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Abstract  The operator operations between the disturbing potential and the geoidal undulation, the 
gravity anomaly, the deflection of the vertical are defined based on the relations among the gravity 
potential, the normal gravity potential and the disturbing potential. With the sphere as the boundary 
surface, based on the solution of the external boundary value problem for the disturbing potential by 
the spherical harmonics in the physical geodesy, the general inverse Stokes’ formula, the general 
inverse Vening-Meinesz formula and the general Molodensky’s formula are derived from the operator 
operations defined. The general formulae can get rid of the restriction of the classical formulae only 
used on the geoid. If the boundary surface is defined as the geoid, the general formulas are degen-
erated into the classic ones. 

Keywords: spherical harmonics, boundary value problem, general inverse Stokes’ formula, general in-
verse Vening-Meinesz formula, general Molodensky’s formula. 

The undulation of the geoid, the gravity anomaly 
and the deflection of the vertical are the three basic 
observations describing the shape and the gravity field 
of the earth. The Stokes’ formula that computes the 
undulation of the geoid using the gravity anomaly on 
the geoid under spherical approximate conditions was 
first put forward by Stokes[1]. According to Stokes’ 
theory, The Vening-Meinesz formula that computes 
the meridian and the prime vertical components of the 
deflection of the vertical was also derived by Ven-
ing-Meinesz utilizing the gravity anomaly on the ge-
oid[2]. The applications of the Stokes’ formula and the 
Vening-Meinesz formula have drawn many important 
problems[3]. For example, it is necessary that the 
gravitational gradient or the earth’s crust density be 
supposed and the mass of the earth’s crust be moved 

when processing gravity reduction; on the other hand, 
the surface for the boundary value problem——the 
geoid is unknown[4]. Molodensky advanced a new 
theory to research the shape and the gravity field of 
the earth in 1945. It is a boundary value problem on 
the earth’s surface[5]. It does not need the information 
of the earth’s crust density in the theory application. 
Afterwards, Molodensky and his colleagues derived 
the inverse Vening-Meinesz formula to compute the 
deflection of the vertical using the gravity anomaly, 
the inverse Stokes’ formula to compute the undulation 
of the geoid using the gravity anomaly and the Molo-
densky’s formula to compute quasi-geoid height using 
the deflection of the vertical[5,6]. The above formulae 
theoretically describe internal relationships between 
the earth’s shape and the gravity field of the earth 
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through converting between the undulation of the ge-
oid, the gravity anomaly and the deflection of the ver-
tical. According to Bruns’ formula and utilizing the 
relationship between the disturbing potential and the 
gravity anomaly, Rummel similarly derived the in-
verse Stokes’ formula in 1977[3,7,8]. On the basis of the 
expansions of the spherical harmonics for the gravita-
tional potential and Green’s anamorphosis formula, 
Hwang derived similar Molodensky's formula and 
inverse Vening-Meinesz formula in 1998[9,10]. In 
above-mentioned formulae which the undulation of 
the geoid, the gravity anomaly and the deflection of 
the vertical are transformed mutually, they have a 
common characteristic, that is, the undulation of the 
geoid, the gravity anomaly and the deflection of the 
vertical share identical boundary surface (e.g. geoid or 
quasi-geoid). They are named the classical formulae in 
this paper. At present, the researches of the gravity 
field of the outside earth are paid more attention to in 
physical geodesy. It is more significant that the gravity 
field parameters outside the earth are derived using 
geometrical and/or physical observations on the geoid 
or the telluroid. Therefore, the formulae derived by 
this paper are named the general formula. Utilizing 
operator operations and spherical harmonics, the gen-
eral inverse Stokes’ formula, the general inverse Ven-
ing-Meinesz and the general Molodensky’s formula 
are derived in this paper. 

1  Operator definition 

Based on the definitions of the disturbing potential 
T, the gravity anomaly Δg, the deflection of the verti-
cal ε as well as the undulation of the geoid N, under 
the condition of spherical approximation, the relations 
between the disturbing potential and the gravity 
anomaly, the deflection of the vertical, the undulation 
of the geoid can be expressed as 
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where ρ denotes the geocentric distance, R the radius 

of the boundary spherical surface, γ the normal gravity, 
ψ arbitrary direction on the sphere. Here, eq. (1) is the 
famous Bruns’ formula[7]. Eq. (2) is called fundamen-
tal differential equation in the physical geodesy[11]. It 
is an important boundary value condition in studying 
the gravity field outside the earth. On the basis of 
definition of the deflection of the vertical[3], eq. (3) 
denotes the deflection of the vertical in direction ψ. 
They are all the functional of the disturbing potential. 
Eq. (1), eq. (2) and eq. (3) are expressed in the form of 
operator operating: 
  (4) 1 ,B T N=

 2 ,B T g= Δ  (5) 

 3 ,B T ε=  (6) 
where B1, B2 and B3 are operator signs. 

2  Spherical approximate solution for disturbing 
potential  

When the boundary surface is a sphere, the bound-
ary value problem of the physical geodesy can be 
solved by using spherical harmonics under the spheri-
cal approximate condition. For this fixed boundary 
value problem, the existence and uniqueness about the 
solution of disturbing potential in out space of the 
earth can be found in Stokes theorem[1] and Dirichlet 
theorem[3]. 

