The joint distributions of first hitting and last exit for Brownian motion*

WANG Zikun (王梓坤)

(Institute of Mathematics, Shantou University, Shantou 515063, China; Department of Mathematics, Beijing Normal University, Beijing 100875, China)

Received July 28, 1994

Keywords: joint distributions, spherical symmetry, Dirac function.

Let $X = \{x(t, \omega), t \ge 0\}$ be $d(\ge 3)$ -dimensional Brownian motion on probability space (Ω, \mathcal{F}, P) with values in Euclidean space R^d ; \mathcal{B}^d be the Borel σ -algebra in R^d . The transition probability density of X is

$$p(t, x, y) = (2\pi t)^{-d/2} \exp(-|x-y|^2/2t).$$

The semigroup of transition operators is $T_t f(x) = \int p(t, x, y) f(y) dy$, where f is bounded \mathscr{B}^d measurable function, $\int = \int_{\mathbb{R}^d} f(x) dt$; the Green function is $g(x, y) = \int_0^\infty f(t, x, y) dt$; the equilibrium measure of a relatively compact set B is denoted by μ_B .

For $B \in \mathcal{B}^d$ we define the first hitting time and last exit time for X by

$$h_{R} = \inf(t > 0, x_{t} \in B), \quad l_{R} = \sup(t > 0, x_{t} \in B),$$

and by convention $\inf(\phi) = \infty$, $\sup(\phi) = 0$, where ϕ is the empty set and $x_t = x(t, \omega)$. Let $B^c = R^d \setminus B$. We call $e_B = h_{B^c}$ the first exit time of B. Evidently, if $l_B > 0$, then $l_B \ge h_B$ and $l_B \ge e_B$; because $\forall \varepsilon > 0$, $x(l_B + \varepsilon) \in B^c$, hence $l_B + \varepsilon \ge e_B$.

The first hitting location, last exit location and first exit location are denoted by $x(h_B)$, $x(l_B)$ and $x(e_B)$, respectively. Since $d \ge 3$, X is transient, i.e.

$$P_x(\lim_{t\to\infty}|x_t|=\infty)=1, \ \forall x\in R^d.$$

Therefore, if B is bounded, then $\forall x \in B$. We have $e_B < \infty$, $l_B > 0$, P_x -a.s.

The distributions of $(h_B, x(h_B))$ and $(l_B, x(l_B))$ are discussed in refs. [1-3] and refs. [1, 3, 4-6], respectively. For the first exit probabilities of Brownian motion on manifolds, see ref. [7]. The purpose of this note is to investigate the joint distribution of h_B , $x(h_B)$, l_B , $x(l_B)$ and some limit distributions. Under certain conditions their exact mathematical formulas

^{*} Project supported by the Chinese National Tian Yuan Science Foundation

can be found. In particular, take $x_0=0$, B_r , the ball with center O and radius r>0; S_r , its sphere. Then the distribution of the first hitting location and last exit location has spherical symmetry; the joint density and the conditional density of this distribution have the same expression; as $d\to\infty$, we meet a new kind of functions (similar to, but not, the Dirac functions) defined on infinite dimensional space.

For $D \in \mathcal{B}^d$, let $p_D(t, x, A)$ be the (sub)transition density on D, i.e.

$$p_D(t, x, A) = P_x(e_D > t, x_t \in A) = P_x(x_u \in D, u \le t, x_t \in A), x \in D;$$

= 0, $x \in D$.

Let
$$T_t^D f(x) = \int_D p_D(t, x, dy) f(y)$$
.

We fix $B \in \mathcal{B}^d$. Omit B and put $h = h_B$ if there is no ambiguity. Denote

$$H(z, C) = p_z(x(h) \in C), \quad E(z, C) = p_z(x(e) \in C),$$

 $L(z, C) = p_z(l > 0, x(l) \in C).$

Since $x(\infty)$ is undefined, $(x(h) \in C) = (h < \infty, x(h) \in C)$ by convention; the same convention is for e, l.

