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Abstract In this paper, we present new proofs for both the sharp Lp estimate and the decoupling theorem for
the Hörmander oscillatory integral operator. The sharp Lp estimate was previously obtained by Stein (1986) and
Bourgain and Guth (2011) via the TT ∗ and multilinear methods, respectively. We provide a unified proof based
on the bilinear method for both odd and even dimensions. The strategy is inspired by Barron’s work (2022) on
the restriction problem. The decoupling theorem for the Hörmander oscillatory integral operator can be obtained
by the approach in Beltran et al. (2020), where the key observation can be roughly formulated as follows: in a
physical space of sufficiently small scale, the variable setting can be essentially viewed as translation-invariant.
In contrast, we reprove the decoupling theorem for the Hörmander oscillatory integral operator through the
Pramanik-Seeger approximation approach (Pramanik and Seeger (2007)). Both proofs rely on a scale-dependent
induction argument, which can be used to deal with perturbation terms in the phase function.
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1 Introduction

Let n ⩾ 2, a ∈ C∞
c (Rn × Rn−1) be non-negative and supported in Bn1 (0)×Bn−1

1 (0), and

ϕ : Bn1 (0)×Bn−1
1 (0) → R

be a smooth function. For any λ ⩾ 1, define

Tλf(x) :=

∫
Bn−1

1 (0)

e2πiϕ
λ(x,ξ)aλ(x, ξ)f(ξ) dξ, (1.1)

where f : Bn−1
1 (0) → C and

aλ(x, ξ) := a(x/λ, ξ), ϕλ(x, ξ) := λϕ(x/λ, ξ). (1.2)
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We say that the operator Tλ is a Hörmander oscillatory integral operator if ϕ satisfies the following
Carleson-Sjölin conditions:

(H1) rank ∂2x′ξϕ(x, ξ) = n− 1 for all (x, ξ) ∈ Bn1 (0)×Bn−1
1 (0) and x = (x′, xn).

(H2) For each x0 ∈ supp xa, the hypersurface

{∂xϕ(x0, ξ) : ξ ∈ supp a(x0, ·)}

has non-vanishing Gaussian curvature.
A typical example for the Hörmander oscillatory integral operators is the following extension operator

E defined by
Ef(x) :=

∫
Bn−1

1 (0)

e2πi(x
′·ξ+xnψ(ξ))f(ξ)dξ (1.3)

with
rank

(
∂2ψ

∂ξi∂ξj

)
(n−1)×(n−1)

= n− 1, (1.4)

and it is straightforward to verify that the phase function ϕ(x, ξ) := x′ ·ξ+xnψ(ξ) satisfies the conditions
(H1) and (H2). For the Hörmander oscillatory integral operators, we revisit the following two important
problems: the sharp Lp estimate and the decoupling inequality.
Sharp Lp estimate. Hörmander [12] conjectured that if ϕ satisfies the conditions (H1) and (H2),
then

‖Tλf‖Lp(Rn) ≲ ‖f‖Lp(Bn−1
1 (0)) (1.5)

for p > 2n
n−1 , and he proved this conjecture for n = 2. For the higher-dimensional cases, Stein [17]

proved (1.5) for p ⩾ 2(n+1)
n−1 . Later, Bourgain [3] disproved Hörmander’s conjecture and showed that

Stein’s result is sharp in the odd dimensions. For the even dimensions, up to an endpoint, Bourgain and
Guth [5] established the sharp result. In summary, we may state the results as follows.
Theorem 1.1 (See [5,17]). Let n ⩾ 3 and Tλ be a Hörmander oscillatory integral operator as in (1.1).
For all ε > 0 and λ ⩾ 1,

‖Tλf‖Lp(Rn) ≲ε,ϕ,a λε‖f‖Lp(Bn−1
1 (0)) (1.6)

holds whenever

p ⩾


2(n+ 1)

n− 1
for n odd,

2(n+ 2)

n
for n even.

(1.7)

Stein’s proof is based on the TT ∗ method and gives the range p ⩾ 2(n+1)
n−1 in all the dimensions. However,

this result is not sharp in even dimensions. Bourgain and Guth [5] resolved the even-dimensional cases
up to the endpoints using the Broad-Narrow approach. Bourgain-Guth’s method can also be applied to
the odd-dimensional cases (see [11] for details). We give another proof based on the bilinear approach.
We take the extension operator as a model case to illustrate how one can derive the linear estimate for
the oscillatory integral operator from its bilinear counterpart. To this end, we first recall a sharp bilinear
restriction theorem of Lee [15].
Theorem 1.2 (See [15]). Suppose that ξ ∈ Bn−1

1 (0) and the Hessian matrix of ϕ is nondegenerate,
i.e.,

detHϕ(ξ) 6= 0.

