
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

December 2015, Vol. 58 122103:1–122103:15

doi: 10.1007/s11432-015-5459-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

RECTANGLE: a bit-slice lightweight block cipher

suitable for multiple platforms

ZHANG WenTao1*, BAO ZhenZhen1 , LIN DongDai1, Vincent RIJMEN2*,

YANG BoHan2 & Ingrid VERBAUWHEDE2

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China;

2Department of Electrical Engineering ESAT/COSIC and iMinds, Security Department, KU Leuven,
Leuven 3001, Belgium

Received June 3, 2015; accepted July 31, 2015; published online November 18, 2015

Abstract In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the

design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTAN-

GLE uses an SP-network. The substitution layer consists of 16 4× 4 S-boxes in parallel. The permutation layer

is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware

and software environment, which provides enough flexibility for different application scenario. The following are

3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key

version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/s at

100 kHz clock and an energy efficiency of 3.0 pJ/bit. Second, RECTANGLE achieves a very competitive software

speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions,

a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for

messages around 3000 bytes. Last but not least, we propose new design criteria for the RECTANGLE S-box.

Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE

achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the

highest number of rounds that we can attack, is 18 (out of 25).

Keywords lightweight cryptography, block cipher, design, bit-slice, hardware efficiency, software efficiency

Citation Zhang W T, Bao Z Z, Lin D D, et al. RECTANGLE: a bit-slice lightweight block cipher suitable for

multiple platforms. Sci China Inf Sci, 2015, 58: 122103(15), doi: 10.1007/s11432-015-5459-7

1 Introduction

Small embedded devices (including RFIDs, sensor nodes, and smart cards) are now widely used in many

applications. They are usually characterized by strong cost constraints, such as area, power, energy

consumption for hardware aspect, and low memory, small code size for software aspect. Meanwhile, they

also require cryptographic protection. As a result, many new lightweight ciphers have been proposed to

provide strong security at a lower cost than standard solutions. Since symmetric-key ciphers, especially

*Corresponding author (email: zhangwentao@iie.ac.cn, vincent.rijmen@esat.kuleuven.be)

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:2

block ciphers, play an important role in the security of small embedded devices, the design of lightweight

block ciphers has been a very active research topic over the last few years.

In the literature, quite a few lightweight block ciphers with various design strategies have been proposed,

such as DESL/DESX/DESXL [1], Hummingbird [2], KATAN/ KTANTAN [3], KLEIN [4], LBlock [5],

LED [6], PICCOLO [7], PRESENT [8], SIMON and SPECK [9], TWINE [10] and so on. PRESENT was

proposed at CHES’2007, and has attracted a lot of attention from cryptographic researchers due to its

simplicity, impressive hardware performance and strong security. The design of PRESENT is extreme-

ly hardware-efficient, since it uses a bit permutation as its diffusion layer, which is a simple wiring in

hardware implementation. In 2012, PRESENT was adopted as ISO/IEC lightweight cryptography stan-

dard. Many lightweight ciphers, including PRESENT, KATAN/KTANTAN and Hummingbird, succeed

in achieving a low area in hardware but the software performance is not good. For example, the permu-

tation layer of PRESENT is extremely low-cost in hardware, but it is the true performance bottleneck

for many software implementations. However, high software performance is also needed from the same

algorithm for many classical lightweight applications, as pointed out in [4,6,9,11,12].

Among the new proposals, some present weaknesses, including ARMODILLO-2, Hummingbird-1 and

KTANTAN [13–15]. Furthermore, as pointed out in [6], designers of “second generation” lightweight

ciphers can learn from the progress and the omissions of the “first generation” proposals. The S-box of

PRESENT is mainly selected according to its hardware area instead of security of the underlying cipher.

Hence, the S-box of PRESENT is “weak” with respect to cipher security. As pointed out in [16], the

PRESENT S-box is among the 8 percent worst S-boxes with respect to clustering of one bit linear trails.

Along with the strong symmetry of the PRESENT permutation layer, there are very serious clustering

problems both for linear trails and differential trails [16–20]. We give more details in Section 3. As a

result, for PRESENT, the best distinguisher so far can reach 24 rounds [18], which can be used to mount

a shortcut attack on 26-round PRESENT (out of 31).

The bit-slice technique was introduced for speeding up the software speed of DES [21], and was used in

the design of the Serpent block cipher [22]. In a bit-slice implementation, one software logical instruction

corresponds to simultaneous execution of n hardware logical gates, where n is the length of a subblock.

JH [23], Keccak (SHA-3) [24], Noekeon [25] and Trivium [26] are 4 other primitives that can benefit from

the bit-slice technique for their software performance. It is worth noticing that JH, Keccak, Noekeon,

Serpent and Trivium not only perform well in hardware but also in software. Furthermore, a bit-slice

implementation is safe against implementation attacks such as cache and timing attacks compared with a

table-based implementation [27]. However, the main design goal of all the mentioned bit-sliced ciphers is

not “lightweight”, and there is plenty of room for improvement when it comes to a dedicated lightweight

block cipher with bit-slice style.

In this paper, we present a new lightweight block cipher RECTANGLE. The design of RECTANGLE

makes use of the bit-slice technique in a lightweight manner, hence to achieve not only a very low cost

in hardware but also a very competitive performance in software. As a result, RECTANGLE adopts

the SP-network structure. The substitution layer (S-layer) consists of 16 4 × 4 S-boxes in parallel.

The permutation layer (P-layer) is composed of 3 rotations. The following are 3 main advantages of

RECTANGLE:

1. RECTANGLE is extremely hardware-friendly. The bit-sliced design principle of RECTANGLE

allows for very efficient and flexible hardware implementations. For the 80-bit key version, using UMC

0.13 µm standard cell library at 100 kHz, our round-based implementation could obtain a throughput of

246 Kbits/s and an energy efficiency of 3.0 pJ/bit with only 1600 gates, and our serialized implementation

could obtain a throughput of 14.0 Kbits/s and an energy efficiency of 32.05 pJ/bit with only 1111 gates.

More details are given in Subsection 5.1.

2. Due to its bit-slice style, RECTANGLE achieves a very competitive software speed among the

existing lightweight block ciphers. On a 2.5GHz Intel(R) Core i5-2520M CPU, for one block data, our

bit-slice implementation gives a speed of about 30.5 cycles/byte for encryption; with a parallel mode

of operation, a bit-slice implementation of RECTANGLE reaches an average encryption speed of about

3.9 cycles/byte for messages around 3000 bytes, using Intel 128-bit SSE instructions. In addition, our

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:3

w
15

 ··· w2
 w

1
 w0

w
31

 ··· w18
 w

17
 w

16

w
47

 ··· w34
 w

33
 w

32

w
63

 ··· w50
 w

49
 w

48

[]
Figure 1 A cipher state.

a0,15 ··· a0,2 a0,1 a0,0

a1,15 ··· a1,2 a1,1 a1,0

a2,15 ··· a2,2 a2,1 a2,0

a3,15 ··· a3,2 a3,1 a3,0
[]

Figure 2 Two-dimensional way.

implementations of RECTANGLE on Atmel studio show that RECTANGLE also has a very impressive

performance on 8-bit microcontrollers. More details are given in Subsection 5.2.

