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I. InTrRODUCTION

Since the establishment of the well-known theorems of upper and lower bounds, .
considerable advance has been made in the limit analysis as a branch of applied plasticity
in solid mechanics. Now, exact determination of the plastic limit load is feasible with
no appreciable difficulty for rigid frame structures consisting of the systems of members
subjected mainly to bending action. In the field of two- or three-dimensional structures,
especially in plate and shell problems, although numerous results have been found, yet
further progress seems to be very difficult in tackling more complicate problems. Progress
is restricted by the fact that the limit theorems cannot in these cases give sufficiently
approached upper and lower bounds. Moreover, it is especially difficult to apply the lower
bound theorems to most of problems to satisfaction. .

The present paper suggests a generalized variational principle which is different from
the bound theorems in that both the stress state g;; and the velocity field v; are introduced
and vary independently in the functional of the variational principle. This wvariational
principle is equivalent mathematically to the whole set of equations, which must be satisfied
by the limit analysis: equilibrium, mechanism, yield condition, flow law, and appropriate
boundary conditions. It is proved that with independently assumed kinematically admissible
velacity field and statically admissible stress distribution, the generalized variational prin-
ciple gives the approximate plastic limit load, lying between the upper and lower bounds
obtained from bound theorems. Moreover, numerical examples for circular plate and
others®**) show that the generalized variational principle gives rather stable answers for
different combinations of properly assumed stress distribution and velocity field.

It is remarked, furthermore, that the generalized variational principle here proposed
can be applied to the limit analysis dealing with the nonhomogeneous as well as the
anisotropic petfect plastic material. - :

The first generalized wvariational principle in elasticity was established in 1950 by
E. Reissner!’), Later, in 1954, Hu Hai-chang!?! obtained some variational principles in
elasticity in the most general form. The generalized variational principle provides effective
measures to solve approximately many complex problems with the aid of direct method
procedures. But the estimation of the errors in the approximate solution is yet more dif-
ficult task as matters stand in other variational methods.

* First published in Chinese in Acta Mechanica Sinica, Vol. 6, No. 4, pp. 287—303, 1963.
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{I. Basic Equarions

We shall use the term plastic limit load to mean the load at which plastic deforma-
tions of arbitrarily large magnitude would take place under constant load if the body or
structure possessed the following properties:

1. The material exhibits rigid perfect plasticity, i.e., no deformation at all can
occur until the stress state has reached the yield condition when uncontained plastic flow
may start.

2. Changes in geometry of the structure that occur at the limit load are insignificant;
hence, the geometrical description of the structure remains unchanged during deformation
at the limit load.

In other words, the plastic limit load is defined as the plastic collapse load of a

hypothetical structure replacing the actual one and having ideal properties listed above.
Let:

v;(i =1,2,3) be velocity components;

(i, j = 1,2,3) be strain rate components;

a;(i, j=1,2,3) be stress components;

X, (i=1,2,3) be body force components;

vT,(i =1,2,3) be surface loads, T; being denominated as “basic surface loads”
and » as “multiplier load factor” whose limit value is to be sought in limit
analysis;

{(g;;) — 0% = 0 be the yielding condition of material, in which o; is the yield
stress in simple tension and f(o;;) is a quadratic form of stress components, and
oy may be taken as varying from point to point for the nonhomogeneous material;

x;(i =1,2,3) be coordinates;

»(i =1,2,3) be the outward-drawn unit normal vector to a surface element.

Consider a structure that has been loaded to the plastic limit state. In general, a
part of the body will be plastic and the remaining part will remain in rigid state under
the rigid-plastic assumption of material. Let

V, denote the plastic region where f(o;;) — 0% =0,

V, denote the rigid region where f(o,;) — o7 < 0,

V =V, + V, denote the total volume of structure,

Se.ps Sa,, denote the parts of boundary surface of body belonging respectively to the
plastic region and to the rigid region where the surface loads T; are prescribed,

S,.p: S,,, denote the parts of boundary surface of body belonging respectively to the
plastic region and to the rigid region where the velocities v; are prescribed to
be zero,

S¢ = Ss., + S.,, denote the total part of boundary surface where the surface loads
T, are prescribed,

S, = S,,, + S,., denote the total part of boundary surface where the velocities v; are
prescribed to be zero,

S,.» denote the surface of separation between the rigid region and the plastic region.

