SCIENCE CHINA

Information Sciences

- RESEARCH PAPERS - May 2010 Vol. 53 No. 5: 945-953
doi: 10.1007/s11432-010-0065-1

Fair exchange signature schemes

LIU JingWei?*, SUN Rong! & KWAK KyungSup?

1Key Laboratory of Computer Network and Information Security, Ministry of Education,
Xidian University, Xi’an 710071, China;
2UWB Wireless Communications Research Center, Inha University, Incheon 402751, Korea

Received July 8, 2008; accepted July 29, 2009; published online March 22, 2010

Abstract In this paper a new class of fair exchange signature scheme (FESS) is proposed that allows two
players to exchange digital signatures in a fair way. The new signature scheme is a general model and has
various implementations based on most of the existing signature schemes; thus it may also be considered as
an interesting extension of concurrent signature presented in EUROCRYPT 2004 that is constructed from ring
signatures. In FESS, two unwakened signatures signed respectively by two participants can be verified easily by
each player, but it would not go into effect until an extra piece of commitment keystone is released by one of
the players. Once the keystone is revealed, two signatures are both aroused and become valid. A key feature of
FESS is that two players can exchange digital signatures simultaneously through a secret commitment keystone
without involvement of any trusted third party (TTP). Moreover, the efficiency of the new scheme is higher

than that of concurrent signatures.

Keywords FESS, concurrent signature, Schnorr signature, fair exchange, electronic commerce

Citation Liu J W, Sun R, Kwak K S. Fair exchange signature schemes. Sci China Inf Sci, 2010, 53: 945-953,
doi: 10.1007/s11432-010-0065-1

1 Introduction

Open networks such as the Internet lay a stable foundation for electronic commerce, which usually involves
two distrusted parties exchanging their items from each other, such as e-commerce payment protocols,
electronic contract signing, and certified e-mail delivery. Due to the rapid growth of electronic commerce
nowadays, fair exchange turns out to be an increasingly important topic. A digital exchange problem
is deemed to be fair if at the end of exchange, either party receives the expected item or neither party
receives it. In general scenarios, digital items’ exchanges have to be carried out over open networks
and both participants may not trust each other. There could be subsequent disputes about what was
exchanged during a transaction even if the exchange itself was completed fairly. In this case, evidence
should be accumulated during the exchange to enable the settlement of any future disputes.

In the recent years various schemes on the fair exchange problem have been proposed and reported in
the literature. These schemes often fall into three categories:

Solutions to fair exchange problem are often gradual exchange protocols [1-7] where two parties have
to be too interactive and cumbersome for exchanging digital items by many steps. Nevertheless, these

*Corresponding author (email: jow_liu@hotmail.com)

© Science China Press and Springer-Verlag Berlin Heidelberg 2010 info.scichina.com www.springerlink.com

946 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

methods cannot provide fairness fully, because at the end of protocols, one player often has an advantage
of one more bit than the other player does. In [3], the authors introduced timed commitments. A timed
commitment is a commitment scheme in which there is an optional forced opening phase enabling the
receiver to recover (with effort) the committed value without the help of the committer. But this method
is only considered for Rabin and RSA signatures of a special kind. In [7], the authors show how to achieve
timed fair exchange of digital signatures of standard type. Their construction follows the gradual release
paradigm, and works on a new “time” structure, called a mirrored time-line. But the length of it leads to
another apparent problem, which is making sure that the underlying sequence has a period large enough
so that cycling is not observed.

Recently, lots of researches on fair exchange protocols mainly exploit an on-line or off-line trusted third
party (TTP) [8-21], which is involved in protocols run (on-line) or account opening and disputes (off-
line). However, either on-line or off-line TTP may cause the bottleneck problem and at least inefficiencies
in the operation though its involvement is further reduced in [8, 12, 20]. In [8], the authors introduced
a protocol that allows two players to exchange digital signatures over the Internet in a fair way. The
protocol relies on a trusted third party, but is “optimistic,” in which the third party is only required in
cases that one player attempts to cheat or simply crashes. The key feature of the protocol is that a player
can always force a timely and fair termination without the cooperation of the other player.