3. Last but not least. We propose new design criteria for the RECTANGLE S-box. Due to our careful

selection of the RECTANGLE S-box, together with the asymmetric design of the P-layer, RECTANGLE

achieves a very good security-performance tradeoff. After our extensive and deep security analysis, we

can mount a shortcut attack on 18-round RECTANGLE (out of 25), which is the highest number of

rounds that we can attack.

This paper is organized as follows. Section 2 presents a specification of RECTANGLE. Section 3

discusses the security of RECTANGLE against known attacks. Section 4 motivates the design choices

of RECTANGLE. Section 5 presents the hardware and software implementation results of the cipher.

Section 6 presents the relation of RECTANGLE to several early designs. Section 7 concludes the paper.

2 The RECTANGLE block cipher

RECTANGLE is an iterated block cipher. The block length is 64 bits, and the key length is 80 or 128 bits.

2.1 The cipher state and the subkey state

A 64-bit plaintext, or a 64-bit intermediate result, or a 64-bit ciphertext is collectively called as a cipher

state. A cipher state is pictured as a 4 × 16 rectangular array of bits, which is the origin of the cipher

name RECTANGLE. Let W = w63|| · · · ||w1||w0 denote a cipher state, the first 16 bits w15|| · · · ||w1||w0

are arranged in row 0, the next 16 bits w31|| · · · ||w17||w16 are arranged in row 1, and so on, as illustrated

in Figure 1. A 64-bit subkey is similarly pictured as a 4 × 16 array. In the following, for convenience of

description, a cipher state is described in a two-dimensional way, as illustrated in Figure 2.

2.2 The round transformation

RECTANGLE is a 25-round SP-network cipher. Each of the 25 rounds consists of the following 3 steps:

AddRoundkey, SubColumn, ShiftRow. After the last round, there is a final AddRoundKey.

AddRoundkey: A simple bitwise XOR of the round subkey to the intermediate state.

SubColumn: Parallel application of S-boxes to the 4 bits in the same column. The operation of

SubColumn is illustrated in Figure 3. The input of an S-box is Col(j) = a3,j||a2,j ||a1,j ||a0,j for 0 6 j 6 15,

and the output is S(Col(j)) = b3,j||b2,j ||b1,j ||b0,j.

The S-box used in RECTANGLE is a 4-bit to 4-bit S-box S : F 4
2 → F 4

2 . The action of this S-box in

hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

ShiftRow: A left rotation to each row over different offsets. Row 0 is not rotated, row 1 is left rotated

over 1 bit, row 2 is left rotated over 12 bits, and row 3 is left rotated over 13 bits. Let ≪ x denote left

rotation over x bits, the operation ShiftRow is illustrated in Figure 4.

2.3 Key schedule

RECTANGLE can accept keys of either 80 or 128 bits.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:4

() () () ()
a0,15

a1,15

a2,15

a3,15

· · ·

a0,2

a1,2

a2,2

a3,2

a0,1

a1,1

a2,1

a3,1

a0,0

a1,0

a2,0

a3,0

· · ·S S S S

() () () ()
b0,15

b1,15

b2,15

b3,15

· · ·

b0,2

b1,2

b2,2

b3,2

b0,1

b1,1

b2,1

b3,1

b0,0

b1,0

b2,0

b3,0

Figure 3 SubColumn operates on the columns of the state.

(a0,15 ··· a0,2 a0,1 a0,0) (a0,15 ··· a0,2 a0,1 a0,0)

(a1,15 ··· a1,2 a1,1 a1,0) (a1,14 ··· a1,1 a1,0 a1,15)

(a2,15 ··· a2,2 a2,1 a2,0) (a2,3 ··· a2,6 a2,5 a2,4)

(a3,15 ··· a3,2 a3,1 a3,0) (a3,2 ··· a3,5 a3,4 a3,3)

<<< 0

<<< 1

<<< 12

<<< 13

Figure 4 ShiftRow operates on the rows of the state.

v
15 ···

v
2

v
1

v
0

v
31 ···

v
18

v
17

v
16

v
47 ···

v
34

v
33

v
32

v
63 ···

v
50

v
49

v
48

v
79 ···

v
66

v
65

v
64

κ
0,15 ···

κ
0,2
κ

0,1
κ

0,0

κ
1,15 ···

κ
1,2
κ

1,1
κ

1,0

κ
2,15 ···

κ
2,2
κ

2,1
κ

2,0

κ
3,15 ···

κ
3,2
κ

3,1
κ

3,0

κ
4,15 ···

κ
4,2
κ

4,1
κ

4,0

[] []
Figure 5 An 80-bit key state and its two-dimensional

representation.

80-bit key: For an 80-bit seed key (user-supplied key) V = v79|| · · · ||v1||v0, the key is firstly stored in a

80-bit key register and arranged as a 5× 16 array of bits, see Figure 5.

Let Rowi = κi,15|| · · · ||κi,1||κi,0 denote the ith row of the key register, 0 6 i 6 4. Rowi can be regarded

as a 16-bit word. At round i (i = 0, 1, . . . , 24), the 64-bit round subkey Ki consists of the first 4 rows

of the current contents of the key register, i.e., Ki = Row3||Row2||Row1||Row0. After extracting Ki, the

key register is updated as follows:

1. Applying S-box S to the bits intersected at the 4 uppermost rows and the 4 rightmost columns, i.e.,

κ′
3,j ||κ

′
2,j||κ

′
1,j ||κ

′
0,j := S(κ3,j||κ2,j ||κ1,j ||κ0,j), j = 0, 1, 2, 3.

2. Applying a 1-round generalized Feistel transformation, i.e.,

Row′
0 := (Row0 ≪ 8)⊕ Row1, Row′

1 := Row2, Row′
2 := Row3,

Row′
3 := (Row3 ≪ 12)⊕ Row4, Row′

4 := Row0.

3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0), i.e.,

κ′
0,4||κ

′
0,3||κ

′
0,2||κ

′
0,1||κ

′
0,0 := (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0)⊕ RC[i].

Finally, K25 is extracted from the updated key state. The round constants RC[i] (i = 0, 1, . . . , 24)

are generated by a 5-bit LFSR. At each round, the 5 bits (rc4, rc3, rc2, rc1, rc0) are left shifted over 1 bit,

with the new value to rc0 being computed as rc4 ⊕ rc2. The initial value is defined as RC[0] := 0x1. We

list all the round constants in Appendix A.

