
. RESEARCH PAPERS .

SCIENCE CHINA
Information Sciences

May 2010 Vol. 53 No. 5: 945–953

doi: 10.1007/s11432-010-0065-1

c© Science China Press and Springer-Verlag Berlin Heidelberg 2010 info.scichina.com www.springerlink.com

Fair exchange signature schemes

LIU JingWei1,2∗, SUN Rong1 & KWAK KyungSup2

1Key Laboratory of Computer Network and Information Security, Ministry of Education,

Xidian University, Xi’an 710071, China;
2UWB Wireless Communications Research Center, Inha University, Incheon 402751, Korea

Received July 8, 2008; accepted July 29, 2009; published online March 22, 2010

Abstract In this paper a new class of fair exchange signature scheme (FESS) is proposed that allows two

players to exchange digital signatures in a fair way. The new signature scheme is a general model and has

various implementations based on most of the existing signature schemes; thus it may also be considered as

an interesting extension of concurrent signature presented in EUROCRYPT 2004 that is constructed from ring

signatures. In FESS, two unwakened signatures signed respectively by two participants can be verified easily by

each player, but it would not go into effect until an extra piece of commitment keystone is released by one of

the players. Once the keystone is revealed, two signatures are both aroused and become valid. A key feature of

FESS is that two players can exchange digital signatures simultaneously through a secret commitment keystone

without involvement of any trusted third party (TTP). Moreover, the efficiency of the new scheme is higher

than that of concurrent signatures.

Keywords FESS, concurrent signature, Schnorr signature, fair exchange, electronic commerce

Citation Liu J W, Sun R, Kwak K S. Fair exchange signature schemes. Sci China Inf Sci, 2010, 53: 945–953,

doi: 10.1007/s11432-010-0065-1

1 Introduction

Open networks such as the Internet lay a stable foundation for electronic commerce, which usually involves

two distrusted parties exchanging their items from each other, such as e-commerce payment protocols,

electronic contract signing, and certified e-mail delivery. Due to the rapid growth of electronic commerce

nowadays, fair exchange turns out to be an increasingly important topic. A digital exchange problem

is deemed to be fair if at the end of exchange, either party receives the expected item or neither party

receives it. In general scenarios, digital items’ exchanges have to be carried out over open networks

and both participants may not trust each other. There could be subsequent disputes about what was

exchanged during a transaction even if the exchange itself was completed fairly. In this case, evidence

should be accumulated during the exchange to enable the settlement of any future disputes.

In the recent years various schemes on the fair exchange problem have been proposed and reported in

the literature. These schemes often fall into three categories:

Solutions to fair exchange problem are often gradual exchange protocols [1–7] where two parties have

to be too interactive and cumbersome for exchanging digital items by many steps. Nevertheless, these

∗Corresponding author (email: j w liu@hotmail.com)



946 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

methods cannot provide fairness fully, because at the end of protocols, one player often has an advantage

of one more bit than the other player does. In [3], the authors introduced timed commitments. A timed

commitment is a commitment scheme in which there is an optional forced opening phase enabling the

receiver to recover (with effort) the committed value without the help of the committer. But this method

is only considered for Rabin and RSA signatures of a special kind. In [7], the authors show how to achieve

timed fair exchange of digital signatures of standard type. Their construction follows the gradual release

paradigm, and works on a new “time” structure, called a mirrored time-line. But the length of it leads to

another apparent problem, which is making sure that the underlying sequence has a period large enough

so that cycling is not observed.

Recently, lots of researches on fair exchange protocols mainly exploit an on-line or off-line trusted third

party (TTP) [8–21], which is involved in protocols run (on-line) or account opening and disputes (off-

line). However, either on-line or off-line TTP may cause the bottleneck problem and at least inefficiencies

in the operation though its involvement is further reduced in [8, 12, 20]. In [8], the authors introduced

a protocol that allows two players to exchange digital signatures over the Internet in a fair way. The

protocol relies on a trusted third party, but is “optimistic,” in which the third party is only required in

cases that one player attempts to cheat or simply crashes. The key feature of the protocol is that a player

can always force a timely and fair termination without the cooperation of the other player.