The latest direction of fair exchange is supposed to overleap TTP in the protocols. Two participants
carry out digital items’ exchange by using special signatures. In this way, some new fair exchange protocols
are designed, which become more efficient than prior arts do. The concept of concurrent signatures was
introduced by Chen et al. [22] in Eurocrypt 2004. Such signature schemes allow two parties to generate
and exchange two signatures that are ambiguous until an extra piece of information (called keystone) is
released by one of the parties, which exploits the ambiguity property enjoyed by the ring signatures [23,
24]. More specifically, before the keystone is released, those two signatures are ambiguous with respect
to the identity of the signing party, i.e., they may be issued either by two parties together or just by
one party alone; after the keystone is publicly known, however, both signatures are bound to their true
signers concurrently, i.e., any third party can validate who signed which signature. Concurrent signature
allows to build a fair exchange protocol in which two parties interact to exchange digital items without
the involvement of the trusted third party. But it is at the sacrifice that the initial party controls the
keystone and therefore he/she has an extra right to decide when the keystone is released. In ICICS
2004, Susilo et al. [25] further proposed a perfect concurrent signatures to strengthen the ambiguity of
concurrent signatures. That is, even if both signers are known to have issued one of the two ambiguous
signatures, any third party is still unable to deduce who signed which signature, different from Chen et
al.’s scheme. But in [26], Wang et al. point out that Susilo et al.’s two perfect concurrent signature
schemes are actually not concurrent signatures and present an effective way to avoid this attack.

However, most of the previous researches on fair exchange are not fully suitable for the applications on
open networks, because most fair exchange applications have to be provided not only security but also
efficiency. In our opinion, an ideal solution for fair exchange should be both secure and efficient. With
the opinion, we propose a new class of fair exchange signature schemes (FESS) in this paper that allows
two players to exchange digital signatures over open computer and communication networks (such as the
Internet) in a fair way, so that either player obtains the other’s signature at the same time, or neither
player does. In FESS, each unwakened signature signed by two participants respectively can be verified
easily by each player, but it does not go into effect until an extra piece of information keystone is released
by one of the players. Once the keystone is revealed, two signatures are both aroused and become valid.
The FESS can be applied to different application environments through various implementations. We
will also introduce how to construct an implementation of FESS without a TTP. Thus it provides a valid
primitive that is of interest in designing fair exchange schemes. Of course there might be other applications
to consider. A key feature of FESS is that two players can exchange digital signatures simultaneously
without involvement of any TTP. FESS does not overcome the weakness of concurrent signature, that
the initial party controls the keystone, but it has higher efficiency than concurrent signature.

The main contributions in this paper are listed as follows:

LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 947

1. A generic definition of FESS is proposed.
2. The way to construct FESS without TTP is demonstrated.
3. The security proof of FESS in the random oracle model is provided.

2 Basic definitions

In this section, we introduce the basic definitions of FESS. The parameters involved in the new schemes
are depicted as follows.
e a plaintext message space M: a set of strings over some alphabet;
a keystone message space Kys: a set of strings over some alphabet;
a keystone fix space K: a set of possible keystone fix volume;
a signature space S: a set of possible signatures;
a signing key space X': a set of possible keys for signature creation;
a verification key space): a set of possible keys for signature verification;

Definition 1. A full FESS consists of five procedures (Parameter Setup, KGen, Sign, SVerify, KVerify):
e An efficient probabilistic algorithm Parameter Setup:

k — ({xi},{yi}, description of {M, Kys, K,S}),

where k is a security parameter, x; € X and y; € V.

e An efficient one-way function KGen: K5 — K, which generates a keystone fix & € K with an input
keystone € Kys. Secure hash functions can be used as KGen.

e An efficient probabilistic signing algorithm Sign: M xICx X — S, for any message m € M, keystone
fix k € K and private key x € X, we denote s < Sign,(m, k) where s € S.

e An efficient signature verification algorithm SVerify: M xK xS x) — {True, False}, for any m € M,
k€K, and y €), it is necessary that

SVerify, (m, k, s) = True or False. (1)
e An efficient keystone verification algorithm KVerify:
M XK xS %Y xKis — {True, False},
for any m € M, k € K, y € Y and keystone € Ky, it is necessary that

True, if SVerify, (m, k,s) = True and k = KGen(keystone).