In the plastic limit state, the stress field o;; and the velocity field »; must satisfy
the following requirements:
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(a) Equilibrium equations:

B9 4 %, — 0, (2.1)
ax,-

(b) Flow law in plastic region V,:

ao’.l'f

where 1 is a positive scalar factor and €;; are related to z; by

1 (60,- 6:)-)
i=—=\=—+-2) a
o 2 \0x; Ox; (@)

(c) Yield condition in plastic region V,:

}(oi) = o7, (2.3)
whereas in the rigid region V,
(o) < o7 (2.4)
(d) Boundary condition on S.:
» o;m = vT;; . (2.5)
(e) Boundary condition on S,:
v; = 0. (2.6)

The limit analysis of structures consists of solving exactly or approximately the value
of v in Equations (2.1)—(2.6), which yield a unique solution according to the uniqueness
theorem.

III. TuroreEMS

Theorem 1. The plastic limit state of structure is attained when the multiplier
load factor v takes the stationary value of the following expression for arbitrary variations
of a;; and v

207
j-v ((T;jﬁ,r;‘ U%‘-—T—. - X,'U,') dv — jSa O';jﬁ_,'U,'dS

5 T;U,-ds
S

v = ext

> (3.1)

where €,; is related to v; by the expression (a); o;; and v; are arbitrary independent
functions with the only restrictions that e; =0 in V,, o;6;; >0 in V,, f(0;;) has
its maximum value in V,, o0;; satisfies the equilibrium conditions in V, and the boundary
conditions on S.,, in the accuracy within a constant multiplier.

Proof. With the arbitrary variations &a;;, 8v;, and 8¢;;, the condition for stationary
v: fv'=0is
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20% j( O, 1€ 6)‘) 26%
o; 8e,;dV + o Jmklmk O ) 20T 5o gy —
j Jo‘T 7 E;j & 2 +f oo, o”r+faa"v

- [P X,-Bv,-dV — v j T;c‘)‘:),-dS _ S (O’,‘jﬂjﬁv,‘ —+ v,-?z,.-SU,-,-)dS = (. (3.2)
S

So

Noting that V =V, 4+ V,, S, = S.,, + S,., + S,.5, and &;; = v; = 0 in V,, we transform
the first integral in the above equation by the Gauss theorem to obtain

20% j 20% 1 ( dsv;, , Obv )
o; 6g;;dV = i r - Lo IVdV =
.{ R v d +f 2 \ox | 0%
3] ( 20% ) j 2%
= — o; sv,dV + g;in; ——F— 6v,dS. (3.3)
ij 6"’ ' o::i" + "( Sa.?+'gaaﬂ+‘sr-ﬂ , 0'§~ + f

Substitution of this expression in (3.2) yields

o) o x| s | o=t ) 2
— - + X;| 60,V + g mkimk L) ST §g.dV —
j [ax, "+ f ° o\ TGt f By ]

- j [vT,- — 0,1 _2_232?-_____] v, dS — I a;in; (1 — —2—021*) Sv,;dS —
Sep - o +f S,.» a* ‘i—f

T

- j vin;8a;,;dS — E o;1;00;dS — S vT,;60,dS — j X;6v,dV +
Sy K Vr

S
er a.r

-+ jq ;i %—-—; 8v,dS = 0. (3.4)

“rap T

Since the variations &o;; and §v; are arbitrary, we must have

0 ( o, U;‘f_ ;) FX, =0 (n V), (3.5)
6 — %{%}L 5% =0 (in V,), (3.6)
can; U;"j_"l — T, (on So.p), (3.7)
1— f‘%? —0 (on S,.,), (3.8)
v; = (on S,), (3.9

j U,-,-n,-@v,-ds -+ j
s 8

oar Far

2
vT;6v,dS _j a;in; 0220':'

sr g4 T

- aods + j X,60.dV = 0. (3.10)