Theorem 1. Let $B \in \mathcal{B}^d$, $\forall x \in R^d$, s > 0, t > 0. We have

$$P_{x}(h>s, x(h)\in A, l-h>t, x(l)\in C)$$

$$=\int_{A} P_{y}(l>t, x(l)\in C)P_{x}(h>s, x(h)\in dy)$$

$$=\int_{A} T_{t}L(y, C) \cdot T_{s}^{B^{c}}H(x, dy).$$
(2)

Proof. Let \mathcal{F}_h be the pre- σ -algebra of stopping time h; θ_t be the shift operator of X. By strong Markov property the left side of eq. (2) equals

$$\begin{split} &P_x(h > s, \ x(h) \in A, \ \theta_h l > t, \ x(l) \in C) \\ &= \int_{(h > s, \ x(h) \in A)} P_x(\theta_h l > t, \ x(l) \in C | \mathcal{F}_h) P_x(\mathrm{d}\omega) \\ &= \int_{(h > s, \ x(h) \in A)} P_{x(h)}(l > t, \ x(l) \in C) P_x(\mathrm{d}\omega) \\ &= \int_A P_y(l > t, \ x(l) \in C) P_x(h > s, \ x(h) \in \mathrm{d}y). \end{split}$$

But

$$P_{y}(l > t, x(l) \in C) = \int p(t, y, z) L(z, C) dz = T_{t} L(y, C),$$
(4)

$$P_{x}(h>s, x(h)\in G) = P_{x}(x_{u} \in B, u \leq s, x(h)\in G)$$

$$= \int_{(x_{u} \in B, u \leq s)} P_{x}(x(h)\in G|\mathscr{F}_{s}) P_{x}(d\omega)$$

$$= \int_{(x_{u} \in B, u \leq s)} P_{x(s)}(x(h)\in G) P_{x}(d\omega)$$

$$= \int_{B^{c}} P_{z}(x(h)\in G) P_{x}(x_{u} \in B, u \leq s, x(s)\in dz)$$

$$= \int_{B^{c}} H(z, G) p_{B^{c}}(s, x, dz) = T_{S}^{B^{c}} H(x, G).$$
(5)

Substituting eqs. (4), (5) into eq. (2) we get eq. (3). If $x \in B$, both sides of eqs. (2) and (3) are 0 and the theorem is obviously true.

Since $e_R = h_{R^c}$ and $l_R \ge e_R$ if $l_R > 0$, we have

Theorem 1'. Let $B \in \mathcal{B}^d$, $e = e_B$, $l = l_B$, $\forall x \in \mathbb{R}^d$, s > 0, t > 0. We have

$$P_{x}(e>s, x(e)\in A, l-e>t, x(l)\in C)$$

$$=\int_{A} P_{y}(l>t, x(l)\in C)P_{x}(e>s, x(e)\in dy)$$

$$=\int_{A} T_{t}L(y, C) \cdot T_{s}^{B}E(x, dy). \tag{6}$$

Remark 1. Theorems 1 and 1' are true for general strong Markov processes with continuous path, because the characteristic property of Brownian motion is not used in the proof.

Let $B \in \mathcal{B}^d$ be a bounded non-empty open set. For fixed s > 0, $P_x(e > s, x_s \in dy)$ has density $p_B(s, x, y)$ with respect to Lebesque measure and

$$p_B(s, x, y) = \sum_{n} e^{-\lambda_n s} \varphi_n(x) \varphi_n(y), \qquad (8)$$

where $\varphi_n(x)$ ($x \in B$) is the eigenfunction corresponding to eigenvalue λ_n of $\frac{1}{2} \Delta = \frac{1}{2} \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$ on B. The series in eq. (8) converges absolutely and uniformly on $B \times B^{[3]}$. Therefore, the following exchange of limits is reasonable.