128-bit key: For a 128-bit seed key, the key is firstly stored in a 128-bit key register and arranged

as a 4×32 array of bits. Let Rowi = κi,31|| · · · ||κi,1||κi,0 denote the ith row of the key register, 0 6 i 6 3.

Rowi can be regarded as a 32-bit word. At round i (i = 0, 1, . . . , 24), the 64-bit round subkey Ki consists

of the 16 rightmost columns of the current contents of the key. After extracting the round subkey Ki,

the key register is updated as follows:

1. Applying the S-box S to the 8 rightmost columns, i.e.,

κ′
3,j||κ

′
2,j ||κ

′
1,j ||κ

′
0,j := S(κ3,j ||κ2,j ||κ1,j||κ0,j), 0 6 j 6 7.

2. Applying a 1-round generalized Feistel transformation, i.e.,

Row′
0 := (Row0 ≪ 8)⊕ Row1, Row′

1 := Row2,

Row′
2 := (Row2 ≪ 16)⊕ Row3, Row′

3 := Row0.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:5

Table 1 Probabilities of the best differential trails of RECTANGLE

♯ R Prob. ♯ R Prob. ♯ R Prob. ♯ R Prob. ♯ R Prob.

1 2−2 2 2−4 3 2−7 4 2−10 5 2−14

6 2−18 7 2−25 8 2−31 9 2−36 10 2−41

11 2−46 12 2−51 13 2−56 14 2−61 15 2−66

3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0), where

RC[i] (i = 0, 1, . . . , 24) are the same as those used in the 80-bit key schedule.

Finally, K25 is extracted from the updated key state.

3 Security analysis

In this section, we present the results of our security analysis of RECTANGLE.

3.1 Differential cryptanalysis

Differential [28] and linear [29] cryptanalysis are among the most powerful techniques available for block

ciphers. To attack an n-bit block cipher using differential cryptanalysis (DC), there must be a predictable

difference propagation over all but a few rounds with a probability significantly larger than 21−n. A

difference propagation is composed of a set of differential trails, where its probability is the sum of the

probabilities of all differential trails that have the specified input difference and output difference [30].

For RECTANGLE, to be resistant against DC, it is a necessary condition that there is no difference

propagation with a probability higher than 2−63.

Matsui [31] has presented a search algorithm for the best differential/linear trail of DES, which uses

branch-and-bound methods. Based on this algorithm, we have written a program to search for the best

differential trails of RECTANGLE from 1 round to 15 rounds, and the results are presented in Table 1.

The probability of the best 15-round differential trail is 2−66.

Because of the simplicity of the ShiftRow transformation, we also need to consider the security of

RECTANGLE against multiple differential cryptanalysis [17] and the structure attack [20]. From a

differential point of view, since all the operations in RECTANGLE have rotational symmetry, every trail

has up to 16 rotation equivalent variants. For 15-round RECTANGLE, based on the branch-and-bound

algorithm, we have searched for all the differential trails with probability between 2−66 and 2−76 (up to

a rotation equivalence) and examined all the difference propagations made up of the investigated trails.

The following are the experimental results:

1. There are 32 best difference propagations with probability 1300 × 2−76 ≈ 2−65.66 each. Each is

composed of 7 differential trails. Among the 7 trails, one with probability 2−66, two with probability

2−69 each, one with probability 2−72, one with probability 2−75, and two with probability 2−76 each.

2. Among all the difference propagations, the maximum number of trails of a difference propagation is

131, i.e., a difference propagation is composed of at most 131 different differential trails.

From result 1, the probability of the best difference propagation is lower than 2−63. From the two

results, it can be seen that the clustering of differential trails of RECTANGLE is very limited, which

cannot be used to construct an effective difference propagation with more than 14 rounds.

For comparison, we give some statistical data concerning the serious clustering of differential trails of

16-round PRESENT from [20]. For 16-round PRESENT, the probability of the best differential trail is

2−70. There exists a 16-round difference propagation satisfying the following properties:

1. It includes 31996 differential trails when the probability is restricted between 2−70 and 2−80. The

probability is 2−62.175 when only considering these 31996 trails;

2. It includes 83720 differential trails when the probability is restricted between 2−70 and 2−92. The

probability is 2−62.133 when considering all the 83720 trails.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:6

Table 2 Correlation potentials of the best linear trails of RECTANGLE

♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot.

1 2−2 2 2−4 3 2−8 4 2−12 5 2−16

6 2−20 7 2−26 8 2−32 9 2−38 10 2−44

11 2−50 12 2−56 13 2−62 14 2−68 15 2−74

Therefore, we believe that it is impossible to construct an effective 15-round (multiple) differential

distinguisher for RECTANGLE. Full dependency is reached already after 4 rounds, hence we believe

25-round RECTANGLE is enough to resist against (multiple) differential cryptanalysis.

Using one 14-round difference propagation, we can mount an attack on 18-round RECTANGLE, which

is the highest number of rounds that we can attack.

3.2 Linear cryptanalysis

Assume a linear trail hold with probability p , define the bias ǫ as (p − 1
2), the correlation contribution

C as 2ǫ. To attack an n-bit block cipher using linear cryptanalysis (LC), there must be a predictable

linear propagation over all but a few rounds with an amplitude significantly larger than 2−
n

2 . A linear

propagation is composed of a set of linear trails, where its amplitude is the sum of the correlation

contributions of all linear trails that have the specified input and output selection patterns [30]. The

correlation contributions of the linear trails are signed and their sign depends on the value of the round

keys. For RECTANGLE, to be resistant against LC, it is a necessary condition that there is no linear

propagation with an amplitude higher than 2−32. Since the strong round key dependence of interference

makes locating the input and output selection patterns for which high correlations occur practically

infeasible [30], we have to use the following theorem for an estimation.

Theorem 1 ([30]). The square of a correlation (or correlation contribution) is called correlation poten-

tial. The average correlation potential between an input and an output selection pattern is the sum of

the correlation potentials of all linear trails between the input and output selection patterns:

E(C2
t) =

∑

i

(Ci)
2

where Ct is the overall correlation, and Ci the correlation contribution of a linear trail.

We have modified the search program used in the differential case to search for the best linear trails of

RECTANGLE from 1 round to 15 rounds, and the results are presented in Table 2. Similarly, we also need

to consider the security of RECTANGLE against multiple linear cryptanalysis [32] and multidimensional

linear cryptanalysis [33]. For 15-round RECTANGLE, the correlation potential of the best linear trail is

2−74. Also based on the branch-and-bound algorithm, we have searched for all the linear trails with a

correlation potential between 2−74 and 2−80 (up to a rotation equivalence) for 15-round RECTANGLE

and examined all the linear propagations made up of the investigated trails. The following are the

experimental results:

1. There are 128 best linear propagations with an average correlation potential 1860× 2−80 ≈ 2−69.14

each, which is lower than 2−64. Each is composed of 891 linear trails. Among the 891 trails, 2 with

correlation potential 2−74 each, 26 with correlation potential 2−76 each, 151 with correlation potential

2−78 each, and 712 with correlation potential 2−80 each.