Additionally, let V1 and V2 be two sufficiently small balls contained in Bn−1
1 (0), and suppose that for all

ξ′ ∈ V1, ξ′′ ∈ V2, and ξi ∈ Vi, i = 1, 2,

|〈(Hϕ)−1(ξi)(∇ϕ(ξ′)−∇ϕ(ξ′′)),∇ϕ(ξ′)−∇ϕ(ξ′′)〉| ⩾ c > 0. (1.8)

Then,
‖|Ef1Ef2|

1
2 ‖Lp(Rn) ⩽ Rε‖f1‖

1
2

L2‖f2‖
1
2

L2 (1.9)

for p ⩾ 2(n+2)
n .
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To derive the linear estimate from Theorem 1.2, an important step is to identify the exceptional set,
where the condition (1.8) fails. When the Hessian of ϕ has eigenvalues of the same sign, the separation
of V1 and V2 is sufficient to guarantee the condition (1.8). However, this fact does not hold when the
Hessian of ϕ has eigenvalues with different signs. For example, when n = 2, if ϕhyp(ξ) = ξ1ξ2, the
exceptional set may be contained in a small neighborhood of coordinates. For the general phase ϕM
which can be viewed as a small perturbation of ϕhyp, identifying the exceptional set is a bit tricky. There
are a number of papers by Buschenhenke et al. [6–9] which are dedicated to the study of the restriction
estimate associated with the phase ϕM. However, it is still murky to find the exceptional set for the phase
ϕM in the higher-dimensional cases. To circumvent this issue, inspired by the work of [10], we consider
a class of scale-dependent phase functions. Their exceptional set can be connected with the quadratic
cases of which the exceptional set is clear.
Decoupling theorem. Assume that {θ} is a collection of finitely overlapping balls in Rn−1 of radius
R−1/2 which form a cover of Bn−1

1 (0). Define

fθ := fκθ,
∑
θ

κθ = 1, ∀ ξ ∈ Bn−1
1 (0),

where {κθ} is a family of smooth functions which are subjecting to {θ}. Correspondingly, we decompose
Tλf into

Tλf :=
∑
θ

Tλfθ.

We have the following decoupling theorem for the Hörmander oscillatory operator.
Theorem 1.3. Let Tλ be a Hörmander oscillatory integral operator as in (1.1). If p ⩾ 2(n+1)

n−1 , then

∥∥∥∥∑
θ

Tλfθ

∥∥∥∥
Lp(Bn

R(x0))

⩽ CεR
n−1
2 −n

p +ε

(∑
θ

‖Tλfθ‖pLp(wBn
R

(x0))

) 1
p

+RapDec(R)‖f‖2, (1.10)

where wBn
R(x0) is a non-negative weight function adapted to the ball BnR(x0) such that

wBn
R(x0)(x) ≲ (1 +R−1|x− x0|)−L

for some large constant L ∈ N.
The decoupling theorem for the extension operator was established by Bourgain and Demeter [4].

When the phase function satisfies the cinematic curvature condition, the associated variable version of
the decoupling theorem was established by Beltran et al. [2] (see also [13]). Their method can also be
applied to the Hörmander oscillatory integral operator. A key observation in [2] can be roughly formulated
as follows: at the small scale of physical space, the variable setting is essentially translation invariant.
Hence, the decoupling theorem for the flat version can be brought into play directly at the level of a small
scale of physical space.

We present an alternative proof of Theorem 1.3 based on Pramanik-Seeger’s approach [16]. To be
more precise, we first conduct a localization procedure in frequency space. In this setting, the key is to
effectively control the error term so that we can directly use the techniques in the translation-invariant
setting.

The rest of this paper is organized as follows. In Section 2, we present some preliminaries which are
useful for the proof of the main theorem. In Section 3, we prove the sharp Lp estimate for the Hörmander
oscillatory integral operator. In Section 4, we provide the proof of the decoupling theorem for Hörmander
oscillatory integral operators.
Notations. For nonnegative quantities X and Y , we write X ≲ Y to denote the inequality X ⩽ CY

for some C > 0. If X ≲ Y ≲ X, we write X ∼ Y . We write x 7→ y to mean that we replace x by
y. Dependence of implicit constants on the spatial dimensions or integral exponents such as p will be
suppressed; dependence on additional parameters will be indicated by subscripts. For example, X ≲u Y
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indicates X ⩽ CY for some C = C(u). We write A(R) ⩽ RapDec(R)B to mean that for any power
β ∈ N, there is a constant Cβ such that

|A(R)| ⩽ CβR
−βB for all R ⩾ 1.

We also often abbreviate ‖f‖Lr
x(Rn) to ‖f‖Lr . For 1 ⩽ r ⩽ ∞, we use r′ to denote the dual exponent to r

such that 1
r +

1
r′ = 1. Throughout the paper, χE is the characteristic function of the set E. We usually

denote by Bnr (a) a ball in Rn with center a and radius r. We also denote by BnR a ball of radius R and
an arbitrary center in Rn. For a function φ ∈ C∞(Rn) and r > 0, we define φr(x) = r−nφ(x/r).

We define the Fourier transform on Rn by

f̂(ξ) :=

∫
Rn

e−2πix·ξf(x) dx := Ff(ξ),

and the inverse Fourier transform by

ǧ(x) :=

∫
Rn

e2πix·ξg(ξ)dξ := (F−1g)(x).

