induced K1,4, also a contradiction.

Then

τ(P [w1, w
−
2 ]) +

∑

x∈I

dP [w1,w
−

2
](x) =

∑

T 6=Tv2

τ(T ) + τ(Tv2) + dH(v2)

6
∑

T 6=Tv2

|T |+ |Tv2 |+ 1

= |P [w1, w
−
2 ]|+ 1.

For τ(P [wt, b]), from Lemma 2.2(i) and Claim 1, every vertex in P [w+
t , b] can be only adjacent to at

most one vertex wt in W . Then τ(P [wt, b]) 6 |P [wt, b]| − 1.

To sum up, we get the conclusion that

τ(P ) +
∑

x∈I

dP (x) =
t−1
∑

i=0

(τ(P [wi, w
−
i+1]) +

∑

x∈I

dP [wi,w
−

i+1
](x)) + τ(P [wt, b])

6

t−1
∑

i=0

(|P [wi, w
−
i+1]|+ 1) + |P [wt, b]| − 1 6 |P |+ t− 1.

Claim 2. For every component H in G−P , we have |NP (H)| = k and H is hamiltonian-connected if

|H | > 2.

Proof. From Lemma 2.2(i), for 0 6 i 6= j 6 t, wi and wj have no common neighbor in G−V (P ). Then
∑t

i=0 dG−V (P )(wi) 6 n− |P | − |H |.

Since G is k-connected, we have t > k. We claim that t = k. Suppose, to the contrary, that t > k + 1.

If t > k + 2, then {w0, . . . , wt} is an independent set of order at least k + 3. By taking I = ∅ in

Lemma 3.1, we have

t
∑

i=0

d(wi) =

t
∑

i=0

dP (wi) +

t
∑

i=0

dG−V (P )(wi) 6 (|P | − 1) + (n− |P | − |H |) = n− |H | − 1,

a contradiction to σk+3(G) > n+ 2k − 2.

If t = k+1, let z be a vertex in V (H), then {z, w0, . . . , wk+1} is an independent set of order k+3. By

taking I = {z} in Lemma 3.1, we have
∑k+1

i=0 dP (wi) + dP (z) 6 |P |+ (k + 1)− 1 = |P |+ k. Then

k+1
∑

i=0

d(wi) + d(z) =
k+1
∑

i=0

dP (wi) + dP (z) +
k+1
∑

i=0

dG−V (P )(wi) + dH(z)
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6 (|P |+ k) + (n− |P | − |H |) + (|H | − 1)

= n+ k − 1,

also a contradiction to σk+3(G) > n+ 2k − 2 since k > 2.

Suppose that |H | > 2 and H is not hamiltonian-connected. From Ore’s theorem in [9], there exists a

pair of nonadjacent vertices z1 and z2 in H such that dH(z1) + dH(z2) 6 |H |. Since {z1, z2, w0, . . . , wk}

is an independent set of order k + 3, by taking I = {z1, z2} in Lemma 3.1, we have

k
∑

i=0

dP (wi) + dP (z1) + dP (z2) 6 |P |+ k − 1.

Then

k
∑

i=0

d(wi) + d(z1) + d(z2) =
k
∑

i=0

dP (wi) + dP (z1) + dP (z2) +
k

∑

i=0

dG−V (P )(wi) + dH(z1) + dH(z2)

6 (|P |+ k − 1) + (n− |P | − |H |) + |H | = n+ k − 1,

also a contradiction to σk+3(G) > n+ 2k − 2 since k > 2.

Hence |NP (H)| = k and H is hamiltonian-connected if |H | > 2.

Claim 3. Let vi and vj be distinct vertices in NP (H). Then for 0 6 i 6= j 6 k, G[V (H) ∪ {vi, vj}]

contains a hamiltonian path from vi to vj .