Vr
Multiplying Eq. (3.6) by o;;, we obtain

1 of ) .
i (1 ———— - 5.} =0 V).
Ok k( =17 Do, 0ij (in V,)

Note that o/ g;; = 2f. Since f(o;;) is a quadratic form of o;;, we are sure that the
T ;i

above equation gives
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y__ A _d—f_,

Tt gy o xS mala v,

This equation and Eq. (3.8) fulfil the actual yield condition in plastic region. Since
the theorem prescribes that f(o;;) has its maximum value in plastic region v,, it follows
that f(o;;) < 0% in the rigid region. Thus the yield conditions (2.3) and (2.4) are
satisfied completely in the whole structure.

Substituting f = o% in Egs. (3.5), (3.6), (3.7), and (3.9), we arrive at the same
equations as (2.1), (2.2), (2.5), and (2.6) respectively. Equation (3.10) gives the
equilibrium of the rigid region as a whole. Furthermore, with the prescriptions made
in the theorem on o;; in V, and on its boundary, the whole equilibrium requirements of the
rigid region are satisfied. It can be concluded, therefore, that the condition for stationary
value of v (Eq. 3.1) formulates the limit analysis problem completely,

The above proof can be extended without difficulty to the case in which there are
several rigid regions and plastic regions in the limit state.

An important practical advantage of this variational theorem is that it provides much
freedom to select the functions o;; and ©; in applying the Ritz approximation procedure.
But more rationally the functions o;; and ©v; are selected, and a more accurate answer
can be expected. Thus, when possible, one is recommanded to assign ¢;; to satisfy the
equilibrium and v; to satisfy boundary restraint condition so that the yield condition and
the flow law are left to fulfil approximately by the variational procedure. When ¢;; and
v; are so selected, we can formulate the following

Theorem 2. If a stress field of; is selected to satisfy the equilibrium requirements
as in the lower bound theorem, and if a wvelocity field v? is selected to satisfy the me-
chanism requirement as in the upper bound theorem, the plastic limit load deduced from
Theorem 1 will be lying between the lower and upper bounds given by the bound
theorems.

Proof. With o} and v as defined in Theorem 2, Theorem 1 yields

S a:.';sg,?zf?;dv ﬁj Xo?dv
y==:f L ¥ , (3.11)
20
L T v9dS

where f* = f(¢}j). Here no variational procedure is necessary because of and vf are
supposed to be given definitely, and-the last integral in the numerator of Eq. (3.1) is
omitted owing to the fact that ©? satisfies the boundary restraint condition.

With the same ¢}; and o7, the upper and lower bound theorems give respectively

o5e5dV —J' XofdvV
=L v , (3.12)
5 T 094V
Sg

Vupper

j a,’-';s,?}dv—" Xvfdv
==L r , (3.13)
j T;v?dV
sﬂ‘

Viower
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where o in (3.12) is related to &} according to the flow law and the yield condition.
For comparison of these three values of », we need only compare the magnitude of
the first integral in the numerator of Egs. (3.11), (3.12), and (3.13).

We observe that the stress field (J;'} ;L) does satisfy the yield condition but not
)(*

the flow law with respect to the stain rates £fj. With regard to the well-known property

of the yield condition — the convexity of the yield surface—we must have

(a;'; or )sg- < o268 (3.14)

v

On the other hand, it is evident that

or(or — A/ P =0 — 202 A/ f* + orf* >0

hence,
207
3.15
T <L (3.15)
It follows from (3.14) and (3.15) that
205
}T—;_l;;— ofief; < ofEd). (3.16)
With this inequality, Eqs. (3.11) and (3.12) yield
v é Vyupper- (3.17)

It should be noted that the equality in (3.17) takes place only in the case where o
satisfies furthermore the yield condition as well as the flow law in relation to &7, i.e.,
Y = Vypper = Vexact