False, elsewise.

KVerify, (m, k, s, keystone) = { (2)

3 Basic models

3.1 Fair exchange signature protocols

In the normal case, most of fair exchange schemes often involve an on-line or off-line third party, but,
by using an embedded commitment, FESS is performed only between two participants, without loss of
generality, Alice (initial signer) and Bob (respond signer). Alice who initiates the protocol generates a
piece of secret information—keystone randomly, signs a message with her private key and a keystone fix
that is generated by a one-way function with the input keystone, and sends the signature message to Bob.
Bob responds to this message by signing another message with his private key and the same keystone fix.

Following Definition 1, the detailed implementation of FESS is depicted as follows.

Alice and Bob first choose an efficient signature scheme and the relevant parameters. Let x4,z € X
denote Alice’s and Bob’s private key respectively and y4,yp €) denote the public key corresponding to
the private key of two participants.

948 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

1. Alice chooses a keystone € Kys randomly and computes k = KGen(keystone), where k € K. And
she uses k and her private key x 4 to sign a given message m4 agreed with Bob. The verifiable signature
message is 04 = (ma, k, s4), where s4 = Sign,, , (ma, k), and is sent to Bob.

2. After receiving Alice’s signature message o4, Bob verifies the message o4 by running algorithm
SVerify described in section 2. If SVerify, (c4) = True, Bob chooses a message mp agreed with Alice
and uses k and his private key zp to generate a signature sp = Sign,, , (mp, k). Bob sends the verifiable
signature message op = (mp,k,sp) back to Alice. Otherwise, if SVerify, , (oc4) = False, Bob aborts.
Note that Bob uses the same value k as Alice does.

3. After receiving Bob’s verifiable signature message o, Alice also verifies the message op by running
algorithm SVerify. If SVerify, (o) = True, Alice releases keystone to arouse not only op but also oa;
thus two verifiable signatures go into effect at the same moment. If SVerify, . (o) = False, Alice aborts.

4. Everyone can verify whether KVerify, , (04, keystone)= True or KVerify, (op, keystone)=True.

Here we need to point out that FESS provides fairness through the dormancy property, which is
different from the ambiguous property of concurrent signature [22]. As a useful cryptographic tool, our
scheme provides a primitive to build efficient fair exchange protocols. In the next section, we will give a
specific implementation of FESS.

3.2 Attack model for FESS

For a secure signature scheme, the property of secure against existential forgery on adaptively chosen
message attack is necessary. In formal security model in [27, 28], an adversary wins the game if he outputs
a valid pair of a message and a signature, where he is allowed to require the signer to sign any message
except for the message that the adversary has to sign. Here we will introduce an attack model for FESS,
similarly to that in [28]. We say that a FESS, which consists of five algorithms: Parameter Setup, KGen,
Sign, SVerify, KVerify, is secure against existential forgery on adaptively chosen message if no polynomial
time algorithm 4 has a non-negligible advantage against a challenger C in the following game:

1. C runs Parameter Setup algorithm firstly and gives the public system parameters to A.

2. A can require the following queries:

(a) Hash function query. Given a requested input, C outputs the value of hash function to respond to
A.

(b) KGen query. A can request that C selects a keystone € Ky, and returns the fix k = KGen(keystone).

(c) KReveal query. A can request the keystone which corresponds to an existing keystone fix k € K
generated by a previous KGen query.

(d) Sign query. Given a message m € M and a k € K, C returns a signature s which is generated by
running Sign algorithm.