Proof. Note that min{dH(vi), dH(vj)} > 1. If |H | = 1, there exists only one vertex named h in H ,

then vihvj is a hamiltonian path from vi to vj in G[V (H) ∪ {vi, vj}].If |H | > 2, from Claim 2, H is

hamiltonian-connected. It suffices to show that |NH(vi) ∪NH(vj)| > 2. Otherwise, both vi and vj have

exactly one neighbor y in H . Then (NP (H) − {vi, vj}) ∪ {y} is a separate set of k − 1 vertices which

contradicts the k-connectedness of G.

It follows from Claim 2 that t = k. For 1 6 i 6= j 6 k, we denote the hamiltonian path from vi to vj

in G[V (H) ∪ {vi, vj}] by viHvj . If ω(G− P ) = 1, then G contains a spanning 3-ended tree. So we have

ω(G− P ) > 2. Assume that H ′ is a component in G− P −H .

Claim 4. N(wi) ∩ V (H ′) 6= ∅ for some i ∈ [1, k].

Proof. From Claim 1, we have w0 = a. Then i 6= 0. Suppose, to the contrary, that N(wi)∩ V (H ′) = ∅

for i ∈ [1, k]. Let y and y′ be vertices inH andH ′, respectively. Then {w0, . . . , wk, y, y
′} is an independent

set of order k+3. By taking I = {y} in Lemma 3.1, we have
∑k

i=0 dP (wi) + dP (y) 6 |P |+ k− 1. In this

case,
∑k

i=0 dG−V (P )(wi) 6 n− |P | − |H | − |H ′|. Then

k
∑

i=0

d(wi) + d(y) + d(y′) =

k
∑

i=0

dP (wi) + +dP (y) +

k
∑

i=0

dG−V (P )(wi) + dH(y) + dP (y
′) + dH′ (y′)

6 (|P |+ k − 1) + (n− |P | − |H | − |H ′|) + (|H | − 1) + k + (|H ′| − 1)

6 n+ 2k − 3,

a contradiction.

In the following, we assume that N(wi) ∩ V (H ′) 6= ∅ for some i ∈ [1, k]. From Lemma 2.2(i), N(wj)

∩V (H ′) = ∅ for j ∈ [0, k]− {i}.

Claim 5. There exists a second non-insertible vertex w′
i in Qi − {vi+1} and w′

i 6∈ N(H ′).

Proof. Suppose, to the contrary, that wi is the only non-insertible vertex in Qi − {vi+1}. Let X =

Qi−{wi} in G∗. Then every vertex of X can be inserted into C[vi+1, vi]. By using the segment insertion

SI[Qi, X ], we get a path P ′[vi+1, vi] in G∗ such that V (P ′[vi+1, vi]) ⊇ C[vi+1, vi] ∪ X = V (C) − {wi}.

From Claim 3, the hamiltonian path viHvi+1 in G[V (H) ∪ {vi, vi+1}] together with P ′ forms a cycle C∗
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in G∗ with V (C∗) ⊇ (V (C)−{wi})∪V (H). From Claim 4, N(wi)∩V (H ′) 6= ∅. If |H | = 1,then C∗−{v0}

is a path in G which contradicts (P1). If |H | > 2, then C∗−{v0} is a path in G which contradicts to the

maximality on the length of P . Thus there exists a second non-insertible vertex w′
i in Qi.

Now, suppose that w′
i ∈ N(H ′). By using the segment insertion SI[C[w+

i , w
′−
i ]], we get a path

Q′ := Q′[w′
i, wi] in G∗ with V (Q′) = V (C). This together with the non-trivial (wi, w

′
i)-path in G[V (H ′)

∪{wi, w
′
i}] forms a cycle in G∗ longer than C, a contradiction.

Lemma 3.2. Let j be an integer such that j ∈ [0, k] − {i}. Then for every ui ∈ C[w+
i , w

′
i] and

uj ∈ C[v+j , wj ], the following properties hold.

(i) There does not exist a path Q[ui, uj ] in G∗ such that Q[ui, uj] ∩ V (C) = {ui, uj}.

(ii) For every v ∈ C[u+
i , u

−
j ], if vui ∈ E(G∗), then v−uj 6∈ E(G∗). Similarly, for every w ∈ C[u+

j , u
−
i ],

if wuj ∈ E(G∗), then w−ui 6∈ E(G∗).