If the disturbing potential T on the boundary surface 
is known in eq. (1), the disturbing potential outside the 
boundary surface can be solved. On the basis of the 
solution of the first boundary value problem of the 
potential theory outside the sphere[11], we can obtain 
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ρ ψ
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where ( , , )ρ ϕ λ  is a point to be computed, N σ  the 

function on the sphere, 0γ  the normal gravity on the 

sphere, ( ),K ρ ψ  the kernel function of the solution 

about Laplace’s equation under the boundary value 
condition defined by eq. (1). The series expansion of 
( ),K ρ ψ  is expressed as 
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When the linear combination of the disturbing po-
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tential and its normal direction derivative on the 
sphere is known in eq. (2), the disturbing potential 
outside the boundary surface can be also solved. 
According to the solution of the third boundary value 
problem for the potential theory outside the sphere[11], 
we can obtain 

 ( , , )
1 ( , ) d ,

4
T S gρ ϕ λ σ

σ

ρ ψ
π

= Δ∫∫ σ  (9) 

where g σΔ  is the function on the sphere, ( ),S ρ ψ  

the kernel function of the solution about Laplace’s 
equation under the boundary value condition defined 
by eq. (2). The series expansion of ( ),S ρ ψ  is ex-

pressed as 
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If the direction derivative for the disturbing poten-
tial on the sphere is known in eq. (3), the disturbing 
potential outside the boundary surface can be solved. 
On the basis of the spherical harmonics expansion 
theory, we can obtain 
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where 
T
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 is the function on the sphere, ( ),M ρ ψ  

the kernel function of the solution about Laplace’s 
equation under the boundary value condition defined 
by eq. (3). The series expansion of ( ),M ρ ψ  is ex-

pressed as 
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According to the representations of the generating 
function of Legendre’s polynomial[12] and the results 
given by ref. [13]. The kernel function ( ),K ρ ψ  can 

be expressed in an enclosed form as 

 ( )
2 2

3, RK
Rl

ρρ ψ −
= ,

)

 (13) 

where 

 (
1

2 2 22 cosl R Rρ ρ ψ= + − .  (14) 

It can be seen that ( ),K ρ ψ  is actually Poisson’s 

kernel function, eq. (7) is called Poisson’s integral 

formula. In the same way, we can get the enclosed 
expression of kernel function ( ),S ρ ψ  as 
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Eq. (15) is called general Stokes’ function[4]， and 
eq. (9) is called Stokes’ integral formula. Similarly, the 
enclosed expression of the kernel function ( ),M ρ ψ  

is expressed as 
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(16) 
The deflection of the vertical on the boundary sur-

face is mapped as the disturbing potential through 
kernel function ( ),M ρ ψ  in eq. (11). For this reason, 

eq. (16) is called the general direction transformation 
function. Eq. (11) is called the general direction trans-
formation integral equation. 

3  General integral formulae  

3.1  General inverse Stokes formula  

According to the operator operation defined by eq. 
(5), the disturbing potential is mapped as gravity 
anomaly through the operator B2. Let B2 apply to eq. 
(7) and define 
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We get 
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Eq. (19) is namely the general Stokes’ formula. The 
undulation N of the level plane for gravity potential on 
the boundary surface is mapped as gravity anomaly Δg  
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on the identical boundary surface or outside. If the 
boundary surface is a virtual sphere inside the earth, 
the disturbing potential outside the earth can be ob-
tained through solving boundary value problem de-
fined by this virtual sphere based on the Stokes theo-
rem[1] and Dirichlet theorem[3]. The contents above is 
the main part of Bjerhammar’s theory researching the 
shape and gravity field of the earth[14]. The boundary 
surface with regard to eq. (19) can be not only a vir-
tual sphere of inside the earth, but also the quasi-geoid 
under spherical approximate condition. If the bound-
ary surface is the geoid on which only the gravity 
anomaly is computed, eq. (19) degenerates into clas-
sical inverse Stokes’ formula by letting ρ = R in eq. 
(19). The kernel function ( ),Q R ψ  is singular at 

0,ψ =  so we simply transform eq. (19), 
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where ( ,p p )ϕ λ  is a computation point, ( ,p pN )ϕ λ  

the undulation of the geoid at this point. The kernel 
function ( ),Q R ψ  in the first integral to the right of 

eq. (20) is expressed as infinite series expansion: 
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According to the orthogonal property of the Legen-
dre’s function, and taking into account ( ),p pN ϕ λ  

being constant in integral expression, the first integral 
expression to the right of eq. (20) can be written as 

(0 ,p pN
R ).γ

ϕ λ−  The kernel function ( ),Q R ψ  in the 

second integral to the right of eq. (20) is expressed as 
enclosed expression: 

 
2 3

1( , ) .
4 sin

2

Q R
R

ψ
ψ

= −  (22) 

Combining the above-mentioned results, we obtain 
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which is exactly classical inverse Stokes’ formula. 