The latest direction of fair exchange is supposed to overleap TTP in the protocols. Two participants

carry out digital items’ exchange by using special signatures. In this way, some new fair exchange protocols

are designed, which become more efficient than prior arts do. The concept of concurrent signatures was

introduced by Chen et al. [22] in Eurocrypt 2004. Such signature schemes allow two parties to generate

and exchange two signatures that are ambiguous until an extra piece of information (called keystone) is

released by one of the parties, which exploits the ambiguity property enjoyed by the ring signatures [23,

24]. More specifically, before the keystone is released, those two signatures are ambiguous with respect

to the identity of the signing party, i.e., they may be issued either by two parties together or just by

one party alone; after the keystone is publicly known, however, both signatures are bound to their true

signers concurrently, i.e., any third party can validate who signed which signature. Concurrent signature

allows to build a fair exchange protocol in which two parties interact to exchange digital items without

the involvement of the trusted third party. But it is at the sacrifice that the initial party controls the

keystone and therefore he/she has an extra right to decide when the keystone is released. In ICICS

2004, Susilo et al. [25] further proposed a perfect concurrent signatures to strengthen the ambiguity of

concurrent signatures. That is, even if both signers are known to have issued one of the two ambiguous

signatures, any third party is still unable to deduce who signed which signature, different from Chen et

al.’s scheme. But in [26], Wang et al. point out that Susilo et al.’s two perfect concurrent signature

schemes are actually not concurrent signatures and present an effective way to avoid this attack.

However, most of the previous researches on fair exchange are not fully suitable for the applications on

open networks, because most fair exchange applications have to be provided not only security but also

efficiency. In our opinion, an ideal solution for fair exchange should be both secure and efficient. With

the opinion, we propose a new class of fair exchange signature schemes (FESS) in this paper that allows

two players to exchange digital signatures over open computer and communication networks (such as the

Internet) in a fair way, so that either player obtains the other’s signature at the same time, or neither

player does. In FESS, each unwakened signature signed by two participants respectively can be verified

easily by each player, but it does not go into effect until an extra piece of information keystone is released

by one of the players. Once the keystone is revealed, two signatures are both aroused and become valid.

The FESS can be applied to different application environments through various implementations. We

will also introduce how to construct an implementation of FESS without a TTP. Thus it provides a valid

primitive that is of interest in designing fair exchange schemes. Of course there might be other applications

to consider. A key feature of FESS is that two players can exchange digital signatures simultaneously

without involvement of any TTP. FESS does not overcome the weakness of concurrent signature, that

the initial party controls the keystone, but it has higher efficiency than concurrent signature.

The main contributions in this paper are listed as follows:



LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 947

1. A generic definition of FESS is proposed.

2. The way to construct FESS without TTP is demonstrated.

3. The security proof of FESS in the random oracle model is provided.

2 Basic definitions

In this section, we introduce the basic definitions of FESS. The parameters involved in the new schemes

are depicted as follows.

• a plaintext message spaceM: a set of strings over some alphabet;

• a keystone message space Kks: a set of strings over some alphabet;

• a keystone fix space K: a set of possible keystone fix volume;

• a signature space S: a set of possible signatures;

• a signing key space X : a set of possible keys for signature creation;

• a verification key space Y: a set of possible keys for signature verification;

Definition 1. A full FESS consists of five procedures (Parameter Setup, KGen, Sign, SVerify, KVerify):

• An efficient probabilistic algorithm Parameter Setup:

k → 〈{xi}, {yi}, description of {M,Kks,K,S}〉,

where k is a security parameter, xi ∈ X and yi ∈ Y.

• An efficient one-way function KGen: Kks → K, which generates a keystone fix k ∈ K with an input

keystone ∈ Kks. Secure hash functions can be used as KGen.

• An efficient probabilistic signing algorithm Sign: M×K×X → S, for any message m ∈M, keystone

fix k ∈ K and private key x ∈ X , we denote s← Signx(m, k) where s ∈ S.