2. Among all the linear propagations, the maximum number of trails of a linear propagation is 891.

For comparison with PRESENT, there are the two facts:

1. There exists a 16-round linear propagation of PRESENT, which is composed of 435600 linear trails

with a correlation potential 2−64 each [19]. Thus, the average correlation potential is 435600× 2−64 ≈

2−45.26.

2. There exists a 23-round linear propagation of PRESENT, which is composed of 367261713 linear

trails with a correlation potential 2−92 each [19]. Thus, the average correlation potential is about 2−63.54.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:7

: 9 concerned bits

13 12 1 0

13 12 1 0
ShiftRow

Figure 6 A weak property of ShiftRow.

From the above results and a comparison with PRESENT, it can be seen that the clustering of linear

trails of RECTANGLE is limited, which can not be used to construct an effective linear propagation

with more than 14 rounds. Therefore, we believe that it is impossible to construct an effective 15-round

(multiple, multidimensional) linear distinguisher for RECTANGLE. Full dependency is reached already

after 4 rounds, hence we believe 25-round RECTANGLE is enough to resist against linear cryptanalysis

and its extension attacks.

3.3 Statistical saturation attack

The statistical saturation (SS) attack [34] is specially designed for PRESENT. Using the weak diffusion

of the PRESENT permutation, there exists a theoretical SS attack against 24-round PRESENT.

Due to the weak diffusion of the permutation layer of RECTANGLE, we must consider the securi-

ty of RECTANGLE against statistical saturation attack. Consider the 4 columns with an index set

{0, 1, 12, 13}, then 9 out of 16 bits are still directed to the same 4 column positions after ShiftRow. Fig-

ure 6 illustrates this property, and Algorithm 1 presents the basic procedure of our experiment. Based on

our experimental results, we expect that the distance can be estimated by multiplying about 2−4 when

adding a round to the distinguisher. According to the estimate of data complexity in [35], we estimate

that the longest SS distinguisher of RECTANGLE can reach 15 rounds at most, and the distinguisher

can be used to attack 18-round RECTANGLE at most. Considering the full round is 25, we believe there

is enough security margin for RECTANGLE against the SS attack.

Algorithm 1

Set the subkey in each round to a random value.

for r = 1 to 10 do

{ 1. Choose a set of 240 plaintexts which have a constant value in the 4 columns with an index set {0, 1, 12, 13},

while having random values in the other 64− 16 = 48 bits.

2. Calculate the distribution of the outputs in the concerned 9 bit positions after r-round encryp-

tion, and compute the squared Euclidian distance between this distribution and uniform distribu-

tion. Let O denote the output after r-round encryption, j denote the value of the 9-bit string

O3,13||O2,13||O2,12||O1,13||O1,1||O0,13||O0,12||O0,1||O0,0, the distance is defined as:

Dis =
∑29−1

j=0 (
counter[j]

2m
− 1

29
)2

where counterj denotes the times of occurence of j among all the 2m values.

}

3.4 Impossible differential cryptanalysis

Impossible differential cryptanalysis [36] exploits differential trails with probability 0. Impossible differ-

ential distinguishers are usually constructed by meet-in-the-middle approach. We found some 8-round

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:8

impossible differential distinguishers for RECTANGLE. Since 4-round RECTANGLE reaches the full de-

pendency, it is expected that full-round RECTANGLE has enough security against impossible differential

cryptanalysis.

3.5 Integral cryptanalysis

Integral cryptanalysis (or square attack) [37,38] considers the propagation of sums of many values. An in-

tegral distinguisher holds with probability 1. We found some 7-round higher-order integral distinguishers.

Similarly, it is expected that full-round RECTANGLE has enough security against integral cryptanalysis.

3.6 Key schedule attacks

Among key schedule attacks, the most effective ones are slide attack [39] and related-key cryptanalysis [40].

For RECTANGLE, the adding of different round constants in the key schedule prevents slide attacks.

For 80-bit seed keys, the union of subkey bits of any consecutive 2 rounds depends on each of the 80 bits

of the seed key. For 128-bit seed keys, the union of subkey bits of any consecutive 4 rounds depends

on each of the 128 bits of the seed key. The generalized Feistel transformations are designed to provide

appropriate diffusion. We believe that the above properties are sufficient for RECTANGLE to resist

against key schedule attacks.

4 Motivation for design choices of RECTANGLE

In this section, we justify the choices we took during the design of RECTANGLE.

4.1 Bit-slice technique and lightweight block cipher

Consider a 64-bit SP-network block cipher, the S-layer consists of 16 4 × 4 S-boxes in parallel, thus the

subblock length is 16 for a bit-slice implementation. Let a 64-bit state be arranged as a 4 × 16 array.

First, apply the same S-box to each column independently. Then, the P-layer should make each column

dependent on some other columns, aiming to provide good diffusion. In such a situation, 16-bit rotations

are probably the best choice: they are simple wirings in hardware implementation; they can achieve the

goal of mixing up different columns; they can be easily implemented in software using bit-slice technique.

So far, we got the framework of RECTANGLE.

4.2 The ShiftRow transformation

Let ci (i = 0, 1, 2, 3) denote the left rotation offset of the ith row. The choice criteria of ci are as follows:

1. The four offsets are different;

2. c0 < c1 < c2 < c3, and c0 = 0;

3. Full dependency after a minimal number of rounds.

Our experimental result shows that there are 16 candidates satisfying the above criteria. For each of

the 16 candidates, after 4 rounds each of the 64 input bits influences each of the 64 output bits. From

them, we choose (c1, c2, c3) = (1, 12, 13) as the rotation offsets of the ShiftRow transformation.

4.3 Design criteria of the S-box

Let S denote a 4×4 S-box. Let△I,△O ∈ F 4
2 , define NDS(△I,△O) ≡ ♯{x ∈ F 4

2 |S(x)⊕S(x⊕△I) = △O}.

Let ΓI,ΓO ∈ F 4
2 define the imbalance ImbS(ΓI,ΓO) ≡ |♯{x ∈ F 4

2 |ΓI • x = ΓO • S(x)} − 8|, where •

denotes the inner product on F 4
2 . The design criteria of the S-box of RECTANGLE are as follows:

1. Bijective, i.e., S(x) 6= S(x′) for any x 6= x′.

2. For any non-zero input difference △I ∈ F 4
2 and any non-zero output difference △O ∈ F 4

2 , we require

NDS(△I,△O) 6 4.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:9

3. Let △I ∈ F 4
2 be a non-zero input difference and △O ∈ F 4

2 a non-zero output difference. Let wt(x)

denote the Hamming weight of x. Define SetD1S as SetD1S = {(△I,△O) ∈ F 4
2×F 4

2 |wt(△I) = wt(△O) =

1 and NDS(△I,△O) 6= 0}. Let CarD1S denote the cardinality of SetD1S , we require CarD1S = 2.