2 Basic reductions

Let m ∈ N be the number of the positive eigenvalues of the hypersurfaces

{∂xϕ(x, ξ) : (x, ξ) ∈ Bn1 (0)×Bn−1
1 (0)}.

Instead of dealing with the phase ϕ directly, we actually reduce it to a special class of functions. Let M
be a diagonal matrix with its entries being either −1 or 1 in the diagonal. Analytically, we can express
M as follows:

M = −In−1−m ⊕ Im

for some 1 ⩽ m ⩽ bn−1
2 c1).

Definition 2.1. Let K ⩾ 1 and ϕK : Bn1 (0)×Bn−1
1 (0) 7→ R with

ϕK(x, ξ) = x′ · ξ + xn〈Mξ, ξ〉+ EK(x, ξ). (2.1)

We say that the phase function ϕK(x, ξ) is asymptotically flat if

|∂αx ∂
β
ξ EK(x, ξ)| ⩽ Cα,βK

−2, (α, β) ∈ Nn × Nn−1, |α| ⩽ Nph, |β| ⩽ Nph, (2.2)

where Nph ∈ N is a large integer and Cα,β > 0 is a constant depending on α and β but not on K.
Remark 2.2. The phase function ϕK(x, ξ) in (2.1) depends on the scale of the ambient space. We can
exploit the properties in (2.1) and (2.2) in the process of induction on scales argument since the balls
shrink after the parabolic rescaling transformation.

In the following part, let R � 1, K = K0R
δ for some constants K0 > 0 and δ > 0 to be chosen later,

and define the operator TλK as follows:

TλKf(x) :=

∫
Bn−1

1 (0)

eiϕ
λ
K(x,ξ)aλ(x, ξ)f(ξ)dξ, (2.3)

where ϕλK and aλ are defined in the same way with (1.2) and a is a smooth cut function in Rn × Rn−1

satisfying: supp a(x, ξ) ⊂ Bn1 (0)×Bn−1
1 (0) and

|∂αx ∂
β
ξ a(x, ξ)| ⩽ C̄α,β , (α, β) ∈ Nn × Nn−1, |α| ⩽ Nam, |β| ⩽ Nam (2.4)

for an appropriate large constant Nam ∈ N.
1) ⌊x⌋ denotes the greatest integer less than or equal to x.
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Lemma 2.3. Let Tλ be a Hörmander oscillatory integral operator defined by (1.1) and δ � ε. Then
there exists a function ϕK which is asymptotically flat and an input function f̃ defined by

f̃(ξ) := K−(n−1)f(ξ̄ +K−1ξ) for some ξ̄ ∈ Bn−1
1 (0) (2.5)

such that
‖Tλf‖pLp(Bn

R(0)) ≲ϕ,ε R
ε

∑
Bn

R̃
⊂2R

‖T λ̃
K̃
f̃‖pLp(Bn

R̃
), (2.6)

where R̃ := R/K2, K̃ := K0R̃
δ, 2R is a rectangular box of dimensions R/K × · · · × R/K × R/K2, and

{Bn
R̃
} is a finitely overlapping partition of 2R.

Proof. Without loss of generality, we may assume

|∂αx ∂
β
ξ ϕ(x, ξ)| ⩽ Cα,βK

−2, 2 ⩽ |α| ⩽ Nph, |β| ⩽ Nph.

Otherwise, we may replace ϕ(x, ξ) by ϕ(x/A, ξ), where A is a sufficiently large constant depending on K.
It should be noted that the support of a(x/A, ξ) may be not contained in Bn1 (0)×Bn−1

1 (0), but this can
be fixed by a partition of unity argument.

Covering Bn−1
1 (0) by a collection of balls {τ} of radius K−1 and define fτ := fχτ . By the triangle

inequality, we have
‖Tλf‖Lp(Bn

R(0)) ⩽
∑
τ

‖Tλfτ‖Lp(Bn
R(0)).

Thus, there exits a τ0 such that∑
τ

‖Tλfτ‖Lp(Bn
R(0)) ≲ Kn−1‖Tλfτ0‖Lp(Bn

R(0)).

Without loss of generality, we may assume ξτ0 is the center of τ0 and

∂αxϕ
λ(x, ξτ0) = 0, ∂βξ ϕ

λ(0, ξ) = 0, α ∈ Nn, β ∈ Nn−1.

Otherwise, we take ϕλ to be

ϕλ(x, ξ) + ϕλ(0, ξτ0)− ϕλ(0, ξ)− ϕλ(x, ξτ0).

By an affine transformation in x, we may also assume the unit normal vector of the hypersurface
{∂xϕλ(0, ξ) : ξ ∈ τ0} at ξ = ξτ0 equals (0, . . . , 0, 1) and ∂ξξ∂xn

ϕλ(0, ξτ0) =M . Thus, we have

rank∂x′∂ξϕ
λ(x, ξ) = n− 1, (x, ξ) ∈ Bn1 (0)×Bn−1

K−1(ξτ0).

Then, by the inverse function theorem, there exists a function Φλ(x′, xn) such that

∂ξϕ
λ(Φλ(x′, xn), xn, ξτ0) = x′.