3. A outputs (m, k, s), where m is a message, k is a keystone fix and s is a signature such that (m, k)
is not equal to the any previous input of Sign query and k is not only an existing output of KGen query
but also an input of KReveal query. A wins the game if s is a valid signature of (m, k).

By using this attack model, we can reduce the security of FESS to the hardness of discrete logarithm
problem in section 5.

4 An implementation of FESS

In this section, we give an implementation of FESS actually based on Schnorr signature. We introduce
the system parameters firstly.

Parameter settings:

e System parameters: Let p and ¢ be two large primes and ¢|p — 1. The notation g denotes an element
of order g of Z.

e Alice: Alice has a pair of keys (x4, ya) for Schnorr signature, where x4 is Alice’s private key, y is
her public key and y4 = ¢g~*4 mod p.

LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 949

e Bob: Bob has a pair of keys (zp,yp) for Schnorr signature where xp is Bob’s private key, yp5 is his
public key and yp = ¢~ "% mod p.

1. Alice chooses keystone = (IDap) and computes k = G(IDap), where ID 4p is a piece of random
information about Alice’s and Bob’s identity and G is a hash function. Alice generates her signature
sa = Sign, , (ma,k) = (ra,ea,ca), where ry = "4 mod p, ea = H(ma, k,74), ca = ka + eaxs mod g,
and H is a hash function. The verifiable signature message is 04 = (ma, k, sa) and is sent to Bob.

2. Bob verifies 04 by running SVerify algorithm. If e4 = H(ma,k, g°4y%* mod p), Bob generates
sp = Sign, (mp,k) = (rp,ep,cp) and sends op = (mp, k, sp) to Alice, otherwise aborts.

3. Alice verifies o by running SVerify algorithm. If eg = H(mp,k, g°?y7’ mod p), Alice releases
keystone, otherwise aborts.

4. Each participant can prove o4 (or op) valid by verifying k = G(IDap), SVerify, , (0.4) = True (or
SVerify, (op) = True).

From the above implementation, we conclude that FESS is a general model and can be implemented
based on most of the existing signature schemes, therefore, FESS has higher efficiency than concurrent
signature does. We will show efficiency comparison between FESS and concurrent signature in the next
section.

5 Security and efficiency analysis of FESS

5.1 Security

In this subsection, we will discuss the security of FESS in the random oracle model [29].

Lemma 5.1 (Completeness). The proposed scheme achieves the property of completeness.

Proof. If s = Sign,(m,k) = (re,c), r = ¢" modp, e = H(m,k,r) and ¢ = k' + ex mod ¢ then
e = H(m, k,g°y° mod p) < SVerify, (m, k,s) = True. Moreover, if SVerify, (m,k,s) = True and k =
G(keystone) then KVerify, (m, k, s, keystone) = True.

Thus, the proposed scheme achieves the property of completeness.

To prove the property of Unforgeability of FESS, we have to introduce an important conclusion—
Forking Lemma [28] firstly. It gives a reductionist security proof for triplet ElGamal-family signature
schemes which produce a signature (Gen, Sign, Verify) on an input message m.

Lemma 5.2 (Forking Lemma). Let A be a probabilistic polynomial time Turing machine whose input
only consists of public data. We denote respectively by ¢ and R the number of queries that A can ask
to the random oracle and the number of queries that A can ask to the signer. Assume that, within time
bound K, A produces, with probability ¢ > 10(R + 1)(R + Q)/2* (where k is a security parameter), a
valid signature (m, o1, h,02). If the triples (o1, h,02) can be simulated without knowing the secret key,
with an indistinguishable distribution probability, then there is another machine which has control over
the machine obtained from A replacing interaction with the signer by simulation and produces two valid
signatures (m, o1, h,02) and (m, o1, h’, o)) such that h # h’ in expected time 7" < 120686QT /¢.

Lemma 5.3 (Unforgeability). The FESS is unforgeable under a chosen message attack in the random
oracle model.

