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Let X={x(t,w), t=0} be d(>3)-dimensional Brownian motion on probability space
(2, ¥, P) with values in Euclidean space RY #“ be the Borel g-algebra in R?. The transi-
tion probability density of X is
p(t, x,y)=(2nt)"*"exp(—|x—y[*/2t).
v The semigroup of transition operators is T,f(x)=Jp(t, x,y)f(y)dy, where f is bounded

#* measurable function, J= J‘ ; the Green function is g(x, y) = J p(t, x, y) dt; the
R? 0
equilibrium measure of a relatively compact set B is denoted by p;.

For B€E.#* we define the first hitting time and last exit time for X by
hy=inf(t>0, x€B), [l;=sup(t>0, x,E€B),

and by convention inf(Q®) =00, sup(®) =0, where @ is the empty set and x,=x(t, w). Let
B°=RA\B. We call e,=h, the first exit time of B. Evidently, if [,>0, then I,2h, and
;= eg; because Ve>0, x(I;+¢e)€B°, hence I,t+e=ep.

The first hitting location, last exit location and first exit location are denoted by
x(hg), x(Iz) and x(ey), respectively. Since d=3, X is transient, i.e.

P(lim |x|=)=1, VxeR-. (1)
Therefore, if B is bounded, then Vx€B. We have e;<©, [;>0, P -a.s.

The distributions of (hy, x(hg)) and (I, x(Ip)) are discussed in refs.[1—3] and refs.[1,
3, 4—6], respectively. For the first exit probabilities of Brownian motion on manifolds, see
ref. [7]. The purpose of this note is to investigate the joint distribution of hy x(hy), I,
x(};) and some limit distributions. Under certain conditions their exact mathematical formulas
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can be found. In particular, take x,=0, B,, the ball with center O and radius r>0; §,, its

sphere. Then the distribution of the first hitting location and last exit location has spheri-

cal symmetry; the joint density and the conditional density of this distribuiton have the

same expression; as d =0, we meet a new kind of functions (similar to, but not, the Dirac v
functions) defined on infinite dimensional space.

For De.%“, let p,(t,x,A) be the (sub)transition density on D, i.e.
pp(t,x,A)=P (e,>t, x,€A)=P (x,€D, ust, x€A), x€D;
=0, XE€D.

Let Tf(x)= J polt, x, d)f ().

We fix BE#*. Omit B and put h=h, if there is no ambiguity. Denote

H(z,C)=p,(x(m€C), E(z,O)=p,(x(e)€C),
L(z, O)=P(>0, x(1)€C).

Since x(o) is undefined, (x(h)€C)=(h<, x(h)€C) by convention; the same convention is
for e, L

Theorem 1. Let BE%¢, VxeR s>0, t>0. We have
P (h>s, x(h)€A, I—h>t, x()EC)

= J P,(>t, x()EC)P,(h>s, x(h)Edy) @
_ J T,L(y, O+ TZH(x, dy). G)

Proof. Let %, be the pre-c-algebra of stopping time h; 6, be the shift operator of X. By
strong Markov property the left side of eq.(2) equals

P(h>s, x(h)EA, 6,1>t, x()€C)

~

= Px(0h1>t: x(l)ecl‘?;)Px(dw)

o (h>s, x(h)EA)

-
= Pud>t, x(NEC)P (dw)
J (i>s, x(h)€A)

r~ .
=| P(>t, x(N)€C)P (h>s, x(h)Edy).

v A4

But

P>t x(l)GC)='[ p(t, y, 2)L(z, O)dz=T,L(y, C), @
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P.(h>s, x(h)€G)=P(x,€B, u<s, x(h)€G)
= P.(x(h)eG|#)P (dw)

o (x,,EB, u<s)
”

= Py (x(h)EG)P (dw)
ur'(quB, u<s)

=| P(x(h)€G)P(x,€B, u<s, x(s)€dz)

B
r

=| H(, G)py(s, x,dz)=TEZ H(x, G). (5
J B

Substituting egs. (4), (5) into eq. (2) we get eq.(3). If x€B, both sides of egs.(2) and (3)
are 0 and the theorem is obviously true.