By a change of variables in ξ, i.e., ξ 7→ ξ + ξτ0 , and Taylor’s formula, we have

ϕλ(x, ξ + ξτ0) = ∂ξϕ
λ(x, ξτ0) · ξ +

1

2
〈∂2ξξϕλ(x, ξτ0)ξ, ξ〉

+ 3
∑
|β|=3

ξβ

β!

∫ 1

0

(1− t)2∂βξ ϕ
λ(x, ξτ0 + tξ)dt. (2.7)

We make another change of variables in x:

x′ 7→ Φλ(x′, xn), xn 7→ xn,
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such that in the new coordinates, the phase becomes

〈x′, ξ〉+ 1

2
〈∂2ξξϕλ(Φλ(x′, xn), xn, ξτ0)ξ, ξ〉

+ 3
∑
|β|=3

ξβ

β!

∫ 1

0

(1− t)2∂βξ ϕ
λ(Φλ(x′, xn), xn, ξτ0 + tξ)dt.

Let
Aλ
ϕ(x, ξτ0) := λAϕ(x/λ, ξ) := ∂2ξξϕ

λ(Φλ(x′, xn), xn, ξτ0).

Then a Taylor expansion in x yields

〈x′, ξ〉+ 1

2
xn(∂xn

〈Aλ
ϕ(x, ξτ0)ξ, ξ〉)

∣∣∣∣
x=0

+
1

2
x′ · (∂x′〈Aλ

ϕ(x, ξτ0)ξ, ξ〉)
∣∣∣∣
x=0

+ 2
∑
|α|=2

xα

α!

∫ 1

0

(1− t)∂αz 〈Aλ
ϕ(z, ξτ0)ξ, ξ〉

∣∣∣∣
z=tx

dt

+ 3
∑
|β|=3

ξβ

β!

∫ 1

0

(1− t)2∂βξ ϕ
λ(Φλ(x′, xn), ξτ0 + tξ)dt.

We make a further diffeomorphic change of variables in ξ 7→ ρ(ξ) such that in the new coordinates,
〈x′, ξ〉 + 1

2x
′ · (∂x′〈Aλ

ϕ(x, ξτ0)ξ, ξ〉)|x=0 becomes 〈x′, ξ〉. It is obvious that ρ(0) = 0, and thus a further
Taylor expansion in ξ for 1

2xn(∂xn
〈Aλ

ϕ(x, ξτ0)ρ(ξ), ρ(ξ)〉)|x=0, up to an affine transformation in ξ, we have

1

2
xn(∂xn

〈Aλ
ϕ(x, ξτ0)ρ(ξ), ρ(ξ)〉)

∣∣∣∣
x=0

=
1

2
xn〈Mξ, ξ〉+ xnr(ξ),

where r(ξ) = O(|ξ|3). Define

E(x, ξ) := 2
∑
|α|=2

xα

α!

∫ 1

0

(1− t)∂αz 〈Aϕ(z, ξτ0)ρ(ξ), ρ(ξ)〉
∣∣∣∣
z=tx

dt

+ 3
∑
|β|=3

(ρ(ξ))β

β!

∫ 1

0

(1− t)2∂βξ ϕ(Φ(x
′, xn), ξτ0 + tρ(ξ))dt+ xnr(ξ).

Correspondingly, the phase function becomes

〈x′, ξ〉+ 1

2
xn〈Mξ, ξ〉+ Eλ(x, ξ),

where Eλ(x, ξ) := λE(x/λ, ξ). Define λ̃ := λ/K2, R̃ := R/K2, and K̃ := K0(R̃)
δ. We perform a parabolic

rescaling
ξ 7→ K−1ξ, x′ 7→ Kx′, xn 7→ K2xn.

The phase function becomes

ϕλ̃
K̃
(x, ξ) := 〈x′, ξ〉+ xn〈Mξ, ξ〉+ Eλ̃

K̃
(x, ξ),

where
EK̃(x, ξ) := K2E(K−1x′, xn,K

−1ξ)

and Eλ̃
K̃
(x, ξ) := λ̃EK̃(x/λ̃, ξ). Finally, we have

T λ̃
K̃
f̃(x) =

∫
Bn−1

1 (0)

e2πiϕ
λ̃
K̃
(x,ξ)aλ̃(x, ξ)f̃(ξ)dξ. (2.8)

Note our assumption on ϕ̃, and it is straightforward to verify that EK̃(x, ξ) satisfies the condition

|∂αx ∂
β
ξ EK̃(x, ξ)| ⩽ Cα,βK̃

−2, (α, β) ∈ Nn × Nn−1, |α| ⩽ Nph, |β| ⩽ Nph. (2.9)
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Thus, ϕK̃ is asymptotically flat. Under the new coordinates, the phase function becomes ϕλ̃
K̃

. By tracking
the change of variables of ξ and x, it is easy to see that the ball BnR is transformed into another region
which is contained in a box 2R of dimensions R/K×· · ·×R/K×R/K2, and by choosing K0 sufficiently
large, the conditions (2.2) and (2.4) can be ensured.