4. For any non-zero input selection pattern ΓI ∈ F 4
2 and any non-zero output selection pattern ΓO ∈

F 4
2 , we require ImbS(ΓI,ΓO) 6 4.

5. Let ΓI ∈ F 4
2 be a non-zero input selection pattern and ΓO ∈ F 4

2 a non-zero output selection pattern,

define SetL1S as SetL1S = {(ΓI,ΓO) ∈ F 4
2 × F 4

2 |wt(ΓI) = wt(ΓO) = 1 and ImbS(ΓI,ΓO) 6= 0}. Let

CarL1S denote the cardinality of SetL1S , we require CarL1S = 2.

6. No fixed point, i.e., S(x) 6= x for any x ∈ F 4
2 .

One can refer to [41] for more details on selection of the RECTANGLE S-box.

4.4 The key schedule

The design criteria of 80-bit (resp. 128-bit) key schedule are as follows:

1. The union of subkey bits of any 2 (resp. 4) consecutive rounds depends on each of the 80 bits of the

seed key.

2. The 1-round 5-subblock (resp. 4-subblock) generalized Feistel transformation is used to provide

appropriate diffusion.

3. Use round constants to eliminate symmetries.

4.5 The number of rounds

Our analysis showed that the highest number of attacked rounds is 18. We decide to add 7 rounds as a

security margin, and take 25 as the round number of RECTANGLE.

5 Performance in various environments

5.1 Hardware implementation

We implemented RECTANGLE in Verilog HDL and used Mentor Graphics Modelsim SE PLUS 6.6d

for functional simulation. All proposed hardware designs in this paper were synthesized with Synopsys

Design Compiler D-2010.03-SP4 to the UMC’s 0.13 µm.1P8M Low Leakage Standard cell Library with the

following typical values: voltage of 1.2 V and temperature of 25◦C. We used a round-based architecture

which is a direct mapping of the algorithm, frequently used for implementation evaluation. The source

code of our hardware implementations can be found in [42].

5.1.1 Round-based architecture

Round-based RECTANGLE-80 uses 64/80-bit datapaths for state and key respectively. It performs one

round in one clock cycle. The state datapath consists of the 64-bit register (for storing), the S-layer, the

P-layer and the 64-bit XOR for key addition. Besides the 80-bit register for key storing, the S-boxes,

P-layer and XORs are utilized to update the subkey. A Finite State Machine is used to generate control

logic. The plaintext and the key are loaded into each register via multiplexers. Then on each of the

following 25 clock cycles, data is read out from the registers, passed through the state and key datapaths

and stored back to register respectively. Finally, we can obtain the ciphertext at the output of the 64-bit

XOR. Figure 7 illustrates the design diagram of RECTANGLE-80. For the 128-bit version, the state

datapath is the same as the 80-bit version, and the key datapath has four more S-boxes and a different

generalized Feistel transformation.

The area consumption of a round-based RECTANGLE-80 is 1600 GE (Gate Equivalent: The size of

one NAND gate under specified technology). Based on this specified CELL Library, our S-box consumes

around 18.8 GE. The P-layer of round function is only wiring. The round-based RECTANGLE-80 has a

simulated power consumption of 74.31 µw at 10 MHz. For the round-based RECTANGLE-128, the area

consumption is 2064 GE and the simulated power consumption is 72.15 µw at 10 MHz.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:10

D

QS

D

QS

P

S

Read/Iteration

Plaintext

Key

Ciphertext

Round
counter

64 80

64

64
80

64

The top 4 rows

80

8080
64

64

4 4

64

...

16 x

4
64 The

rightmost
4 columns

5
The rightmost
5 bits in Row0

75

SSS

444

Row4 Row3 Row2 Row1Row0

1616 16 16 16

<<<12 <<<8

Row4 Row3 Row2 Row1 Row0

Figure 7 The datapath of the round-based RECTANGLE-80.

Table 3 Comparison of lightweight cipher implementations (Area vs. Throughput)

Key Block Cycles per Tech. Area Tput.At

size size Block (µm) (GE) 100 kHz (kbps)

Block Ciphers

AES-128 [43] 128 128 226 0.13 2400 56.6

LED-64 [6] 64 64 1248 0.18 966 5.1

PICCOLO-80 [7] 80 64 27 0.13 1496 237

PRESENT-80 [44] 80 64 32 0.18 1570 200

RECTANGLE-80 80 64 26 0.13 1599.5 246

RECTANGLE-128 128 64 26 0.13 2063.5 246

Stream Ciphers

Grain [45] 80 1 1 0.13 1294 100

Trivium [45] 80 1 1 0.13 2599 100

5.1.2 Results and comparisons

A comparison of round-based implementations of RECTANGLE and other ciphers is presented in Table 3.

The throughput is calculated in bits per second. The result in Table 3 illustrates that RECTANGLE has

a rather high throughput with a compact area consumption.

Table 4 gives a comparison of the 3 architectures of RECTANGLE-80 and other ciphers. The power

consumption is estimated on the gate level by PowerCompiler, based on the switching activates generated

by a real testbench. The power strongly depends on the clock frequency and technology. To draw a fair

comparison, energy per bit is used to represent the energy efficiency. The results show that RECTANGLE

meets the needs under different scenarios and has a rather low energy consumption.

5.2 Software implementation

5.2.1 On 64-bit processors

We implemented RECTANGLE on a 2.5GHz Intel(R) Core i5-2520M CPU running a 64-bit operating

system with an Intel C++ compiler.

For one block data, our bit-slice implementation gives a speed of about 30.5 cycles/byte for encryption

and 32.2 cycles/byte for decryption. The S-box S can be implemented using a sequence of 12 logical

instructions (see Appendix B), the P-layer only needs 3 rotations, and the subkey addition needs 4 XORs.

The inverse S-box can be also implemented using 12 logical instructions. Our implementation is quite

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:11

Table 4 Comparison of 3 different architectures of implementationsa)

Tech. Datapath Freq. Area Tput Energy/bit

(µm) (bit) (MHz) (GE) (pJ/bit)

Round-based

HWang AES [46] 0.18 128 50 79 K 582 Mbps 93

PRESENT80 [44] 0.18 64 10 1570 20.6 Mbps 3.74

RECTANGLE-80 0.13 64 10 1600 24.6 Mbps 3.0

Parallel

PRESENT80 [44] 0.18 64 200 27027 10.22 Gbps 0.67

RECTANGLE-80 0.13 64 200 24512 12.8 Gbps 0.32

Serial

AES-128 [43] 0.13 8 0.1 2400 56.6 kbps −

LED-64 [6] 0.18 4 0.1 966 5.1 kbps −

PRESENT80 [44] 0.18 4 0.1 1075 11.4 kbps 221.1

RECTANGLE-80 0.13 4 0.1 1111 14.0 kbps 32.05

a) “−” means the value is unavailable at the time of writing.