3.2  General inverse Vening-Meinesz formula  

Similarly, according to operator operation defined 
by eq. (5), we apply B2 to eq. (11) and define 

 2
1( , ) ( , ),B M Vρ ψ ρ
ρ

= ψ  (24) 

where 

( )
( )2

3

2

2 cos 1 1, cot
sin

1 1 1 1 3 cot 2
sin

1 1 1 cos cot ln , (25)
2

R
V

Rl

l
R l lR

l R
R R

ρ ψ ρ
ρ ψ ψ

ρ ψ

ρψ
ρ ρψ

ρ ψψ
ρ ρ

− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛

− + + − −⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞ + −

+ −⎜ ⎟
⎝ ⎠

  

⎞
⎟
⎠

 
then 

 ( , , )
1 ( , ) d .

4
Tg Vρ ϕ λ σ

σ

ρ ψ
πρ ψ

∂
Δ = −

∂∫∫ σ  (26) 

Eq. (26) is a general inverse Vening-Meinesz for-
mula. The deflection of the vertical ε on the boundary 
surface is converted into gravity anomaly Δg on the 
identcal boundary surface or outside of the boundary 
surface by using eq. (26). Furthermore, if the boundary 
surface is the geoid on which only the gravity anomaly 
is computed, eq. (26) degenerates into classical inverse 
Vening-Meinesz formula by letting ρ = R in eq. (26). 
The kernel function ( ),V R ψ  is expressed as 

( ) 2
1, 3csc csc csc tan .

2 2
V R

R
ψ ψψ ψ ψ⎛ ⎞= − − −⎜ ⎟
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 (27) 

Substituting eq. (27) into eq. (26), we obtain an ex-
pression that is identical with the classical inverse 
Vening-Meinesz formula. We have a good reason to 
say that the classical inverse Vening-Meinesz formula 
is only a special case of the general inverse Vening- 
Meinesz formula. 

3.3  General Molodensky formula 

The disturbing potential can be transformed into the 
undulation of the geoid by operator operation B1. 
Therefore, letting B1 apply to eq. (11), we can obtain 

p
γ

ϕ λΔ = −
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where ( ),M ρ ψ  is the general direction transforma-

tion function (tentative). We call eq. (28) a general 
Molodensky formula. Eq. (28) transfers the deflection 
of the vertical ε on the boundary surface into level 
plane undulation for the gravity potential on the iden-
tical boundary surface or into the geoidal undulation. 
Eq. (28) degenerates into the classical Molodensky’s 
formula if the boundary surface is the geoid on which 
only the gravity anomaly is computed. Letting ρ = R in 
eq. (28), the kernel function ( ),R ψ  is expressed as 

 ( ) 2
1, cot
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Substituting eq. (29) into eq. (28), we obtain a clas-
sical Molodensky’s formula. It must be pointed out 
that the kernel function ( ),M R ψ  given by this paper 

is identical with classical Molodensky’s formula under 
the condition, ρ = R. The kernel function ( ),M R ψ  is 

slightly different from ( )C ψ  given by ref. [10] since 

the initial value of the series is different. 

3.4  The deflection of the vertical outside the level 
plane  

The disturbing potential can be transformed into the 
deflection of the vertical ε by operator operation B3. 
Applying B3 to eq. (7), we obtain 
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where the kernel function ( ),B ρ ψ  is defined as 
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where the kernel function ( ),B ρ ψ  is expressed as 
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If the boundary surface is a virtual sphere inside the 
earth, the deflection of the vertical outside the earth 
can be computed at arbitrary points by using eq. (32). 
If the boundary surface is the geoid and the undulation 
of the geoid is available, we can compute the deflec-
tion of the vertical outside the earth. It is significant 

for checking the deflection of the vertical on flight 
path. 

4  Analysis and conclusion 

On the basis of the functional relationships between 
the disturbing potential and the undulation of the geoid, 
the gravity anomaly as well as the deflection of the 
vertical, the operator operations are defined in this 
paper. By using the regenerated characteristic of the 
kernel function and the orthogonal property of the 
spherical harmonics, the general inverse Stokes’ for-
mula, the general inverse Vening-Meinesz formula, the 
general Molodensky’s formula and the expression 
computing the deflection of the vertical outside the 
level plane are derived under sphere approximation 
condition. Through analyzing the general formulae, 
we can obtain some conclusions： 

Because all the general formulae include factor ρ, 
they can be applied to computing the undulation of the 
geoid, the gravity anomaly and the deflection of the 
vertical not only on geoid, like the classical formulas, 
but also at arbitrary points outside the earth. The gen-
eral formulae supplement the theory of the shape and 
gravity field of the earth and provide a new idea in 
physical geodesy. 

The general formulae naturally degenerate into the 
classical formulae if the boundary surface is the geoid 
on which only the undulation of the geoid, the gravity 
anomaly and the deflection of the vertical are com-
puted. It can be said that the classical formulae are 
only the special case of the general formulae. 

The concept of Bjerhammar’s virtual sphere is 
adopted in this paper. The kernel functions are easily 
expressed by the series of spherical harmonics. The 
derivation processing is simplified. 
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