• An efficient signature verification algorithm SVerify: M×K×S×Y → {True, False}, for any m ∈ M,

k ∈ K, and y ∈ Y, it is necessary that

SVerifyy(m, k, s) = True or False. (1)

• An efficient keystone verification algorithm KVerify:

M×K× S × Y ×Kks → {True, False},

for any m ∈M, k ∈ K, y ∈ Y and keystone ∈ Kks, it is necessary that

KVerifyy(m, k, s, keystone) =

{

True, if SVerifyy(m, k, s) = True and k = KGen(keystone).

False, elsewise.
(2)

3 Basic models

3.1 Fair exchange signature protocols

In the normal case, most of fair exchange schemes often involve an on-line or off-line third party, but,

by using an embedded commitment, FESS is performed only between two participants, without loss of

generality, Alice (initial signer) and Bob (respond signer). Alice who initiates the protocol generates a

piece of secret information–keystone randomly, signs a message with her private key and a keystone fix

that is generated by a one-way function with the input keystone, and sends the signature message to Bob.

Bob responds to this message by signing another message with his private key and the same keystone fix.

Following Definition 1, the detailed implementation of FESS is depicted as follows.

Alice and Bob first choose an efficient signature scheme and the relevant parameters. Let xA, xB ∈ X

denote Alice’s and Bob’s private key respectively and yA, yB ∈ Y denote the public key corresponding to

the private key of two participants.



948 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

1. Alice chooses a keystone ∈ Kks randomly and computes k = KGen(keystone), where k ∈ K. And

she uses k and her private key xA to sign a given message mA agreed with Bob. The verifiable signature

message is σA = 〈mA, k, sA〉, where sA = SignxA
(mA, k), and is sent to Bob.

2. After receiving Alice’s signature message σA, Bob verifies the message σA by running algorithm

SVerify described in section 2. If SVerifyyA
(σA) = True, Bob chooses a message mB agreed with Alice

and uses k and his private key xB to generate a signature sB = SignxB
(mB, k). Bob sends the verifiable

signature message σB = 〈mB, k, sB〉 back to Alice. Otherwise, if SVerifyyA
(σA) = False, Bob aborts.

Note that Bob uses the same value k as Alice does.

3. After receiving Bob’s verifiable signature message σB, Alice also verifies the message σB by running

algorithm SVerify. If SVerifyyB
(σB) = True, Alice releases keystone to arouse not only σB but also σA;

thus two verifiable signatures go into effect at the same moment. If SVerifyyB
(σB) = False, Alice aborts.

4. Everyone can verify whether KVerifyyA
(σA, keystone)= True or KVerifyyB

(σB , keystone)=True.

Here we need to point out that FESS provides fairness through the dormancy property, which is

different from the ambiguous property of concurrent signature [22]. As a useful cryptographic tool, our

scheme provides a primitive to build efficient fair exchange protocols. In the next section, we will give a

specific implementation of FESS.

3.2 Attack model for FESS

For a secure signature scheme, the property of secure against existential forgery on adaptively chosen

message attack is necessary. In formal security model in [27, 28], an adversary wins the game if he outputs

a valid pair of a message and a signature, where he is allowed to require the signer to sign any message

except for the message that the adversary has to sign. Here we will introduce an attack model for FESS,

similarly to that in [28]. We say that a FESS, which consists of five algorithms: Parameter Setup, KGen,

Sign, SVerify, KVerify, is secure against existential forgery on adaptively chosen message if no polynomial

time algorithm A has a non-negligible advantage against a challenger C in the following game:

1. C runs Parameter Setup algorithm firstly and gives the public system parameters to A.

2. A can require the following queries:

(a) Hash function query. Given a requested input, C outputs the value of hash function to respond to

A.

(b) KGen query. A can request that C selects a keystone ∈ Kks and returns the fix k = KGen(keystone).

(c) KReveal query. A can request the keystone which corresponds to an existing keystone fix k ∈ K

generated by a previous KGen query.

(d) Sign query. Given a message m ∈ M and a k ∈ K , C returns a signature s which is generated by

running Sign algorithm.