Proof. The proof refers to the proof of unforgeability of the signature scheme [27, 28] by Pointcheval
and Stern. We suppose that G and H are random oracles, and there exists a probabilistic polynomial
time Turing machine A whose input only consists of public data. We assume that A can make Q¢
queries to the random oracle G, Qu queries to the random oracle H and (s queries to the signing
oracle Sign. Within time bound T', A generates a valid signature (m, k, (r, e, c)) with probability ¢ >
10Qc(Qs + 1)(Qs + Qu) /2" (where [is a security parameter).

Simulation. C gives the parameters (g, p, q¢) and y = ¢~* mod p to A. C tries to simulate the challenger
by simulating all the oracles to gain the secret key x. A can make queries as follows:

950 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

G-queries. A can query the random oracle G at any time. C simulates this random oracle by
maintaining a list of tuple (m;, k;) which is called G-list. When the oracle is queried with an input
m € {0,1}*, C responds as follows:

1. If the query m is already in an entity (m, k;) of G-list, C outputs ;.

2. Otherwise C selects k € K randomly, outputs k& and adds (m, k) to G-list.

H-queries. A can query the random oracle H at any time. C simulates this random oracle by main-
taining a list of tuple (>_,, e;) which is called H-list, where), is a triple of (m;, k;,r;). When the oracle
is queried with an input), C responds as follows:

1. If the query >_ is already in an entity (>, e;) of H-list, C outputs e;.

2. Otherwise C selects e € Z, randomly, outputs e and adds (>, e) to H-list.

KGen-queries. C maintains a K-list of tuples (keystone, k). A can request that C selects a keystone €
Krs and returns a keystone fix k = G(keystone). C chooses a random keystone € Ky, and computes
k = G(keystone). C outputs k and adds (keystone, k) to K-list. In fact, K-list is a sublist of G-list and
is only required to answer KReveal queries.

KReveal-queries. A can request the keystone which corresponds to an existing keystone fix k € K
generated by previous KGen query. If there exists a tuple (keystone, k) in K-list, then C returns keystone,
otherwise it outputs an invalid status.

Sign-queries. C simulates the signature oracle by responding queries of the form (m, k) where m € M
is the message to be signed and k € K is a keystone fix. C answers the query as follows:

1. C picks two random numbers c, e € Z, where e is not equal to any previous output of H oracle.

2. C computes r = g°y° mod p. If Y~ = (m, k,r) is equal to any previous input of H oracle, then return
to step 1.

3. C adds (3, e) to H-list.

4. C outputs s = (r, e, c) as the signature for message m.

Note. Here we have to verify if the distribution of real signature d is consistent with the forged signature

5.

§={(r,e,c)|k € Zy,k #0,e € Zy, r = g* mod p,c = k + re mod ¢}, 3)
0 ={(r.e,c)le € Zy,c € Zy,r = g°y° # 1 mod p}.

Firstly, we compute the probability of the real signature signed using secret key

1

Prl(r,e,c) = (g, 0, = Prlr=¢*=ce=0c=k+aze=q=——. 4
rl(rye) = (e.0,7)] k;éo,e[g B ol =1 (4)
The probability of the forged signature is
1
Pr{(r,e,c) = (e,06,7)] = Prle= G, c=~,7r=¢%° =¢ # 1 mod p] = ——. 5
Pr((r, €)= (=, 6,7)] = Pif # = (5)

So the triple (r, e, ¢) can be simulated without knowing the secret key, with an indistinguishable distri-
bution probability. The signing oracle simulated by C has high quality, therefore, A is satisfied with the
Sign-queries’ answer and can fully exert his forgery ability.

Output. Finally, with a non-negligible probability, A outputs a valid signature s = (r, e, ¢) of a message
m € M and k € K, where A obtains k = G(keystone) through KGen queries and makes a KReveal query
with the input k& and no Sign query with the input (m, k).