Let

$$T(t, y, z) = \int_{t}^{\infty} p(u, y, z) du.$$

Theorem 2. Let B be bounded non-empty open set, $\forall x \in B, s>0, t>0$, we have

$$P_{x}(e>s, x(e)\in A, l-e>t, x(l)\in C)$$

$$=\sum_{n} e^{-\lambda_{n}s} \varphi_{n}(x) \int_{z\in C} \int_{y\in A} \int_{v\in B} \varphi_{n}(v)E(v, dy)dv T(t, y, z) \mu_{B}(dz).$$
(9)

Proof.

$$P_{x}(e > s, x(e) \in A) = \int_{B} E(v, A) p_{B}(s, x, dv)$$

$$= \int_{B} E(v, A) \sum_{n} e^{-\lambda_{n} s} \varphi_{n}(x) \varphi_{n}(v) dv$$

$$= \sum_{n} e^{-\lambda_{n} s} \varphi_{n}(x) \int_{B} \varphi_{n}(v) E(v, A) dv.$$
(10)

By ref.[1] we have

$$P_{y}(l>t, x(l)\in C) = \int p(t, y, z) P_{z}(l>0, x(l)\in C) dz$$

$$= \int p(t, y, z) \int_{C} g(z, a) \mu_{B}(da) dz$$

$$= \int p(t, y, z) \int_{C} \left(\int_{0}^{\infty} p(u, z, a) du \right) \mu_{B}(da) dz$$

$$= \int_{C} \int_{0}^{\infty} p(t+u, y, a) du \mu_{B}(da) = \int_{C} T(t, y, a) \mu_{B}(da). \tag{11}$$

Substituting eqs. (10), (11) into eq. (6), we can obtain equation (9).

Let

$$R(t) = (2\pi)^{d/2} \left(\frac{d}{2} - 1\right) t^{d/2-1}.$$

Theorem 3. For bounded $B \in \mathcal{B}^d$ and compact A, we have

$$R(s)R(t)P_{x}(h>s, x(h)\in A, l-h>t, x(l)\in C)$$

$$\to \mu_{B}(A)\mu_{B}(C)P_{x}(h=\infty), (t\to\infty, s\to\infty)$$

$$\to \mu_{B}(A)\mu_{B}(C), (|x|\to\infty).$$
(12)

Proof. By Theorem 1 the left side of eq.(12) is

$$\int_{A} R(t)P_{y}(l > t, \ x(l) \in C)R(s)P_{x}(h > s, \ x(h) \in dy). \tag{14}$$

On compact set A we have

$$\lim_{t\to\infty} R(t)P_y(l>t, x(l)\in C) = \mu_B(C)$$

uniformly in y. Therefore, when $t \to \infty$, eq.(14) tends to $\mu_B(C)R(s)P_x(h>s, x(h) \in A)$, which approaches

$$P_x(h_B = \infty)\mu_B(A)\mu_B(C)$$
 if $s \to \infty$.

Take r large enough such that the ball $B_r \supseteq B$. When |x| > r we have

$$1-\left|\frac{r}{x}\right|^{d-2}=P_x(h_{B_r}=\infty)\leqslant P_x(h_B=\infty),$$

so that $\lim_{|x| \to \infty} P_x(h_B = \infty) = 1$ and eq. (13) is proved.

Some interesting results can be obtained if B is the ball B_r or sphere S_r . The first hitting time and the last exit time are denoted by h_r and l_r , respectively, the first exit time of B by e_r , and the uniform distribution on S_r by U_r . We have [4]

$$H_r(y,D) = P_y(x(h_r) \in D) = \int_D \frac{r^{d-2} ||y|^2 - r^2|}{|y - z|^d} U_r(dz), \tag{15}$$

$$L_r(y, D) = P_y(l_r > 0, \ x(l_r) \in D) = \int_D \left| \frac{r}{y - z} \right|^{d - 2} U_r(\mathrm{d}z), \tag{16}$$

$$T_{t}L_{r}(y,D) = P_{y}(l_{r} > t, \ x(l_{r}) \in D) = \frac{1}{(2\pi t)^{d/2}} \int \exp\left(-\frac{|y-u|^{2}}{2t}\right) \int_{D} \left|\frac{r}{u-z}\right|^{d-2} U_{r}(\mathrm{d}z) \,\mathrm{d}u. \quad (17)$$