3 Proof of the sharp Lp estimate

Reduction. To prove Theorem 1.1, it suffices to show that for each 1 ⩽ R ⩽ λ,

‖Tλf‖Lp(Bn
R(0)) ⩽ CεR

ε‖f‖Lp(Bn−1
1 (0)) (3.1)

under the assumption (1.7). The dependence of the implicit constant on n, p, and ϕ is compressed. By
Lemma 2.3, it is reduced to showing that for each 1 ⩽ R ⩽ λ,

‖TλKf‖Lp(Bn
R) ⩽ CεR

ε‖f‖Lp(Bn−1
1 (0)) (3.2)

for all TλK as in (2.3). Indeed, by Lemma 2.3, we have

‖Tλf‖Lp(Bn
R(0)) ≲ϕ,ε Rε

∑
Bn

R̃
⊂2R

‖T λ̃
K̃
f̃‖pLp(Bn

R̃
),

where
T λ̃
K̃
f̃(x) =

∫
Bn−1

1 (0)

e2πiϕ
λ̃
K̃
(x,ξ)aλ̃(x, ξ)f̃(ξ)dξ

and f̃ is defined by (2.5). Note that K = K0R
δ, and there exists a B̄n

R̃
⊂ 2R such that∑

Bn
R̃
⊂2R

‖T λ̃
K̃
f̃‖pLp(Bn

R̃
) ≲ Kn−1‖T λ̃

K̃
f̃‖p

Lp(B̄n
R̃
)
.

From (3.2), it follows that
‖T λ̃

K̃
f̃‖p

Lp(B̄n
R̃
)
⩽ CεR

ε‖f̃‖Lp(Bn−1
1 (0)).

By choosing δ = ε2 � 1, we obtain the desired result (3.1).
Let 1 ⩽ R ⩽ λ and Qp(λ,R) be the optimal constant such that

‖TλKf‖Lp(Bn
R) ⩽ Qp(λ,R)‖f‖Lp(Bn

1 (0)) (3.3)

holds for all asymptotically flat phase ϕK in Definition 2.1 and for all a satisfying (2.4), and uniformly
for all f ∈ Lp(Bn−1

1 (0)). Then, (3.2) is reduced to showing

Qp(λ,R) ⩽ CεR
ε. (3.4)

We proceed to prove (3.4) via an induction on scale argument. For this purpose, we first set up some
basic preparatory tools.

3.1 Parabolic rescaling and flat decoupling

In this subsection, we establish the parabolic rescaling lemma which connects the estimates at different
scales and plays a critical role in the induction argument. To that end, we first prove an auxiliary
proposition.
Proposition 3.1. Let D be a maximal R−1-separated discrete subset of Ω ⊂ Bn−1

1 (0). Then,∥∥∥∥ ∑
ξθ∈D

e2πiϕ
λ
K(·,ξθ)F (ξθ)

∥∥∥∥
Lp(Bn

R(0))

≲ Qp(λ,R)R
n−1
p′ ‖F‖ℓp(D) (3.5)
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for all F : D → C, where

‖F‖ℓp(D) :=

( ∑
ξθ∈D

|F (ξθ)|p
) 1

p

for 1 ⩽ p <∞.
Proof. Let η be a bump smooth function on Rn−1, which is supported on Bn−1

2 (0) and equals 1 on
Bn−1

1 (0). For each ξθ ∈ D, we set ηθ(ξ) := η(10R(ξ − ξθ)). In exactly the same way as in the proof of
[11, Lemma 11.8], we have∣∣∣∣ ∑

ξθ∈D

e2πiϕ
λ
K(·,ξθ)F (ξθ)

∣∣∣∣ ≲ Rn−1
∑
k∈Zn

(1 + |k|)−(n+1)|TλKfk(x)|, (3.6)

where
fk(ξ) :=

∑
ξθ∈D

F (ξθ)ck,θ(ξ)ηθ(ξ)

with ‖ck,θ(ξ)‖∞ ⩽ 1. By the definition of Qp(λ,R) and (3.6), we get∥∥∥∥ ∑
ξθ∈D

e2πiϕ
λ
K(·,ξθ)F (ξθ)

∥∥∥∥
Lp(Bn

R(0))

≲ Qp(λ,R)R
n−1

∑
k∈Zn

(1 + |k|)−(n+1)‖fk‖Lp(Bn−1
1 (0)).

The supports of {ηθ} are pairwise disjoint, for any q ⩾ 1, we have

‖fk‖Lq(Bn−1
2 (0)) ≲ R−n−1

q ‖F‖ℓq(D).

Thus, we get∥∥∥∥ ∑
ξθ∈D

e2πiϕ
λ
K(·,ξθ)F (ξθ)

∥∥∥∥
Lp(Bn

R(0))

≲ Qp(λ,R)R
n−1

∑
k∈Zn

(1 + |k|)−(n+1)R−n−1
p ‖F‖ℓp(D)

≲ Qp(λ,R)R
n−1
p′ ‖F‖ℓp(D).

This completes the proof.