3. A outputs 〈m, k, s〉, where m is a message, k is a keystone fix and s is a signature such that 〈m, k〉

is not equal to the any previous input of Sign query and k is not only an existing output of KGen query

but also an input of KReveal query. A wins the game if s is a valid signature of 〈m, k〉.

By using this attack model, we can reduce the security of FESS to the hardness of discrete logarithm

problem in section 5.

4 An implementation of FESS

In this section, we give an implementation of FESS actually based on Schnorr signature. We introduce

the system parameters firstly.

Parameter settings:

• System parameters: Let p and q be two large primes and q|p− 1. The notation g denotes an element

of order q of Z∗
p .

• Alice: Alice has a pair of keys (xA, yA) for Schnorr signature, where xA is Alice’s private key, yA is

her public key and yA = g−xA mod p.



LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 949

• Bob: Bob has a pair of keys (xB , yB) for Schnorr signature where xB is Bob’s private key, yB is his

public key and yB = g−xB mod p.

1. Alice chooses keystone = 〈IDAB〉 and computes k = G(IDAB), where IDAB is a piece of random

information about Alice’s and Bob’s identity and G is a hash function. Alice generates her signature

sA = SignxA
(mA, k) = 〈rA, eA, cA〉, where rA = gkA mod p, eA = H(mA, k, rA), cA = kA + eAxA mod q,

and H is a hash function. The verifiable signature message is σA = 〈mA, k, sA〉 and is sent to Bob.

2. Bob verifies σA by running SVerify algorithm. If eA = H(mA, k, gcAyeA

A mod p), Bob generates

sB = SignxB
(mB, k) = 〈rB, eB, cB〉 and sends σB = 〈mB, k, sB〉 to Alice, otherwise aborts.

3. Alice verifies σB by running SVerify algorithm. If eB = H(mB , k, gcByeB

B mod p), Alice releases

keystone, otherwise aborts.

4. Each participant can prove σA (or σB) valid by verifying k = G(IDAB), SVerifyyA
(σA) = True (or

SVerifyyB
(σB) = True).

From the above implementation, we conclude that FESS is a general model and can be implemented

based on most of the existing signature schemes, therefore, FESS has higher efficiency than concurrent

signature does. We will show efficiency comparison between FESS and concurrent signature in the next

section.

5 Security and efficiency analysis of FESS

5.1 Security

In this subsection, we will discuss the security of FESS in the random oracle model [29].

Lemma 5.1 (Completeness). The proposed scheme achieves the property of completeness.

Proof. If s = Signx(m, k) = 〈r, e, c〉, r = gk′

mod p, e = H(m, k, r) and c = k′ + ex mod q then

e = H(m, k, gcye mod p) ⇔ SVerifyy(m, k, s) = True. Moreover, if SVerifyy(m, k, s) = True and k =

G(keystone) then KVerifyy(m, k, s, keystone) = True.

Thus, the proposed scheme achieves the property of completeness.

To prove the property of Unforgeability of FESS, we have to introduce an important conclusion—

Forking Lemma [28] firstly. It gives a reductionist security proof for triplet ElGamal-family signature

schemes which produce a signature (Gen, Sign, Verify) on an input message m.

Lemma 5.2 (Forking Lemma). Let A be a probabilistic polynomial time Turing machine whose input

only consists of public data. We denote respectively by Q and R the number of queries that A can ask

to the random oracle and the number of queries that A can ask to the signer. Assume that, within time

bound K, A produces, with probability ε > 10(R + 1)(R + Q)/2k (where k is a security parameter), a

valid signature (m, σ1, h, σ2). If the triples (σ1, h, σ2) can be simulated without knowing the secret key,

with an indistinguishable distribution probability, then there is another machine which has control over

the machine obtained from A replacing interaction with the signer by simulation and produces two valid

signatures (m, σ1, h, σ2) and (m, σ1, h
′, σ′

2) such that h 6= h′ in expected time T ′ 6 120686QT/ε.

Lemma 5.3 (Unforgeability). The FESS is unforgeable under a chosen message attack in the random

oracle model.