The equilibrium distributions of B_r and S_r are the same,

Let

$$\mu_{r}(\mathrm{d}z) = 2\pi^{d/2} r^{d-2} U_{r}(\mathrm{d}z) / \Gamma \left(\frac{d}{2} - 1\right). \tag{18}$$

$$K(d,r) = 2\pi^{d/2} r^{2d-4} / \Gamma \left(\frac{d}{2} - 1\right),$$

$$\Phi_{n}(y,r) = \int_{R} \varphi_{n}(v) \frac{||v|^{2} - r^{2}|}{|v - y|^{d}} \, \mathrm{d}v,$$

where φ_n is the eigenfunction corresponding to eigenvalue λ_n of $\frac{1}{2}\Delta$ on open ball B_r . When $x_0 \in B_r$, $h_r = e_r$, the distribution $E_r(v, D)$ of e_r coincides with $H_r(v, D)$, $v \in B_r$. Substituting this fact and eqs. (15), (18) in to eq. (9), we get

Theorem 2'. Let B_r be open ball. Then $\forall x \in B_r$, s > 0, t > 0, $A \subseteq S_r$, $C \subseteq S_r$. We have

$$P_{x}(h_{r}>s, x(h_{r})\in A, l_{r}-h_{r}>t, x(l_{r})\in C)$$

$$=K(d, r)\sum_{n}e^{-\lambda_{n}s}\varphi_{n}(x)\int_{c\in C}\int_{v\in A}\Phi_{n}(y, r)T(t, y, z)U_{r}(\mathrm{d}y)U_{r}(\mathrm{d}z). \tag{18}$$

Put

$$Q(d, r, s) = \sum_{i=1}^{\infty} \xi_{di} \exp(-q_{di}^2 s/2r^2),$$

where q_{di} are the positive roots of Bessel function $J_v(z) = 0$, $\left(v = \frac{d}{2} - 1\right)$, and $\xi_{di} = q_{di}^{v-1}/2^{v-1}\Gamma(v+1)J_{v+1}(q_d)$.

Under P_0 , h_r and $x(h_r)$ are independent; $x(h_r)$ is uniformly distributed on S_r ; $P_0(h_r > s) = Q(d, r, s)^{[2]}$. By eq. (2) we have

Corollary 1.

$$P_0(h_r > s, \ x(h_r) \in A, \ l_r - h_r > t, \ x(l_r) \in C) = Q(d, r, s) \int_A T_t L_r(y, C) U_r(dy). \tag{19}$$

By strong Markov property and eqs. (15) and (16) it is easy to prove

7

Theorem 4. $\forall x \in B$, $A \subseteq S$, $C \subseteq S$, we have

$$P_{x}(x(h_{r}) \in A, \ x(l_{r}) \in C) = \int_{A} P_{y}(x(l_{r}) \in C) P_{x}(x(h_{r}) \in dy) = \int_{A} \int_{C} \frac{r^{2d-4} ||x|^{2} - r^{2}|}{|y - x|^{d} |y - z|^{d-2}} \ U_{r}(dy) U_{r}(dz).$$
 (20)

Corollary 2.

$$P_0(x(h_r) \in A, \ x(l_r) \in C) = \int_A \int_C \left| \frac{r}{y-z} \right|^{d-2} U_r(\mathrm{d}y) U_r(\mathrm{d}z) = P_0(x(h_r) \in C, \ x(l_r) \in A).$$