Since ey;=h, and [,2e; if 1,>0, we have
Theorem 1'. Let BEZF*, e=e,, 1=1,, VxeR?, s>0, t>0. We have
P(e>s, x(e)€A, 1—e>t, x(1)€C)

=J P(i>1, x(DEC)P (e>5, x(e)edy) ©)
= J T,L(y, C)+ TPE(x, dy). @

Remark 1. Theorems 1 and 1’ are true for general strong Markov processes with con-
tinuous path, because the characteristic property of Brownian motion is not used in the
proof.

Let BEZ? be a bounded non-empty open set. For fixed s>0, P.(e>s, x,€dy) has densi-
ty ps(s,x,y) with respect to Lebesque measure and

Ps(s, x, )=2 e70,()9,(9), ®

d az
where ¢,(x) (x€B) is the eigenfunction corresponding to eigenvalue A, of %A= 72 Fr
i

i=1
on B. The series in eq.(8) converges absolutely and uniformly on BX BY. Therefore, the
following exchange of limits is reasonable.

Let

e}

T(t,y, z)=J‘ pu, y, z)du.

t

Theorem 2. Let B be bounded non-empty open set, Vx€B, s>0, t>0, we have
P (e>s, x(e)€A, I—e>t, x(1)eC)

=2 e7"g,(x) '[ J jco,.(v)E(v, dy)dvT(t, y, 2)us(d2). ©)

z€C €B
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Proof. P (e>s, x(e)€A)= ‘[ E(v, A) py(s, x, dv)

B

= f E@v, AL e™,(x),)dv

=) e g, (x) f @,(V)E(v, A)dv. (10)

By ref.[1] we have
P(I>t, x(l)EC)=J p, y, 2)P,(1>0, x(DeC)d:z

g

=| p Y, Z)J 9(z, a)us(da)dz

=\ p, y, z)J. ( J p(u,z,a) du) ug(da)dz

r

= j pit+u,y, a)duua(da)=J T(t, y, a)ug(da). (11)

Uc C

Substituting egs.(10), (11) into eq.(6), we can obtain equation (9).

Let
R(t)=(2n)“/2<% - 1) 421,

Theorem 3. For bounded BE %° and compact A, we have

RG)RMP(h>s, x(WEA, |-h>t, x()EC)

= pAugl(C)P,(h=0), (t—> 0, s—>00) (12)

= u(Apg(C),  (Ix]—> ). (13)
Proof. By Theorem 1 the left side of eq.(12) is

IR(t)Py(l>t, x()E C)R(S)P,(h>s, x(h)Edy). (14)

On compact set 4 we have
lim R()P(I>t, x(1)€C)=pulC)

uniformly in y. Therefore, when t =, eq.(14) tends to uyC)R(s)P,(h>s, x(h)€A), which
approaches

]
~4

P,(h= ), (A)ps(©)  if 5.

Take r large enough such that the ball B =>B. When |x|>r we have

r d-2
1- ? =Px(hB,= CO)SPx(hB: (X)),

so that I}Ijlnw P (hy=)=1 and eq.(13) is proved.
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Some interesting results can be obtained if B is the ball B or sphere S, The first hitting
time and the last exit time are denoted by h and I, respectively, the first exit time of B
by e,, and the uniform distribution on S, by U,. We have®

e R e ) as)
d—

U ) 16)

L.(y,D)=P,(,>0, x(I)eD)= j

r
y—2

r d

T.L(y,D)=F,(>t, x(l,)GD)=—(-§n1t)—d/2 '( exp(— 'y;t""z) f — “Udde.  (7)

The equilibrium distributions of B, and S, are the same,

u,(dz)=21t"/2r"'2U,(dz)/F<% —1). (18)