Proof. The proof refers to the proof of unforgeability of the signature scheme [27, 28] by Pointcheval

and Stern. We suppose that G and H are random oracles, and there exists a probabilistic polynomial

time Turing machine A whose input only consists of public data. We assume that A can make QG

queries to the random oracle G, QH queries to the random oracle H and QS queries to the signing

oracle Sign. Within time bound T , A generates a valid signature 〈m, k, 〈r, e, c〉〉 with probability ε >

10QG(QS + 1)(QS + QH)/2l (where l is a security parameter).

Simulation. C gives the parameters 〈g, p, q〉 and y = g−x mod p to A. C tries to simulate the challenger

by simulating all the oracles to gain the secret key x. A can make queries as follows:



950 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

G-queries. A can query the random oracle G at any time. C simulates this random oracle by

maintaining a list of tuple 〈mi, ki〉 which is called G-list. When the oracle is queried with an input

m ∈ {0, 1}∗, C responds as follows:

1. If the query m is already in an entity 〈m, ki〉 of G-list, C outputs ki.

2. Otherwise C selects k ∈ K randomly, outputs k and adds 〈m, k〉 to G-list.

H-queries. A can query the random oracle H at any time. C simulates this random oracle by main-

taining a list of tuple 〈
∑

i, ei〉 which is called H-list, where
∑

i is a triple of 〈mi, ki, ri〉. When the oracle

is queried with an input
∑

, C responds as follows:

1. If the query
∑

is already in an entity 〈
∑

, ei〉 of H-list, C outputs ei.

2. Otherwise C selects e ∈ Zq randomly, outputs e and adds 〈
∑

, e〉 to H-list.

KGen-queries. C maintains a K-list of tuples 〈keystone, k〉. A can request that C selects a keystone ∈

Kks and returns a keystone fix k = G(keystone). C chooses a random keystone ∈ Kks and computes

k = G(keystone). C outputs k and adds 〈keystone, k〉 to K-list. In fact, K-list is a sublist of G-list and

is only required to answer KReveal queries.

KReveal-queries. A can request the keystone which corresponds to an existing keystone fix k ∈ K

generated by previous KGen query. If there exists a tuple 〈keystone, k〉 in K-list, then C returns keystone,

otherwise it outputs an invalid status.

Sign-queries. C simulates the signature oracle by responding queries of the form 〈m, k〉 where m ∈ M

is the message to be signed and k ∈ K is a keystone fix. C answers the query as follows:

1. C picks two random numbers c, e ∈ Zq where e is not equal to any previous output of H oracle.

2. C computes r = gcye mod p. If
∑

= 〈m, k, r〉 is equal to any previous input of H oracle, then return

to step 1.

3. C adds 〈
∑

, e〉 to H-list.

4. C outputs s = 〈r, e, c〉 as the signature for message m.

Note. Here we have to verify if the distribution of real signature δ is consistent with the forged signature

δ′.
{

δ = {(r, e, c)|k ∈ Zq, k 6= 0, e ∈ Zq, r = gk mod p, c = k + xe mod q},

δ′ = {(r, e, c)|e ∈ Zq, c ∈ Zq, r = gcye 6= 1 mod p}.
(3)

Firstly, we compute the probability of the real signature signed using secret key

Pr
δ

[(r, e, c) = (ε, β, γ)] = Pr
k 6=0,e

[r = gk = ε, e = β, c = k + xe = γ] =
1

q(q − 1)
. (4)

The probability of the forged signature is

Pr
δ′

[(r, e, c) = (ε, β, γ)] = Pr
e,c

[e = β, c = γ, r = gcye = ε 6= 1 mod p] =
1

q(q − 1)
. (5)

So the triple 〈r, e, c〉 can be simulated without knowing the secret key, with an indistinguishable distri-

bution probability. The signing oracle simulated by C has high quality, therefore, A is satisfied with the

Sign-queries’ answer and can fully exert his forgery ability.

Output. Finally, with a non-negligible probability, A outputs a valid signature s = 〈r, e, c〉 of a message

m ∈M and k ∈ K, where A obtains k = G(keystone) through KGen queries and makes a KReveal query

with the input k and no Sign query with the input 〈m, k〉.