It follows that the distribution of $x(h_r)$ and $x(l_r)$ is symmetric on the sphere, i. e. starting from 0, the events "first hitting A, last exiting from C" and "first hitting C, last exiting from A" on S, have the same probability. Moreover, the joint distribution of $x(h_r)$ and $x(l_r)$ has the joint density

$$f(y,z) = \left| \frac{r}{y-z} \right|^{d-2}, \quad (y \in S_r, \ z \in S_r)$$
 (21)

with respect to $U_r \times U_r$. Now we are going to find the conditional distribution density f(z|y) of $x(l_r)$ with respect to U_r when $x(h_r) = y \in S_r$ is fixed. Using

$$\int_{S} \left| \frac{r}{y-z} \right|^{d-2} U_{r}(\mathrm{d}z) = P_{y}(h_{r} < \infty) = \begin{cases} 1, & \text{if } |y| \leq r; \\ |r/y|^{d-2}, & \text{if } |y| > r, \end{cases}$$

we see that

$$f_l(z|y) = \left| \frac{r}{y-z} \right|^{d-2} / \int_{S_r} \left| \frac{r}{y-z} \right|^{d-2} U_r(\mathrm{d}z) = \left| \frac{r}{y-z} \right|^{d-2} \qquad (z \in S_r).$$

By symmetry, given $x(l_r) = z \in S_r$, the conditional distribution density of $x(h_r)$ with respect to U_r is

$$f_h(y|z) = \left| \frac{r}{y-z} \right|^{d-2} \qquad (y \in S_r). \tag{23}$$

Now the four probabilistic meanings of $\left|\frac{r}{y-z}\right|^{d-2}$ can be seen, namely eqs. (16), (21), (22) and (23). Of course the variables y, z play a different role in each case.

What will appear as the dimension of the space $d \to \infty$? In order to emphasize d one rewrite S_r as S_r^d , and (21) as

$$f_d(y,z) = \left| \frac{r}{y-z} \right|^{d-2} \quad (y \in S_r^d, \ z \in S_r^d). \tag{21}$$

Intuitively, as d increases, $f_d(y, z)$ monotonely increases to ∞ if $|y-z| \equiv c < r$; it means that $x(h_r)$ and $x(l_r)$ approach each other on S_r^∞ with large probability; if $|y-z| \equiv c' > r$, then $f_d(y, z)$ monotonely decreases to 0; it follows that the probability of $|x(h_r) - x(l_r)| > r$ becomes smaller and smaller. Hence we introduce the limit function

$$F(y,z) = \begin{cases} \infty, & \text{if } |y-z| < r; \\ 1, & \text{if } |y-z| = r; \\ 0, & \text{if } |y-z| > r, \end{cases}$$

where F(y, z) is a "function" defined on $S_r^{\infty} \times S_r^{\infty}$; S_r^{∞} is a sphere with radius r in infinite dimensional space l_2 , and

$$l_2 = \{y: y = (y_1, y_2, \dots), |y|^2 = \sum_i y_i^2 < \infty \},$$

 $S_r^{\infty} = \{y: y \in l_2, |y| = r\}.$

F(z, y) is a new "function", similar to (but not) Dirac function. Perhaps it will interest some researchers.

References

- 1 Chung, K. L., Lectures From Markov Processes to Brownian Motion, New York: Springer-Verlag, 1982.
- 2 Ciesielski, Z., Taylor, S. J., First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, *Trans. Amer. Math. Soc.*, 1962, 103:434.
- 3 Port, S. C., Stone, C. J., Brownian Motion and Classical Potential Theory, New York: Academic Press, 1978.
- 4 Wang Zikun, Last exist distributions and maximum excursion for Brownian motion, Scientia Sinica, 1981, A24(3): 324.
- 5 Wu Rong, Last exist time distributions for d-dimensional Brownian motion, Chinese Science Bulletin (in Chinese), 1984, 29(11): 647.
- 6 Zhou Xingwei, Wu Rong, Extreme value theorems for Brownian motion, Scientia Sinica (in Chinese), 1983, A(2):128.
- 7 Darling, R. W. R., Exist probability estimates for martingales in geodesic balls, using curvature, *Probability Theory* and Related Fields, 1992, 93(2): 137.