Let
Kd, r)=21t"’2r"‘"/1"( 4 - 1) ,

llvf?=r?|
(Dn s = n d ’
(y r) J.Br(p (v) ,v_yld v

where ¢, is the eigenfunction corresponding to eigenvalue A, of —;—A on open ball B,. When

X,€B,, h,=e,, the distribution E(v, D) of e, coincides with H (v,D), v€B,. Substituting this
fact and egs. (15), (18) in to eq.(9), we get

Theorem 2'. Let B, be open ball. Then VxGB,, §>0, t>0, A<S,, C<S,. We have
P.(h,>s, x(h)EA, |,.—h>t, x(I)EC)
=K(, r)Ze""sw,,(x)J J ?,00,NT(t,y,2)U,dy)U,(d2). (18)
Put n 2€C J y€4
0.7, 9)=3, Luexp(~dis/27)
where g, are the positive roots of Bessel function J(z)=0, (v= -g— —1), and
Ea=qu 127 T 0+ 1)J,01(qa)

Under P,, h and x(h,) are independent; x(h) is uniformly distributed on S; P,(h >s) =
Q(d,r,s). By eq.(2) we have

Corollary 1.
Py(h,>s, x(h)€A, [ —h>t, x(1)€C)=0Q(, r,S)J T,L,(y, O U,(dy). (19)
A

By strong Markov property and egs. (15) and (16) it is easy to prove
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Theorem 4. VxEB,, A<S,, C<S,, we have

P(x(h)EA, x(1)EC)= j P,(x(1)€ )P (x(h)€dy)= j

A

U4y 422
L XL yanue. )

Corollary 2.

Py(x(h,)€ 4, X(l,)GC)=fJ d_zU,(dy)U,(dZ)=Po(x(h,)€C, x(,)€A).

_r
y—z

It follows that the distribution of x(h) and x(I,) is symmetric on the sphere, i.e.
starting from 0, the events “first hitting A, last exiting from C” and “first hitting C, last exiting

from A” on S, have the same probability. Moreover, the joint distribution of x(h) and
x(l) has the joint density

f09= 5|7 ves, zes) an

with respect to U XU,. Now we are going to find the conditional distribution density
J{zly) of x(1) with respect to U, when x(h)=y€S, is fixed. Using

r (42 1 if |y|<r;
=P,(h<0)={ " ; ’
L y—z| UITRG<®) {lr/yl”“z, if [y|>r,
we see that
_ r d-2 r d-2 _ r d-2
fiely)= o— y—2 U,dz)= Py (z€S,). (22)
5,

By symmetry, given x(I/)=z€S,, the conditional distribution density of x(h) with respect to
U is

r d-2

y—z

(€S)). (23)

d-2

can be seen, namely egs.(16), (21),

ﬂ.(ylz)=|

Now the four probabilistic meanings of

(22) and (23). Of course the variables y, z play a different role in each case.

What will appear as the dimension of the space d > ? In order to emphasize d one
rewrite S, as S¢, and (21) as

1.0 z)=j;j—z‘“ (ves?, zes?) e1)

Intuitively, as d increases, f,(y, z) monotonely increases to © if |y—z| = c<r; it
means that x(h) and x(I) approach each other on S;° with large probability; if |y—z| =
¢’>r, then f/(y,z) monotonely decreases to 0; it follows that the probability of |x(h)—x(1)|
>r becomes smaller and smaller. Hence we introduce the limit function

o, if |y—zi<r;
F(y,z)={ 1, if ly—z|=n
0, if |ly—z|>r,
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where F(y,z) is a “function” defined on §**S%; S* is a sphere with radius r in infinite

dimensional space [,, and
L={y: y=0n, ¥, |y12=Zy,2<oo},

S7={y: yel,, lyl=r}.

F(z,y) is a new “function”, similar to (but not) Dirac function. Perhaps it will interest
some researchers.
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