Now C plays the simulation twice so that A can obtain two valid signatures s = (r, e, ¢) and s’ = (r,e’,)
with e # ¢’. Then we have

ze ' —ze

r=g%° = g° " = ¢° 7 = ¢“y mod p. (6)
By (6), C can solve the hard discrete logarithm:

c—c

log,y = —x = mod g, (7)

€ —¢€

LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 951

L
within expected time less than 10><1(2c032i€31x)2x (XQ%f;gH) This contradicts the hardness of the discrete loga-

rithm problem.

In [22], to prove the concurrence of two participants’ signatures, Chen et al. make use of the ambiguous
property of ring signatures. No one can confirm who is the signer within two participants unless initial
signer releases the keystone. But in FESS, to ensure simultaneity, we introduce the property of Dormancy.
Two signatures that have been exchanged are not valid until the secret information keystone is released
to arouse them.

Lemma 5.4 (Dormancy). The proposed scheme achieves the property of dormancy before the secret
information keystone is released.

Proof. The random oracle assumption is the same as before. We suppose there exists a probabilistic
polynomial time Turing machine A whose input only consists of public data. We assume that A can
make Qg queries to the random oracle G, Qx queries to the random oracle KGen and Qg queries to the
signing oracle Sign.

Simulation. C gives the parameters (g, p, ¢) and y = ¢~ mod p to A. C tries to simulate the challenger
by simulating all the oracles to reveal a keystone with k = G(keystone). A can query as in Lemma 5.3.

Output. Finally, with a non-negligible probability, A outputs a keystone and a valid signature s =
(r,e,c) with a message m € M and k € K, where A obtains k = G(keystone) through KGen queries and
does not make KReveal query with the input k.
In this case, it is easy for A to obtain a valid signature s = (r, e, ¢) through Sign-queries. But A cannot
make any query to KReveal-queries with the input k, so he can only reveal keystone with a negligible
QcQk

probability =G, This contradicts the assumption that, with a non-negligible probability, A outputs a

keystone and a signature s = (r, e, ¢).

Lemma 5.5 (Fairness). The proposed scheme achieves the property of fairness.

Proof. The random oracle assumption is the same as in Lemma 5.3. We suppose there exists a prob-
abilistic polynomial time Turing machine A whose input only consists of public data. We assume that
A can make Q¢ queries to the random oracle G, Qu queries to the random oracle H, Qk queries to the
random oracle KGen and Q)s queries to the signing oracle Sign.

Simulation. C gives the parameters (g, p, ¢) and y = ¢~ mod p to A. C tries to simulate the challenger
by simulating all the oracles to gain the secret key x or reveal a keystone with k = G(keystone). A can
query as before.

Output. Finally, with a non-negligible probability, A outputs a keystone and a valid signature
s = (r,e,c) with a message m € M and k € K. One of the following two cases holds:

1. A obtains k = G(keystone) through KGen queries and makes KReveal query with the input k& and
no Sign query with the input (m, k).

2. A produces k = G(keystone) through KGen queries and does not make KReveal query with the
input k.

In case 1, it is easy to educe a contradiction from Lemma 5.3. In case 2, the output conditions only
occur with a negligible probability from Lemma 5.4.

Theorem 5.6. The FESS is secure in the random oracle model, assuming the hardness of the discrete
logarithm problem.

Proof. The proof follows directly from completeness, unforgeability, dormancy and fairness.

5.2 Efficiency

Because FESS can be implemented based on more efficient signature schemes, it has higher efficiency
than concurrent signature does. Executive efficiency comparison between FESS and concurrent signa-
ture is given in Table 1. In Table 1, “E” denotes the number of exponentiation in Z,, “M,” denotes the

952 LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5

Table 1 Efficiency comparison

Algorithm FESS Concurrent signature
Initial Sign 1E+1Mg+1A+2H 2FE +1Mg + 1My +2A +2H
Respond Sign 1E+1Mg +1A+1H 2E + 1My + 1M, +2A + 1H
SVerify 2E + 1My +1H 3E+4+2Mp,+1A+1H
KVerify 2F 4+ 1Mp +2H 3E 4 2Mp + 1A+ 2H

number of multiplication in Z,, “M,” denotes the number of multiplication in Z,;, “A” denotes the
number of addition in Z,, “H” denotes the number of hash operation.