Table 5 Comparison of software performance of LED, PICCOLO, PRESENT and RECTANGLEb)

LED PICCOLO PRESENT RECTANGLE

Block length 64 64 64 64

Key length 64 80 80 80

One block enc. 65 67.1 [11] 62 30.5

SSE enc.
−

4.57 [12] 4.73 [12] 3.9
(cycles/byte) 16 para. blocks 32 para. blocks 8 para. blocks

b) “one block enc.” is for a single block encryption. “SSE enc.” is for multiple parallel encryptions using 128-bit SSE

instructions. “para.” means parallel. “−” means the value is unavailable at the time of writing.

straightforward, it only uses 6 basic instructions: AND, OR, NOT, XOR, ROL and MOV. The key

schedule cost is about 293 cycles for an 80-bit seed key and 259 cycles for a 128-bit seed key.

In the case of a parallel mode of operation such as CTR, using Intel 128-bit SSE instructions can give

RECTANGLE a very impressive performance. Since RECTANGLE is designed as a bit-sliced cipher, the

cost of data load and data format conversion is very low, which takes less than 0.2 cycles/byte when the

message length is more than 6 blocks. Our bit-slice implementation of RECTANGLE reaches an average

speed of about 3.9 cycles/byte for messages with a length of around 3000 bytes.

Table 5 gives software performance comparisons of RECTANGLE with LED, PICCOLO and PRESENT.

For one block encryption, we implemented LED, PICCOLO and PRESENT on our platform using the

codes found in [11]. For LED and PRESENT, our test timings are consistent with those in [11]. For PIC-

COLO, we obtained a slower timing result, hence, we cite the result in [11] for PICCOLO. From Table 5,

we can see that the software performances of RECTANGLE on 64-bit processors are quite impressive.

5.2.2 On 8-bit micro-controllers

We implemented RECTANGLE on Atmel ATtiny45, which uses an 8-bit RISC processor with 32 single-

byte general purpose registers, 256 bytes of SRAM and 4K bytes of programmable flash memory. All the

implementations are assembly coded, and the codes are compiled using Atmel studio 6.2.

Table 6 shows the performance metrics of RECTANGLE. The codes for encryption, decryption and key

schedule are one-round unrolled. The encryption cost is the number of cycles for transforming a plaintext

into a ciphertext, including any data & key loading and data write-back. Three cases are considered. In

the first case, the seed key is expanded and the round keys are loaded into SRAM, which is denoted as

“static”. The second case, the key schedule is not implemented, and the round keys are stored in flash.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:12

Table 6 Performance of RECTANGLE on Atmel ATtiny45 Processorc)

Method
Key size Code size (bytes) RAM (bytes) Cycles

(bits) enc.+k.s. dec.+k.s. enc./dec. enc. dec. k.s.

Static
80 628 628 176 1846 1870 1774

128 606 608 182 1820 1845 1362

Method
Key size Code size (bytes) RAM (bytes) Cycles

(bits) enc.+e.k. dec.+e.k. enc./dec. enc. dec. k.s.

Fixed
80 524 528 8 2005 2081 −

128 520 528 8 1979 2058 −

Method
Key size Code size (bytes) RAM (bytes) Cycles

(bits) enc.+k.s. dec.+i.k.s. enc./dec. enc.+k.s. dec.+i.k.s.

On-the-fly
80 500 504 18 2801 2851

128 488 492 24 2438 2488

c) “enc.”, “dec.”,“k.s. ”, “i.k.s. ” and “e.k. ”means encryption, decryption, key schedule, inverse key schedule and expanded

key respectively.

We include the time to load the key from flash into registers. This case is denoted as “fixed”. The third

case, the round keys are generated “on-the-fly”. The computation of the key schedule(resp. the inverse

key schedule) is included in the encryption (resp. decryption) costs. This case is denoted as “on-the-fly”.

During the execution, all the running states are held in registers, thus there is no need for extra SRAM

and additional data loading. The flash requirement includes the memory used to store the code, the

lookup tables, one input block and the master key (the “fixed” case also includes the round keys).

The S-box and the P-layer are respectively implemented using a sequence of logical instructions. With

four additional registers, the RECTANGLE S-box needs 26 instructions, and the inverse S-box needs 27

instructions. Both the P-layer and the inverse P-layer need 20 instructions. Note that each of the above

mentioned instructions needs one single cycle. For the key schedule, the round constant additions are

implemented as lookup tables.

In [47], the authors provide implementations of 12 block ciphers on an ATMEL ATtiny45 8-bit micro-

controller. Compare our implementations for RECTANGLE in Table 6 with the results reported in [47],

it can be concluded that RECTANGLE has an outstanding performance on 8-bit microcontrollers.

6 Relation to early designs

The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-

slice techniques. Serpent and Noekeon are two early bit-sliced block ciphers. However, the design goal of

the two ciphers is general-purpose instead of lightweight, almost all aspects need to be reconsidered when

it comes to a dedicated lightweight block cipher, including the block length, the key length, the selection

of the S-box, the design of the P-layer and the design of the key schedule.

Many block ciphers use parallel 4×4 S-boxes to provide confusion such as Serpent, Noekeon, PRESENT,

LED, KLEIN, LBlock and TWINE. In this paper, we proposed new design criteria for the RECTANGLE

S-box, i.e., CarD1S = CarL1S = 2. The new criteria are mainly motivated by the existing security analysis

of PRESENT, specifically (multiple) differential/linear cryptanalysis on reduced-round PRESENT [18–

20]. Moreover, one can get more confidence in the security of RECTANGLE by comparing the security

of PRESENT and RECTANGLE against (multiple) differential/linear cryptanalysis, which were shown

in Subsections 3.1 and 3.2.

The design of the P-layer of RECTANGLE depends largely on the bit-slice technique, which is de-

termined by 3 rotation offsets. Compared with the P-layers of Serpent and Noekeon, the P-layer of

RECTANGLE is much more friendly in hardware. Compared with the P-layer of PRESENT, the P-layer

of RECTANGLE is much more friendly in software.

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:13

7 Conclusion

We have proposed RECTANGLE, a new lightweight block cipher based on the bit-slice technique. RECT-

ANGLE is a simple design. The bit-sliced design principle allows for both low-cost hardware and efficient

software implementations. Largely due to our careful selection of the S-box, RECTANGLE achieves a

very good security-performance tradeoff. We want to point out that the selection of the P-layer is also

important. The RECTANGLE P-layer is composed of 3 rotations, which is not only extremely low-cost

in hardware but also very efficient in software. In addition, the combination of the S-box and the P-layer

brings the cipher a very limited clustering of differential/linear trails. We believe that RECTANGLE is

an interesting design and we feel that it can trigger several new problems in cryptographic design and

analysis. In the end, we encourage further security analysis of RECTANGLE.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61379138), Research Fund

KU Leuven (OT/13/071), “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No.