Now C plays the simulation twice so thatA can obtain two valid signatures s = 〈r, e, c〉 and s′ = 〈r, e′, c′〉

with e 6= e′. Then we have

r = gcye = gc−xe = gc′−xe′

= gc′ye′

mod p. (6)

By (6), C can solve the hard discrete logarithm:

logg y = −x =
c− c′

e′ − e
mod q, (7)



LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 951

within expected time less than 120686×2l×QHT
10×(QS+1)×(QS+QH) . This contradicts the hardness of the discrete loga-

rithm problem.

In [22], to prove the concurrence of two participants’ signatures, Chen et al. make use of the ambiguous

property of ring signatures. No one can confirm who is the signer within two participants unless initial

signer releases the keystone. But in FESS, to ensure simultaneity, we introduce the property of Dormancy.

Two signatures that have been exchanged are not valid until the secret information keystone is released

to arouse them.

Lemma 5.4 (Dormancy). The proposed scheme achieves the property of dormancy before the secret

information keystone is released.

Proof. The random oracle assumption is the same as before. We suppose there exists a probabilistic

polynomial time Turing machine A whose input only consists of public data. We assume that A can

make QG queries to the random oracle G, QK queries to the random oracle KGen and QS queries to the

signing oracle Sign.

Simulation. C gives the parameters 〈g, p, q〉 and y = g−x mod p to A. C tries to simulate the challenger

by simulating all the oracles to reveal a keystone with k = G(keystone). A can query as in Lemma 5.3.

Output. Finally, with a non-negligible probability, A outputs a keystone and a valid signature s =

〈r, e, c〉 with a message m ∈M and k ∈ K, where A obtains k = G(keystone) through KGen queries and

does not make KReveal query with the input k.

In this case, it is easy for A to obtain a valid signature s = 〈r, e, c〉 through Sign-queries. But A cannot

make any query to KReveal-queries with the input k, so he can only reveal keystone with a negligible

probability QGQK

2l . This contradicts the assumption that, with a non-negligible probability, A outputs a

keystone and a signature s = 〈r, e, c〉.

Lemma 5.5 (Fairness). The proposed scheme achieves the property of fairness.

Proof. The random oracle assumption is the same as in Lemma 5.3. We suppose there exists a prob-

abilistic polynomial time Turing machine A whose input only consists of public data. We assume that

A can make QG queries to the random oracle G, QH queries to the random oracle H, QK queries to the

random oracle KGen and QS queries to the signing oracle Sign.

Simulation. C gives the parameters 〈g, p, q〉 and y = g−x mod p to A. C tries to simulate the challenger

by simulating all the oracles to gain the secret key x or reveal a keystone with k = G(keystone). A can

query as before.

Output. Finally, with a non-negligible probability, A outputs a keystone and a valid signature

s = 〈r, e, c〉 with a message m ∈M and k ∈ K. One of the following two cases holds:

1. A obtains k = G(keystone) through KGen queries and makes KReveal query with the input k and

no Sign query with the input 〈m, k〉.

2. A produces k = G(keystone) through KGen queries and does not make KReveal query with the

input k.

In case 1, it is easy to educe a contradiction from Lemma 5.3. In case 2, the output conditions only

occur with a negligible probability from Lemma 5.4.

Theorem 5.6. The FESS is secure in the random oracle model, assuming the hardness of the discrete

logarithm problem.

Proof. The proof follows directly from completeness, unforgeability, dormancy and fairness.

5.2 Efficiency

Because FESS can be implemented based on more efficient signature schemes, it has higher efficiency

than concurrent signature does. Executive efficiency comparison between FESS and concurrent signa-

ture is given in Table 1. In Table 1, “E” denotes the number of exponentiation in Zp, “Mp” denotes the



952 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

Table 1 Efficiency comparison

Algorithm FESS Concurrent signature

Initial Sign 1E + 1Mq + 1A + 2H 2E + 1Mq + 1Mp + 2A + 2H

Respond Sign 1E + 1Mq + 1A + 1H 2E + 1Mq + 1Mp + 2A + 1H

SVerify 2E + 1Mp + 1H 3E + 2Mp + 1A + 1H

KVerify 2E + 1Mp + 2H 3E + 2Mp + 1A + 2H

number of multiplication in Zp, “Mq” denotes the number of multiplication in Zq, “A” denotes the

number of addition in Zq, “H” denotes the number of hash operation.