6 Conclusions

In this paper we propose a secure and efficient signature scheme—FESS that allows two players to
exchange digital signatures in a fair way. It is a general model and can be implemented based on most of
the existing signature schemes. In FESS, two unwakened signatures that are exchanged can be verified
easily by each player, but they do not go into effect until an extra piece of information keystone is released
by one of the players. Once the keystone is released, two signatures are both aroused and become effective.
A key feature of the proposed scheme is that two players can exchange digital signatures simultaneously
through a secret commitment without involvement of any trusted third party. Although FESS does not
overcome the weakness of concurrent signature, that the initial party controls the keystone, we can point
out that the executive efficiency of FESS is higher than that of concurrent signatures from the above
comparison. For various implementations based on most of the existing signature schemes, FESS can be
applied to different environments. As a useful cryptographic tool, FESS provides a primitive to build
efficient fair exchange protocols.

The new scheme can also be extended to the multi-party case easily, in which the security assumption
can be proved in the same way. In future research we will try to reduce the initial signer’s advantage of
revelation of keystone.

Acknowledgements

This work was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Infor-
mation Technology Research Center) support program supervised by the NIPA (National IT Industry Promotion
Agency) (Grant No. NIPA-2010-C1090-1011-0007), the Korea Foundation for Advanced Studies’ International
Scholar Exchange Fellowship for the academic year of 2009-2010, Korea and the National High-Tech Research &
Development Program of China (Grant No. 2007AA01Z472), the 111 Project (B08038), China.

References

1 Brickell E F, Chaum D, Damgard I B, et al. Gradual and verifiable release of a secret. In: Proc. of Crypto’87, Lecture
Notes in Computer Science, Vol. 293. Berlin: Springer-Verlag, 1987. 156—166

2 Ben-Or M, Goldreich O, Micali S, et al. A fair protocol for signing contracts. IEEE Trans Inf Theory, 1990, 36: 40-46
Boneh D, Naor M. Timed commitments (extended abstract). In: Proc. of Crypto’00, Lect Notes in Comput Sci, Vol.
1880. Berlin: Springer-Verlag, 2000. 236-254

4 Cleve R. Controlled gradual disclosure schemes for random bits and their applications. In: Proc. of Crypto’89, Lect
Notes in Comput Sci, Vol. 435. Berlin: Springer-Verlag, 1989. 573-588

5 Damgard I B. Practical and provably secure release of a secret and exchange of signatures. In: Proc. of Eurocrypt’93,
Lect Notes in Comput Sci, Vol. 765. Berlin: Springer-Verlag, 1993. 200-217

6 Goldreich O. A simple protocol for signing contracts. In: Proc. of Crypto’83. New York: Plenum Press, 1984. 133-136

7 Garay J, Pomerance C. Timed fair exchange of standard signatures. In: Proc. of Financial Cryptography 2003, Lect
Notes in Comput Sci, Vol. 2742. Berlin: Springer-Verlag, 2003. 190-207

8 Asokan N, Shoup V, Waidner M. Optimistic fair exchange of digital signatures. In: Proc. of Eurocrypt’98. Lect Notes
in Comput Sci, Vol. 1403. Berlin: Springer-Verlag, 1998. 591-606

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

LIU JingWei, et al. Sci China Inf Sci May 2010 Vol. 53 No. 5 953

Asokan N, Shoup V, Waidner M. Optimistic fair exchange of signatures. IEEE J Select Areas Commun, 2000, 18:
593-610

Boyd C, Foo E. Off-line fair payment protocols using convertible signature. In: Proc. of Asiacrypt’98, Lect Notes in
Comput Sci, Vol. 1514. Berlin: Springer-Verlag, 1998. 271-285

Bao F. Colluding attacks to a payment protocol and two signature exchange schemes. In: Proc. of Asiacrypt’04, Lect
Notes in Comput Sci, Vol. 3329. Berlin: Springer-Verlag, 2004. 417-429