Lemma 3.2 (Parabolic rescaling). Let 1 ⩽ R ⩽ λ, and f be supported in a ball of radius K−1, where
1 ⩽ K ⩽ R. Then, for all p ⩾ 2 and δ > 0, we have

‖TλKf‖Lp(Bn
R(0)) ≲δ Qp

(
λ

K2
,
R

K2

)
RδK

2n
p −(n−1)‖f‖Lp(Bn−1

1 (0)). (3.7)

Proof. Without loss of generality, we may assume supp f ⊂ Bn−1
K−1(ξ̄). In the same argument as in

Section 2, we obtain
‖TλKf‖Lp(Bn

R(0)) ≲δ K
n+1
p ‖T̃ λ̃

K̃
f̃‖Lp(2R),

where 2R and f̃ are defined in Lemma 2.3 and

λ̃ = K−2λ, K̃ = K1−2ε2 . (3.8)

Note that for q ⩾ 1,
‖f̃‖Lq(Bn−1

1 (0)) ⩽ K−(n−1)+(n−1)/q‖f‖Lq(Bn−1
1 (0)),

and it suffices to show that

‖T̃ λ̃
K̃
f̃‖Lp(2R) ≲δ Qp(λ̃, R̃)Rδ‖f̃‖Lp(Bn−1

1 (0)).

To simplify notations, we just need to show

‖TλKf‖Lp(2(R,R′)) ≲δ Qp(λ,R)Rδ‖f‖Lp(Bn−1
1 (0)) (3.9)
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for all 1 � R ⩽ R′ ⩽ λ and δ > 0, where

2(R,R′) :=

{
x = (x′, xn) ∈ Rn :

(
|x′|
R′

)2

+

(
|xn|
R

)2

⩽ 1

}
.

Choosing a collection of essentially disjoint R−1-balls θ which covers Bn−1
1 (0), we denote the center of θ

by ξθ and decompose f into f =
∑
θ fθ. Set

TλK,θf(x) := e−2πiϕλ
K(x,ξθ)TλKf(x),

and we rewrite
TλKf(x) =

∑
θ

e2πiϕ
λ
K(x,ξθ)TλK,θfθ(x).

For sufficiently small δ > 0, we may also write

TλK,θfθ(x) = TλK,θfθ ∗ ηR1−δ(x) + RapDec(R)‖f‖L2(Bn−1), (3.10)

where η is a Schwartz function on Rn and has Fourier support on Bn2 (0), and η̂ = 1 on Bn1 (0). Then, |η|
admits a smooth rapidly decreasing majorant ζ : Rn → [0,+∞), which satisfies

ζR1−δ(x) ≲ RδζR1−δ(y) if |x− y| ≲ R. (3.11)

Cover 2(R,R′) by a finitely-overlapping R-balls {BnR}. For any BnR(x̄) in this cover and for z ∈ BnR(0),
we have

|TλKf(x̄+ z)| ≲ Rδ
∫
Rn

∣∣∣∣∑
θ

e2πiϕ
λ
K(x̄+z,ξθ)TλK,θfθ(y)

∣∣∣∣ζR1−δ(x̄− y)dy.

Taking the Lp-norm in z and using Proposition 3.1 for the phase ϕλK(x̄+ ·, ξθ), we have

‖TλKf(x̄+ ·)‖Lp(Bn
R(0)) ≲ Rδ

∫
Rn

∥∥∥∥∑
θ

e2πiϕ
λ
K(x̄+z,ξθ)TλK,θfθ(y)

∥∥∥∥
Lp(Bn

R(0))

ζR1−δ(x̄− y)dy

≲ Qp(λ,R)R
n−1
p′ Rδ

∫
Rn

‖TλK,θfθ(y)‖ℓp(θ)ζR1−δ(x̄− y)dy,

where ‖aθ‖ℓp(θ) is denoted by (
∑
θ |aθ|p)1/p.

By the property (3.11), for z ∈ BnR(0), we obtain∫
Rn

‖TλK,θfθ(y)‖ℓp(θ)ζR1−δ(x̄− y)dy

=

∫
Rn

‖TλK,θfθ(x̄+ z − y)‖ℓp(θ)ζR1−δ(y − z)dy

≲ Rδ
∫
Rn

‖TλK,θfθ(x̄+ z − y)‖ℓp(θ)ζR1−δ(y)dy

≲ RO(δ)

(∫
Rn

‖TλK,θfθ(x̄+ z − y)‖pℓp(θ)ζR1−δ(y)dy

)1/p

.

Then, we deduce that for all z ∈ BnR(0),

‖TλKf(x̄+ ·)‖Lp(Bn
R(0)) ≲ Qp(λ,R)R

n−1
p′ RO(δ)

×
(∫

Rn

‖TλK,θfθ(x̄+ z − y)‖pℓp(θ)ζR1−δ(y)dy

)1/p

.