(iii) For every v ∈ C[u+
i , u

−
j ], if vui, vuj ∈ E(G∗), then v−v+ 6∈ E(G∗). Similarly, for every w ∈

C[u+
j , u

−
i ], if wui, wuj ∈ E(G∗), then v−v+ 6∈ E(G∗).

Proof. We prove this lemma by induction on l(ui, uj) = |V (C[w+
i , ui]) ∪ V (C[v+j , uj])|.

For l = 0, i.e., ui = w+
i and uj = v+j , by using the segment insertion SI[C[v+i , w

−
i ]], we obtain a path

S[w+
i , vi] such that V (S[w+

i , vi]) = V (C)−{wi}. From Lemma 2.2(i), we have N(v+j )∩V (C[v+i , w
−
i ]) = ∅

which implies that no vertices in V (C[v+i , w
−
i ]) are inserted between vj and v+j . Thus v+j is still the

successor of vj on S[w+
i , vi].

To prove (i), assume to the contrary, there is a path Q[w+
i , v

+
j ] in G∗ such that Q[w+

i , v
+
j ] ∩ V (C) =

{w+
i , v

+
j }. Let C1 := w+

i

−→
S vjHvi

←−
S v+j

←−
Qw+

i . Then R1 := C1 − {v0} is a path in G of order at least |P |

and with less components in G−R1, a contradiction.

To prove (ii), assume to the contrary, there is a vertex v ∈ C[u+
i , u

−
j ] such that vui and v−uj ∈ E(G∗).

Then from Lemma 2.2(ii), no vertex in C[v+i , w
−
i ] is adjacent to v. Hence no vertices in C[v+i , w

−
i ] are

inserted between v and v−. Thus v− and v are two consecutive vertices on the path S[w+
i , vi]. Let

C2 := w+
i v
−→
S vjHvi

←−
S v+j v

−←−S w+
i . Then R2 := C2−{v0} is a path in G of order at least |P | and with less

components in G−R2, a contradiction.

To prove (iii), assume to the contrary, there is a vertex v ∈ C[u+
i , u

−
j ] such that vui, vuj ∈ E(G∗)

and v−v+ ∈ E(G∗). From Lemma 2.2(iii), N(v) ∩ C[v+i , w
−
i ] = ∅. Thus v− is still the immediate

predecessor of v in S[w+
i , vj ] and v+ is still the immediate successor of v in S[w+

i , vj ]. Let C3 :=

w+
i

−→
S v−v+

−→
S vjHvi

←−
S v+j vw

+
i . Then R3 := C3 − {v0} is a path in G of order at least |P | and with less

components in G−R3, a contradiction.

Now we see that (i)–(iii) are true for l = 0. Assume that (i)–(iii) are true for any pair of vertices zi

and zj with zi ∈ C[w+
i , ui] and zj ∈ C[v+j , uj] such that l(zi, zj) < l(ui, uj).

Let X = V (C[v+i , u
−
i ])−{wi}, then every vertex of X is an insertible vertex in Qi. Using the segment

insertion SI[Qi, X ], we obtain a path S′[ui, vi] in G∗ such that V (S′[ui, vi]) ⊇ V (C) − {wi}. From the

induction hypothesis on (i) and Lemma 2.2, there are no edge between the vertex sets V (C[v+i , u
−
i ]) and

V (C[v+j , uj]). Thus no vertices in V (C[v+i , u
−
i ]) are inserted between any pair of vertices in V (C[v+j , uj]).

From the induction hypothesis on (ii), I(zi) 6= I(zj) for any zi ∈ V (C[v+i , u
−
i ]) and zj ∈ V (C[v+j , u

−
j ]).