Bao F, Deng R H, Mao W. Efficient and practical fair exchange protocols with off-line TTP. In: Proc. of IEEE Symposium
on Security and Privacy. Los Alamitos: IEEE Computer Society, 1998. 77-85

Boneh D, Gentry C, Lynn B, et al. Aggregrate and verifiably encrypted signatures from bilinear maps. In: Proc. of
Eurocrypt’03, Lect Notes in Comput Sci, Vol. 2656. Berlin: Springer-Verlag, 2003. 416-432

Deng R H, Gong L, Lazar A A, et al. Practical protocols for certified electronic mail. J Netw Syst Manag, 1996, 4:
279-297

Dodis Y, Reyzin L. Breaking and repairing optimistic fair exchange from PODC 2003. In: Proc. of ACM Workshop on
Digital Rights Management (DRM). New York: ACM Press, 2003. 47-54

Franklin M, Reiter M. Fair exchange with a semi-trusted third party. In: Proc. of 4th ACM Conference on Computer
and Communications Security. New York: ACM Press, 1997. 1-6

Garay J, Jakobsson M, MacKenzie P. Abuse-free optimistic contract signing. In: Proc. of Crypto’99, Lect Notes in
Comput Sci, Vol. 1666. Berlin: Springer-Verlag, 1999. 449-466

Park J M, Chong E, Siegel H, et al. Constructing fair-exchange protocols for e-commerce via distributed computation
of RSA signatures. In: Proc. of the Twenty-Second ACM Symposium on Principles of Distributed Computing (PODC
2003). New York: ACM Press, 2003. 172-181

Zhou J, Gollmann D. A fair non-repudiation protocol. In: Proc. of IEEE Symposium on Security and Privacy. Los
Alamitos: IEEE Computer Society, 1996. 55-61

Zhou J, Gollmann D. An efficient non-repudiation protocol. In: Proc. of 10th IEEE Computer Security Foundations
Workshop. Los Alamitos: IEEE Computer Society, 1997. 126-132

Zhou J, Deng R, Bao F. Some remarks on a fair exchange protocol. In: Proc. of Third International Workshop on Practice
and Theory in Public Key Cryptosystems, PKC 2000. Lect Notes in Comput Sci, Vol. 1751. London: Springer-Verlag,
Australia, 2000. 4657

Chen L, Kudla C, Paterson K G. Concurrent signature. In: Proc. of Eurocrypt’04. Lect Notes in Comput Sci, Vol.
3027. Berlin: Springer-Verlag , 2004. 287-305

Rivest R, Shamir A, Tauman Y. How to leak a secret. In: Proc. of Asiacrypt’0l, Lect Notes in Comput Sci, Vol. 2248.
Berlin: Springer-Verlag, 2001. 552-565

Abe M, Ohkubo M, Suzuki K. 1-out-of-n signatures from a variety of keys. In: Proc. of Asiacrypt’02, Lect Notes in
Comput Sci, Vol. 2501. Berlin: Springer-Verlag, 2002. 415-432

Susilo W, Mu Y, Zhang F. Perfect concurrent signature schemes. In: Proc. of Information and Communications Security
(ICICS’04), Lect Notes in Comput Sci, Vol. 3269. Berlin: Spriger-Verlag, 2004. 14-26

Wang G, Bao F, Zhou J. The fairness of perfect concurrent signatures. In: Proc. of Information and Communications
Security (ICICS’06), Lect Notes in Comput Sci, Vol. 4307. Berlin: Spriger-Verlag, 2006. 435451

Pointcheval D, Stern J. Security proofs for signature schemes. In: Proc. of Eurocrypt’96, Lect Notes in Comput Sci,
Vol. 1070. Berlin: Springer-Verlag, 1996. 387-398

Pointcheval D, Stern J. Security arguments for digital signatures and blind signatures. J Cryp, 2000, 13: 361-396
Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of 1st
CCCS. New York: ACM Press, 1993. 62-73