Raising both sides of this estimate to the p-th power, averaging in z, and summing over all the balls BnR
in the covering, we conclude that ‖TλKf‖Lp(2(R,R′)) is dominated by

Qp(λ,R)R
n−1
p′ −n

pRO(δ)

(∫
Rn

∑
θ

‖TλK,θfθ‖
p
Lp(2(R,R′)−y)ζR1−δ(y)dy

)1/p

.
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Using the trivial estimate

‖TλK,θfθ‖L∞(2(R,R′)−y) ≲ ‖fθ‖L1(Bn−1
1 (0)) ≲ R−(n−1)‖fθ‖L∞(Bn−1

1 (0)) (3.12)

and
‖TλK,θfθ‖L2(2(R,R′)−y) ≲ R1/2‖fθ‖L2(Bn−1

1 (0)), (3.13)

we have
‖TλK,θfθ‖Lp(2(R,R′)−y) ≲ R−(2n−1)( 1

2−
1
p )+

1
2 ‖fθ‖Lp(Bn−1

1 (0)).

Hence, ‖TλKf‖Lp(2(R,R′)) is dominated by Qp(λ,R)RO(δ)‖f‖Lp(Bn−1
1 (0)).

Lemma 3.3. Suppose that supp f ⊂ Bn−1
1 (0). Then, the Fourier transform of TλKf is essentially

supported on the K−2-neighborhood of the surface S := {(ξ, 〈Mξ, ξ〉) : ξ ∈ supp f} in the sense that

|T̂λKf(ω)| ⩽ RapDec(λ)‖f‖Lp(Bn−1
1 (0)) for all ω /∈ NCK−2S. (3.14)

Proof. Define
Gλ(ξ, ω) :=

∫
Rn

e2πi(ϕ
λ
K(x,ξ)−x·ω)aλ(x, ξ)dx.

Then, we have

T̂λKf(ω) =

∫
Rn

e−2πix·ωTλKf(x)dx =

∫
Bn−1

1 (0)

f(ξ)Gλ(ξ, ω)dξ. (3.15)

We rewrite as
Gλ(ξ, ω) = λn

∫
Rn

e2πiλ(ϕK(y,ξ)−y·ω)a(y, ξ)dy.

From integration by parts and the assumption (2.4) of a, it follows that

|Gλ(ξ, ω)| ⩽ RapDec(λ), (3.16)

provided that

|ω −∇yϕK(y, ξ)| ⩾ CK−2. (3.17)

Since ϕK is asymptotically flat, (3.17) holds obviously if ω /∈ NCK−2S. Combining (3.15) and (3.16), we
have

|T̂λKf(ω)| ⩽ RapDec(λ)‖f‖Lp(Bn−1
1 (0)) for all ω /∈ NCK−2S.

This completes the proof.
To prove (3.4), we also need a flat decoupling estimate for TλK .

Lemma 3.4 (Flat decoupling). Let {τ} be a collection of finitely-overlapping K−1-balls covering
Bn−1

1 (0) with 1 ⩽ K ⩽ R. Then, we can decompose f as

f =
∑
τ

fτ .

For 2 ⩽ p ⩽ ∞, one has

‖TλKf‖Lp(BR) ≲ (#{τ})
1
2−

1
p

(∑
τ

‖TλKfτ‖2Lp(ωBR
)

) 1
2

+RapDec(λ)‖f‖L2(Bn−1
1 (0)). (3.18)

Proof. For p = ∞, the estimate (3.18) is trivial by Hölder’s inequality. By interpolation, we just need
to show (3.18) for p = 2. Using Lemma 3.3 for each fτ , we get

TλKfτ = χNCK−2 (Sτ )(D)TλKfτ +RapDec(λ)‖f‖L2(Bn−1
1 (0)), (3.19)

where Sτ := {(ξ, 〈Mξ, ξ〉) : ξ ∈ τ}. Note that the CK−2-neighborhoods of Sτ are finitely overlapping,
and then we complete the proof using Plancherel’s theorem.
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3.2 Bilinear restriction estimate

Assume that ϕ satisfies the Carleson-Sjölin conditions. Let U1 and U2 be two balls contained in Bn−1
1 (0)

and ξi ∈ Ui, i = 1, 2. By the assumption (H1), the map

ξ 7→ ∂x′ϕ(x, ·)

is a diffeomorphism. Define
q(x, ξ) := ∂xn

ϕ(x, (∂x′ϕ(x, ·))−1(ξ)),

i.e.,
q(x, ∂x′ϕ(x, ξ)) = ∂xnϕ(x, ξ). (3.20)

Theorem 3.5 (See [14]). Let ϕ(x, ξi), i = 1, 2 satisfy the conditions (H1) and (H2). Assume that
(x, ξi) ∈ supp ai. If ∂2ξξq satisfies

det∂2ξξq(x, ∂x′ϕ(x, ξi)) 6= 0 if ξi ∈ supp ai(x, ·),

and
|〈∂2x′ξϕ(x, ξ)δ(x, ξ1, ξ2), [∂

2
x′ξϕ(x, ξi)]

−1[∂2ξξq(x, ui)]
−1δ(x, ξ1, ξ2)〉| ⩾ c > 0 (3.21)

for i = 1, 2, where ui = ∂x′ϕ(x, ξi) and δ(x, ξ1, ξ2) = ∂ξq(x, u1)− ∂ξq(x, u2), then

‖|Tλf1Tλf2|
1
2 ‖Lp(Bn

R) ≲ϕ,ε Rε
2∏
i=1

‖fi‖
1
2

L2 (3.22)

for p ⩾ 2(n+2)
n .