Then (I(zj))
+ is also the immediate successor of I(zj) on the path S′[ui, vi]. Using the segment insertion

SI[C[v+j , u
−
j ]], we can insert every vertex in C[v+j , u

−
j ] in S′[ui, vj ] or S′[uj , vi] to obtain two vertex

disjoint paths T1[ui, vj ] and T2[uj , vi] such that V (T1[ui, vj ])∪V (T2[uj, vi]) ⊇ V (C)−{wi}. For any pair

of two consecutive vertices w− and w of V (C)− V (C[v+i , u
−
i ]) ∪ V (C[v+j , u

−
j ]), only one of the following

three properties holds:

1) w− and w are two consecutive vertices on one of the paths T1[ui, vj ] and T2[uj , vi].

2) There is a segment C[zi, z
′
i] in C[v+i , u

−
i ] inserted between w− and w with N(zi)∩N(z′i) ⊇ {w

−, w}.

3) There is a segment C[zj , z
′
j ] in C[v+j , u

−
j ] inserted between w− and w with N(zj)∩N(z′j) ⊇ {w

−, w}.

To prove (i), suppose, to the contrary, that there is a path Q[ui, uj] in G∗ such that Q[ui, uj]∩V (C) =

{ui, uj}. Let C′
1 = ui

−→
T1vjHvi

←−
T2uj

←−
Qui. Then R′

1 := C′
1 − {v0} is a path in G of order at least |P | and

with less components in G−R′
1, a contradiction.
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To prove (ii), suppose, to the contrary, that there are two consecutive vertices w and w− in C[u+
i , u

−
j ]

such that wui ∈ E(G∗) and w−uj ∈ E(G∗). Because w−uj ∈ E(G∗), by our induction hypothesis on (ii)

and Lemma 2.2, we have wzi 6∈ E(G∗) for every zi ∈ V (C[v+i , u
−
i ]). Hence no vertices in V (C[v+i , u

−
i ])

are inserted between w and w−. In the same manner, we can show that no vertices in V (C[v+j , u
−
j ]) are

inserted between w− and w. Thus w− and w are two consecutive vertices on the path T1[ui, vj ]. Let

C′
2 = uiw

−→
T1vjHvi

←−
T2ujw

−←−T1ui. Then R′
2 := C′

2 − {v0} is a path in G of order at least |P | and with less

components in G−R′
2, a contradiction.

To prove (iii), suppose, to the contrary, that without loss of generality, there is a vertex v ∈ V (C[u+
i , u

−
j ])

such that vui, vuj ∈ E(G∗) and v−v+ ∈ E(G∗). By the induction hypothesis on (iii) and Lemma 2.2,

N(v) ∩ (V (C[v+i , u
−
i ]) ∪ V (C[v+j , v

−
j ])) = ∅. Thus v− is still the immediate predecessor of v in T1[ui, vj ]

and v+ is still the immediate successor of v in T1[ui, vj ]. Let C′
3 = ui

−→
T1v

−v+
−→
T1vjHvi

←−
T2ujvui. Then

R′
3 := C′

3−{v0} is a path in G of order at least |P | and with less components in G−R′
3, a contradiction.

This completes the proof of Lemma 3.2.

We replace wi with w′
i in W to obtain W ′ = {w0, . . . , wi−1, w

′
i, wi+1, . . . , wk}. From Lemmas 2.2 and

3.2, the vertices of W ′ have the same properties as that of W . Using the same method as in the proof of

Lemma 3.1, we also have
∑

x∈W ′ dP (x) 6 |P | − 1.

Let y and y′ be vertices in H and H ′, respectively. From Lemma 2.2 and Claim 5, W ′ ∪ {y, y′} is an

independent set in G of order k + 3. Then
∑

x∈W ′ dG−V (P )(x) 6 n− |P | − |H | − |H ′|. Now we have

∑

x∈W ′

d(x) 6 (|P | − 1) + (n− |P | − |H | − |H ′|) = n− 1− |H | − |H ′|.

On the other hand, d(y) 6 |H | − 1 + k, d(y′) 6 |H ′| − 1 + k. Hence

∑

x∈W ′

d(x) + d(y) + d(y′) 6 (n− 1− |H | − |H ′|) + (|H | − 1 + k) + (|H ′| − 1 + k)

= n+ 2k − 3,

a contradiction. This completes the proof of Theorem 1.9.
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