We proceed now to compare (3.11) and (3.13). Obviously we have f*=f(c¥)<o%,
or f* + 0% < 20%. Hence

20%

};——-{-‘—01;0‘”8” 20'”8”, (3.18)

which leads from (3.11) and (3.13) to the inequality:
v 2 P9owers (3-19)
By combination of (3.17) and (3.19), it follows that

Viewer "-<-. v "=~<H Yupper. (3.20)

Thus Theorem 2 is proved.
It should be noted that the symbol “ext” in (3.1) could be reasonably replaced by
“min max”. This symbol means that v takes the maximum wvalue for all arbitrary

(L I G ]
variations of o¢;; and then takes the minimum wvalue for all arbitrary variations of v;.
Actually, in virtue of the inequality (3.16), the first procedure of taking » maximum

with respect to g;; insures that g;; = of; and that the yield condition and the flow law
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would be satisfied, while the second procedure of taking ¥ minimum with respect to »; is
equivalent to the well-known theorem of upper bound. Therefore the stationary property
of v corresponds to the saddle point in the space o;; and v;.

Theoretically, if o;; and v; are chosen to be complete sets of functions, and if the
variational procedure follows strictly to the “r{r;? r;r;a;_i?)(” cited above, all of the restrictions
prescribed in Theorem 1 with respect to 0',-:- coulél be omitted because they are not
required in the upper bound theorem.

Theorem 3. Let &;; be a stress field in equilibrium with the basic surface loads
T; (the body forces X; assumed to be zero). Putting in Eq. (3.1) of Theorem 1: (a)
0;; = Bo;; where B is a variational parameter and (b) v, = v?, a kinematically admis-
sible velocity field, provided &;&f, >0, we get

o+ (3.21)
]‘ T,U,ods
5o

j BGiief;
v

Y = ext

where | = 1(G:)). The multiplier load factor v should be not lower than that obtained
from the lower bound theorem with siress field &;; and not higher than that obtained
from the upper bound theorem with velocity field v?, i.e.,

Viower é v é vupper- (3.22)

Proof. 'The second inequality of (3.22): v << v, has already been established in
Theorem 2. We have only to prove that v = vioyer.
207

—r 4y,
or + B

In the right hand of Eq. (3.21), only the numerator, F(g) = j 86;i€5;
v

is subjected to the variational procedure with respect to the parameter 8. From %::— =0,
we obtain
OF =5 a',.,-e?,-[ 20r __ __AFohf ] av = 0. (3.23)
o v G +pF (% + 8]

Obviously gmg g—E >0 and gim -g—F- << 0, hence the rest roots g of (3.23) exist actually.
We search the root § which makes v maximum. Suppose that the lower bound theorem
8ives Viouer 50 that o) = vy, 3;; is the corresponding stress field. Then we must have
Viewer << 8, hence

j. ﬂ&',-,-s,f}-—%—ﬁ av [ v;o“,é",-,-e,% —ﬁr—: dv
2
p = v c}-'2]' + &2} = v 0-??‘ + IIH.aw-er,‘( (3.24)
j T vfdS j TvPdS :
Se Sq
On the other hand, we have from (3.18)
~ 247 262 ~
Viewes 185 = 0fief < }—“I“: HeS = T ViowerliES (3.25)
T+ f J} + "'?awer)(
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Then
201
0% + Viwed

j T,00dS
Sq

3 o]
~ ViowerT j;€5 dv
V'lr’loweraijsgdv jv lowert ijSij

(3.26)

Vipwer = =

j T 00dS
Sﬂ

By comparison with (3.24), it follows that

Viewer é v,

hence the proof of Theorem 3 is completed.

IV. ILLusTRATIVE SOLUTIONS

The variational theorems described in the previous sections will now be illustrated by
application to a specific problem. The problem selected is a simply supported circular
plate subjected to uniformly distributed loading. It is known that with the material
abeying the Tresca yield condition, the plastic limit load is

and that the corresponding carrying capacity under the Mises yield condition is

»=65Mz (4.2)
az

a- T}Zz

where g is the radius of plate and M,y = is the plastic limit bending moment per

unit width of cross section of the plate.