XDA06010701), and National High-tech R&D Program of China (863 Program) (Grant No. 2013AA014002). We

are very grateful to BILGIN Begül, DAEMEN Joan, FAN JunFeng, GIERLICHS Benedikt, GONG Zheng and

MOUHA Nicky for their helpful comments.

References

1 Leander G, Paar C, Poschmann A, et al. New lightweight DES variants. In: Proceedings of 14th International

Workshop on Fast Software Encryption, Luxembourg, 2007. 196–210

2 Engels D, Saarinen M-J O, Schweitzer P, et al. The hummingbird-2 lightweight authenticated encryption algorithm.

In: Proceedings of 7th International Workshop on Security and Privacy, Amherst, 2011. 19–31

3 De Cannière C, Dunkelman O, Knežević M. KATAN and KTANTAN—a family of small and efficient hardware-oriented

block ciphers. In: Proceedings of 11th International Workshop on Cryptographic Hardware and Embedded Systems,

Lausanne, 2009. 272–288

4 Gong Z, Nikova S, Law Y W. KLEIN: a new family of lightweight block ciphers. In: Juels A, Paar C, eds. RFID

Security and Privacy. Berlin/Heidelberg: Springer-Verlag, 2011. 1–18

5 Wu W L, Zhang L. LBlock: a lightweight block cipher. In: Proceedings of 9th International Conference on Applied

Cryptography and Network Security, Nerja, 2011. 327–344

6 Guo J, Peyrin T, Poschmann A, et al. The LED block cipher. In: Proceedings of 13th International Workshop on

Cryptographic Hardware and Embedded Systems, Nara, 2011. 326–341

7 Shibutani K, Isobe T, Hiwatari H, et al. Piccolo: an ultra-lightweight blockcipher. In: Proceedings of 13th International

Workshop on Cryptographic Hardware and Embedded Systems, Nara, 2011. 342–357

8 Bogdanov A, Knudsen L R, Leander G, et al. PRESENT: an ultra-lightweight block cipher. In: Proceedings of 9th

International Workshop on Cryptographic Hardware and Embedded Systems, Vienna, 2007. 450–466

9 Beaulieu R, Shors D, Smith J, et al. The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint

Archive, Report 2013/404, 2013. http://eprint.iacr.org/

10 Suzaki T, Minematsu K, Morioka S, et al. Twine: a lightweight block cipher for multiple platforms. In: Proceedings

of 19th International Workshop Selected Areas in Cryptography, Toronto, 2012. 339–354

11 Benadjila R, Guo J, Lomné V, et al. Implementing lightweight block ciphers on x86 architectures. In: Proceedings of

20th International Workshop on Selected Areas in Cryptography, Burnaby, 2010. 324–351

12 Matsuda S, Moriai S. Lightweight cryptography for the cloud: exploit the power of bitslice implementation.

In: Proceedings of Workshop on Cryptographic Hardware and Embedded Systems, Leuven, 2012. 408–425

13 Bogdanov A, Rechberger C. A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight block cipher K-

TANTAN. In: Proceedings of 17th International Workshop Selected Areas in Cryptography, Waterloo, 2010. 229–240

14 Naya-Plasencia M, Peyrin T. Practical cryptanalysis of ARMADILLO2. In: Proceedings of 19th International Work-

shop on Fast Software Encryption, Washington, 2012. 146–162

15 Saarinen M-J O. Cryptanalysis of Hummingbird-1. In: Proceedings of 18th International Workshop on Fast Software

Encryption, Lyngby, 2011. 328–341

16 Leander G. On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Proceedings

of 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, 2011.

303–322

17 Blondeau C, Gérard B. Multiple differential cryptanalysis: theory and practice. In: Proceedings of 18th International

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:14

Workshop on Fast Software Encryption, Lyngby, 2011. 35–54

18 Cho J Y. Linear cryptanalysis of reduced-round PRESENT. In: Proceedings of the Cryptographers’ Track at the RSA

Conference, San Francisco, 2010. 302–317

19 Ohkuma K. Weak keys of reduced-round PRESENT for linear cryptanalysis. In: Proceedings of 16th International

Workshop on Selected Areas in Cryptography, Calgary, 2009. 249–265

20 Wang M Q, Sun Y, Tischhauser E, et al. A model for structure attacks, with applications to PRESENT and Serpent.

In: Proceedings of 19th International Workshop on Fast Software Encryption, Washington, 2012. 49–68

21 Biham E. A fast new DES implementation in software. In: Proceedings of 4th International Workshop on Fast Software

Encryption, Haifa, 1997. 260–272

22 Anderson R J, Biham E, Knudsen L R. Serpent: a proposal for the advanced encryption standard. NIST AES proposal,

1998

23 Wu H J. The hash function JH. Submission to NIST, 2008. http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh.pdf

24 Bertoni G, Daemen J, Peeters M, et al. Keccak Specifications. NIST SHA-3 Submission, 2008. http://keccak.noekeon.

org/

25 Daemen J, Peeters M, Van Assche, et al. Nessie Proposal: the Block Cipher Noekeon, Nessie submission, 2000.

http://gro.noekeon.org/

26 De Cannière C, Preneel B. Trivium. In: Robshaw M, Billet O, eds. New Stream Cipher Designs—the eSTREAM

Finalists. Berlin: Springer, 2008. 244–266

27 Matsui M, Nakajima J. On the power of bitslice implementation on Intel Core2 processor. In: Proceedings of Workshop

on Cryptographic Hardware and Embedded Systems, Vienna, 2007. 121–134

28 Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J Cryptol, 1991, 4: 3–72

29 Matsui M. Linear cryptanalysis method for DES cipher. In: Proceedings of Workshop on the Theory and Application

of Cryptographic Techniques, Lofthus, 1993. 386–397

30 Daemen J, Rijmen V. The Design of Rijndael: AES—the Advanced Encryption Standard. Berlin/Heidelberg: Springer-

Verlag, 2002

31 Matsui M. On Correlation between the order of S-boxes and the strength of DES. In: Proceedings of Workshop on the

Theory and Application of Cryptographic Techniques, Perugia, 1994. 366–375

32 Biryukov A, De Cannière C, Quisquater M. On multiple linear approximations. In: Proceedings of 24th Annual

International Cryptology Conference, Santa Barbara, 2004. 1–22

33 Hermelin M, Cho J Y, Nyberg K. Multidimensional extension of Matsui’s Algorithm 2. In: Proceedings of 16th

International Workshop on Fast Software Encryption, Leuven, 2009. 209–227

34 Collard B, Standaert F X. A statistical saturation attack against the block cipher PRESENT. In: Proceedings of the

Cryptographers’ Track at the RSA Conference, San Francisco, 2009. 195–210

35 Blondeau C, Nyberg K. Links between truncated differential and multidimensional linear properties of block ciphers

and underlying attack complexities. In: Proceedings of 33rd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Copenhagen, 2014. 165–182