6 Conclusions

In this paper we propose a secure and efficient signature scheme—FESS that allows two players to

exchange digital signatures in a fair way. It is a general model and can be implemented based on most of

the existing signature schemes. In FESS, two unwakened signatures that are exchanged can be verified

easily by each player, but they do not go into effect until an extra piece of information keystone is released

by one of the players. Once the keystone is released, two signatures are both aroused and become effective.

A key feature of the proposed scheme is that two players can exchange digital signatures simultaneously

through a secret commitment without involvement of any trusted third party. Although FESS does not

overcome the weakness of concurrent signature, that the initial party controls the keystone, we can point

out that the executive efficiency of FESS is higher than that of concurrent signatures from the above

comparison. For various implementations based on most of the existing signature schemes, FESS can be

applied to different environments. As a useful cryptographic tool, FESS provides a primitive to build

efficient fair exchange protocols.

The new scheme can also be extended to the multi-party case easily, in which the security assumption

can be proved in the same way. In future research we will try to reduce the initial signer’s advantage of

revelation of keystone.

Acknowledgements

This work was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Infor-

mation Technology Research Center) support program supervised by the NIPA (National IT Industry Promotion

Agency) (Grant No. NIPA-2010-C1090-1011-0007), the Korea Foundation for Advanced Studies’ International

Scholar Exchange Fellowship for the academic year of 2009-2010, Korea and the National High-Tech Research &

Development Program of China (Grant No. 2007AA01Z472), the 111 Project (B08038), China.

References

1 Brickell E F, Chaum D, Damgard I B, et al. Gradual and verifiable release of a secret. In: Proc. of Crypto’87, Lecture

Notes in Computer Science, Vol. 293. Berlin: Springer-Verlag, 1987. 156–166

2 Ben-Or M, Goldreich O, Micali S, et al. A fair protocol for signing contracts. IEEE Trans Inf Theory, 1990, 36: 40–46

3 Boneh D, Naor M. Timed commitments (extended abstract). In: Proc. of Crypto’00, Lect Notes in Comput Sci, Vol.

1880. Berlin: Springer-Verlag, 2000. 236–254

4 Cleve R. Controlled gradual disclosure schemes for random bits and their applications. In: Proc. of Crypto’89, Lect

Notes in Comput Sci, Vol. 435. Berlin: Springer-Verlag, 1989. 573–588

5 Damgard I B. Practical and provably secure release of a secret and exchange of signatures. In: Proc. of Eurocrypt’93,

Lect Notes in Comput Sci, Vol. 765. Berlin: Springer-Verlag, 1993. 200–217

6 Goldreich O. A simple protocol for signing contracts. In: Proc. of Crypto’83. New York: Plenum Press, 1984. 133–136

7 Garay J, Pomerance C. Timed fair exchange of standard signatures. In: Proc. of Financial Cryptography 2003, Lect

Notes in Comput Sci, Vol. 2742. Berlin: Springer-Verlag, 2003. 190–207

8 Asokan N, Shoup V, Waidner M. Optimistic fair exchange of digital signatures. In: Proc. of Eurocrypt’98. Lect Notes

in Comput Sci, Vol. 1403. Berlin: Springer-Verlag, 1998. 591–606



LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 953

9 Asokan N, Shoup V, Waidner M. Optimistic fair exchange of signatures. IEEE J Select Areas Commun, 2000, 18:

593–610

10 Boyd C, Foo E. Off-line fair payment protocols using convertible signature. In: Proc. of Asiacrypt’98, Lect Notes in

Comput Sci, Vol. 1514. Berlin: Springer-Verlag, 1998. 271–285

11 Bao F. Colluding attacks to a payment protocol and two signature exchange schemes. In: Proc. of Asiacrypt’04, Lect

Notes in Comput Sci, Vol. 3329. Berlin: Springer-Verlag, 2004. 417–429

12 Bao F, Deng R H, Mao W. Efficient and practical fair exchange protocols with off-line TTP. In: Proc. of IEEE Symposium

on Security and Privacy. Los Alamitos: IEEE Computer Society, 1998. 77–85

13 Boneh D, Gentry C, Lynn B, et al. Aggregrate and verifiably encrypted signatures from bilinear maps. In: Proc. of

Eurocrypt’03, Lect Notes in Comput Sci, Vol. 2656. Berlin: Springer-Verlag, 2003. 416–432