We shall apply the variational equation (3.1) to determine the plastic limit load
under the Mises yield condition. In the first, we have to transform (3.1) into an ap-
propriate form for bending plate problems. The transformations are:

f— M2+ My — M,Ms, o%—> M%,

- M
v w, TJ' - _T9
az

0;i€:;; —> M.k, + Mok,

where &, = (?E and kp = L 0w
ort r or
X; = 0. The velocity field w will be chosen to satisfy the boundary restraint. Therefore

Eq. (3.1) will take the following form:

We neglect the dead weight of the plate, i.e.,

2

2 (a 2M7
f -L (M,k, + Mako) _1"4_‘21"-:‘_} rdrd@

0

2n [(a@

-{‘hg S wrdrdf
at Jo Jo

(4.3)

Vv = ext
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First, we assume that
T
w = (1 - —),
a

M, =

(1 —-;), Mo =8,
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1

(4.4)

which are the actual distributions of velocity and bending moments in the case where the

material obeys the Tresca yield condition.

Substituting (4.4) in (4.3), we obtain

Ba 2Midr
2 ¥
UM;+;}=(1 —%‘2+-"—4)
v = ext ~ az, (4.5)
MTS (1 — I_) rdr
0 a
.. . Oy .
The variational equation —% = ( yields
¢ M2 lgz (1 .Lz + .L‘)
i @ a) 4=, (4.6)

w2 )

a{

We solve this equation by numerical method to get g = 1.079 M.

in (4.5) gives finally
v = 06.40,

Substitution of §

(4.7)

which differs only by 0.6% from the existing solution (4.2) for the plate obeying the

Mises yield condition.

Table 1
v
w M, Mg By Upper | By Lower B
By (3.1) Bound Bound
Theorem Theorem

r rt
1 (1 - 7) 8 (1 - ?) 8 6.46 6.91 6.00 1.079M7
2 (1-2) | ¢ (1- -’_3) 8 6.59 8.00 6.00 1.098M

pi p . . . . T

T r
3 (1 -1 | s (1 -?) 8 6.59 6.91 — 1.080My
4 - I _

(1 a,) 8 (1 g) B 5.92 8.00 1.102M7

We proceed to assume different sets of =, M,, and My, which are more or less

irrational than that in (4.4). The results are summarized in Table 1, which contains also
the corresponding results given by the upper bound theorem, or by the lower bound
theorem.
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It is seen that the results given by the generalized variational principle are rather
stable for different sets of assumed w, M,, and Ms. On the other hand, the results
from the bound theorems are more sensible to the assumed functions.

The procedure of calculations in this illustration follows actually that described in
Theorem 3, which may be considered as some specialization of Theorem 1. It should
be noted that the functions of M, and My in lines 3 and 4 in Table 1 do not satisfy
the equilibrium equation of plate, and hence they are not suitable to application of the
lower bound theorem.

There are three theorems proved in this paper. The first one states in a general
form the generalized variational principle in limit analysis. A comparison with the bound
theorems is given by the second theorem. The third theorem is proposed for practical
use. With a statically admissible stress field g% and a kinematically admissible velocity
field »?, Theorem 3 supplies what is needed to satisfy the yield condition and the flow
law through variational procedure.

Finally, a remark may be made with respect to the yield condition f — 0% = 0. If
appropriate functions f(o;) or oy(x;) are used, the variational theorems here proposed
could be applied to the cases of an anisotropic or a nonhomogeneous material,

Remark. 1In the course of discussion after the first presentation of this paper at the
Symposium on Limit Analysis and Theory of Plasticity held at Dairen in August 1963,

207 in the variational expression (3.1)

several discussers point out that the multiplier
T
303 — f
or

with the advantage to facilitate the numerical applications and to keep unaltered all the
three theorems established in this paper.

may be not unique. It is found later that this multiplier can take the form:
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