36 Biham E, Biryukov A, Shamir A. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials.

In: Proceedings of International Conference on the Theory and Application of Cryptographic Techniques, Prague,

1999. 12–23

37 Daemen J, Knudsen L R, Rijmen V. The block cipher Square. In: Proceedings of the International Workshop on Fast

Software Encryption, Haifa, 1997. 149–165

38 Knudsen L R, Wagner D. Integral cryptanalysis. In: Proceedings of 9th International Workshop on Fast Software

Encryption, Leuven, 2002. 112–127

39 Biryukov A, Wagner D. Slide attacks. In: Proceedings of 6th International Workshop on Fast Software Encryption,

Rome, 1999. 245–259

40 Biham E. New types of cryptanalytic attacks using related keys. J Cryptol, 1994, 7: 229–246

41 Zhang W T, Bao Z Z, Rijmen V, et al. A new classification of 4-bit optimal S-boxes and its application to PRESENT,

RECTANGLE and SPONGENT. In: Proceedings of 22th International Workshop on Fast Software Encryption, Istan-

bul, 2015

42 RECTANGLE hardware impelementation codes. http://homes.esat.kuleuven.be/˜byang/rectangle/

43 Moradi A, Poschmann A, Ling S, et al. Pushing the limits: a very compact and a threshold implementation of AES.

In: Proceedings of 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques,

Tallinn, 2011. 69–88

44 Rolfes C, Poschmann A, Leander G, et al. Ultra-lightweight implementations for smart devices—security for 1000

gate equivalents. In: Proceedings of 8th IFIP WG 8.8/11.2 International Conference on Smart Card Research and

Advanced Applications, London, 2008. 89–103

45 Good T, Benaissa M. Hardware results for selected stream cipher candidates. In: Preproceedings of SASC 2007,

eSTREAM, ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream, 2007. 191–204

46 Hwang D D, Tiri K, Hodjat A, et al. AES-based security coprocessor IC in 0.18µm CMOS with resistance to differential

power analysis side-channel attacks. IEEE J Solid-State Circuits, 2006, 41: 781–791

Zhang W T, et al. Sci China Inf Sci December 2015 Vol. 58 122103:15

47 Eisenbarth T, Gong Z, Güneysu T, et al. Compact implementation and performance evaluation of block ciphers in

ATtiny devices. In: Proceedings of 5th International Conference on Cryptology in Africa, Ifrane, 2012. 172–187

Appendix A The round constants

RC[0] = 0X01, RC[1] = 0X02, RC[2] = 0X04, RC[3] = 0X09, RC[4] = 0X12, RC[5] = 0X05,

RC[6] = 0X0B, RC[7] = 0X16, RC[8] = 0X0C, RC[9] = 0X19, RC[10] = 0X13, RC[11] = 0X07,

RC[12] = 0X0F, RC[13] = 0X1F, RC[14] = 0X1E, RC[15] = 0X1C, RC[16] = 0X18, RC[17] = 0X11,

RC[18] = 0X03, RC[19] = 0X06, RC[20] = 0X0D, RC[21] = 0X1B, RC[22] = 0X17, RC[23] = 0X0E,

RC[24] = 0X1D.

Appendix B A bit-slice description of RECTANGLE

In the following, we present an equivalent description of SubColumn and ShiftRow transformations. Based on them, one

can easily write a code for a software implementation of RECTANGLE, i.e., a bit-slice implementation.

SubColumn: A 64-bit state is described as a 4 × 16 array (Figure 2). Let Ai = ai,15|| · · · ||ai,2||ai,1||ai,0 denote the ith

row, i = 0, 1, 2, 3. Ai can be regarded as a 16-bit word.

Let A0, A1, A2, A3 be 4 16-bit inputs of SubColumn, B0, B1, B2, B3 be the 4 16-bit outputs, where Ai and Bi denote

the ith row of the cipher state. Let Ti denote 16-bit temporary variables, i = 1, 2, 3, 5, 6, 8, 9, 11, 12. The SubColumn

transformation can be computed in the following 12 steps:

1. T1 =∼ A1, 2. T2 = A0 &T1, 3. T3 = A2 ⊕A3, 4. B0 = T2 ⊕ T3,

5. T5 = A3|T1, 6. T6 = A0 ⊕ T5, 7. B1 = A2 ⊕ T6, 8. T8 = A1 ⊕A2,

9. T9 = T3 &T6, 10. B3 = T8 ⊕ T9, 11. T11 = B0|T8, 12. B2 = T6 ⊕ T11,

where “∼” is NOT, “&” is bitwise AND, “ | ” is bitwise OR.

ShiftRow: Let B0, B1, B2, B3 be 4 16-bit inputs of ShiftRow transformation, C0, C1, C2, C3 the 4 16-bit outputs. Then,

C0 = B0, C1 = B1 ≪ 1, C2 = B2 ≪ 12, C3 = B3 ≪ 13, where “A ≪ x” denotes a left rotation over x bits within

a 16-bit word A.

Appendix C Historical remarks

The initial version of RECTANGLE1) was presented in Cryptology ePrint Archive in February 2014. The version presented

in this paper is different from the initial version. For clarity, the initial version of RECTANGLE is called REC-0, and the

version presented in this paper is called RECTANGLE. There are two changes between REC-0 and RECTANGLE:

1. The S-box of RECTANGLE is the inverse S-box of REC-0. The S-box of RECTANGLE has a better software

performance than its inverse S-box, as indicated in Subsection 5.2. On the other hand, RECTANGLE and REC-0 have the

same security margin against single-key attacks.

2. The key schedule is revised. Firstly, the software performance of the key schedule of REC-0 is not good, compared to

its encryption algorithm. Secondly, the diffusion of the REC-0 key schedule is not strong enough. Shan et al. presented a 15-

round related-key differential distinguisher of REC-0, which means, one can construct a longer distinguisher in related-key

environments2) . Therefore, we decided to revise the key schedule of REC-0. As a result, the key schedule of RECTANGLE

has a much better software performance and better security against related-key attacks, at the cost of an acceptable increase

in hardware area.

1) Zhang W T, Bao Z Z, Lin D D, et al. RECTANGLE: a bit-slice ultra-lightweight block cipher suitable for multiple

platforms. Cryptology ePrint Archive: Report 2014/084. http://eprint.iacr.org/2014/084.
2) Shan J Y, Hu L, Song L, et al. Related-key differential attack on round reduced RECTANGLE-80. Cryptology ePrint

Archive: Report 2014/986. http://eprint.iacr.org/2014/986.