14 Deng R H, Gong L, Lazar A A, et al. Practical protocols for certified electronic mail. J Netw Syst Manag, 1996, 4:

279–297

15 Dodis Y, Reyzin L. Breaking and repairing optimistic fair exchange from PODC 2003. In: Proc. of ACM Workshop on

Digital Rights Management (DRM). New York: ACM Press, 2003. 47–54

16 Franklin M, Reiter M. Fair exchange with a semi-trusted third party. In: Proc. of 4th ACM Conference on Computer

and Communications Security. New York: ACM Press, 1997. 1–6

17 Garay J, Jakobsson M, MacKenzie P. Abuse-free optimistic contract signing. In: Proc. of Crypto’99, Lect Notes in

Comput Sci, Vol. 1666. Berlin: Springer-Verlag, 1999. 449–466

18 Park J M, Chong E, Siegel H, et al. Constructing fair-exchange protocols for e-commerce via distributed computation

of RSA signatures. In: Proc. of the Twenty-Second ACM Symposium on Principles of Distributed Computing (PODC

2003). New York: ACM Press, 2003. 172–181

19 Zhou J, Gollmann D. A fair non-repudiation protocol. In: Proc. of IEEE Symposium on Security and Privacy. Los

Alamitos: IEEE Computer Society, 1996. 55–61

20 Zhou J, Gollmann D. An efficient non-repudiation protocol. In: Proc. of 10th IEEE Computer Security Foundations

Workshop. Los Alamitos: IEEE Computer Society, 1997. 126–132

21 Zhou J, Deng R, Bao F. Some remarks on a fair exchange protocol. In: Proc. of Third International Workshop on Practice

and Theory in Public Key Cryptosystems, PKC 2000. Lect Notes in Comput Sci, Vol. 1751. London: Springer-Verlag,

Australia, 2000. 46–57

22 Chen L, Kudla C, Paterson K G. Concurrent signature. In: Proc. of Eurocrypt’04. Lect Notes in Comput Sci, Vol.

3027. Berlin: Springer-Verlag , 2004. 287–305

23 Rivest R, Shamir A, Tauman Y. How to leak a secret. In: Proc. of Asiacrypt’01, Lect Notes in Comput Sci, Vol. 2248.

Berlin: Springer-Verlag, 2001. 552–565

24 Abe M, Ohkubo M, Suzuki K. 1-out-of-n signatures from a variety of keys. In: Proc. of Asiacrypt’02, Lect Notes in

Comput Sci, Vol. 2501. Berlin: Springer-Verlag, 2002. 415–432

25 Susilo W, Mu Y, Zhang F. Perfect concurrent signature schemes. In: Proc. of Information and Communications Security

(ICICS’04), Lect Notes in Comput Sci, Vol. 3269. Berlin: Spriger-Verlag, 2004. 14–26

26 Wang G, Bao F, Zhou J. The fairness of perfect concurrent signatures. In: Proc. of Information and Communications

Security (ICICS’06), Lect Notes in Comput Sci, Vol. 4307. Berlin: Spriger-Verlag, 2006. 435–451

27 Pointcheval D, Stern J. Security proofs for signature schemes. In: Proc. of Eurocrypt’96, Lect Notes in Comput Sci,

Vol. 1070. Berlin: Springer-Verlag, 1996. 387–398

28 Pointcheval D, Stern J. Security arguments for digital signatures and blind signatures. J Cryp, 2000, 13: 361–396

29 Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of 1st

CCCS. New York: ACM Press, 1993. 62–73