To apply Theorem 3.5 to study the oscillatory operator TλK , we first introduce a notion of the strongly
separated condition.
Definition 3.6 (Strongly separated condition). Let τ1 and τ2 be two balls of dimension K−1. We say
that τ1 and τ2 satisfy the strongly separated condition if for each ξi ∈ τi, the condition

|〈∂2x′ξϕ(x, ξ)δ(x, ξ1, ξ2), [∂
2
x′ξϕ(x, ξi)]

−1[∂2ξξq(x, ui)]
−1δ(x, ξ1, ξ2)〉| ⩾ CK−1 (3.23)

holds.
The next proposition concerns a geometric lemma associated with the phase ϕλK .

Proposition 3.7. Let {τ} be a family of finitely-overlapping balls of radius K−1. Then, we have the
following two dichotomies:

(i) There exists an m-dimensional affine subspace V such that every τ is contained in an O(K− 1
2n )

neighbourhood of V .
(ii) There are two K−1-balls τ and τ ′, that satisfy the strongly separated condition associated with ϕK .
Barron [1] proved the above proposition for the standard phase ϕ(x, ξ) = x′ · ξ+ xn〈Mξ, ξ〉. Note that

ϕK(x, ξ) = x′ · ξ + xn〈Mξ, ξ〉+ EK(x, ξ)

can be viewed as a small perturbation of the standard case, and the perturbation is sufficiently small
compared with K−1, and thus the strongly separated condition under the phase ϕK can be essentially
identified as the same as the standard phase x · ξ + 〈Mξ, ξ〉.

3.3 Broad-Narrow analysis.

Let δ = ε2 � 1, and set

K2 = K2δ
1 , K1 = Kα, K = K0R

δ, (3.24)
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where α = 1
2n . Let T be a collection of finitely-overlapping K−1-balls τ covering supp f , and we can fix a

collection Q of finitely-overlapping K2-cubes that cover BnR(0). For each Q ∈ Q, we define its significant
set

Sp(Q) :=

{
τ ∈ T : ‖TλKfτ‖Lp(Q) ⩾

1

100#T
‖TλKf‖Lp(Q)

}
.

We say that a K2-cube Q ∈ Q is narrow and write Q ∈ N if and only if there exists an m-dimensional
linear subspace V ⊂ Rn such that

∠(Gλ(x, τ), V ) ⩽ CK−1
1 (3.25)

for all τ ∈ Sp(Q); here, for given x ∈ BnR(0), Gλ(x, τ) denotes the set of the unit normal vectors of the
hypersurface {∂xϕλK(x, η) : η ∈ τ}. If a K2-cube Q ∈ Q is not narrow, then we call it broad and write
Q ∈ B. Thus,

‖TλKf‖
p
Lp(Bn

R) ⩽
∑
Q∈B

‖TλKf‖
p
Lp(Q) +

∑
Q∈N

‖TλKf‖
p
Lp(Q).

We call it the broad case if
‖TλKf‖

p
Lp(BR) ⩽ 2

∑
Q∈B

‖TλKf‖
p
Lp(Q),

otherwise the narrow case if
‖TλKf‖

p
Lp(BR) ⩽ 2

∑
Q∈N

‖TλKf‖
p
Lp(Q).

Now, we are going to prove (3.4). Obviously, (3.4) holds for 1 ⩽ λ ⩽ 1,000, so let us suppose that (3.4)
holds for 1 ⩽ r ⩽ λ′ ⩽ λ/2. In the following part, we deal with the broad and narrow cases, respectively.
Then, we balance the two cases and close the whole induction for (3.4).

3.4 Narrow estimate

Suppose that Q ∈ Q is a narrow cube, and by Proposition 3.7, there exists an m-dimensional affine
subspace V ⊂ Rn−1 such that ⋃

τ∈Sp(Q)

τ ⊂ NCK−1
1
V.

We decompose Bn−1
1 (0) into K−1

1 -balls {π}. Let ΠV be a minimal collection of {π} covering Bn−1
1 (0)

∩ NCK−1
1
V and I be a collection of finitely-overlapping K−1

1 -balls {π} covering supp f . Note that ΠV
contains CKm

1 many balls π. Using Hölder’s inequality and Lemma 3.4, we obtain

‖TλKf‖Lp(Q) ⩽ CK
m( 1

2−
1
p )

1

( ∑
π∈ΠV

‖TλKfπ‖2Lp(ωQ)

) 1
2

⩽ CK
2m( 1

2−
1
p )

1

( ∑
π∈ΠV

‖TλKfπ‖
p
Lp(ωQ)

) 1
p

⩽ CK
2m( 1

2−
1
p )

1

(∑
π∈I

‖TλKfπ‖
p
Lp(ωQ)

) 1
p

.

By Lemma 3.2 and our induction assumption, we have( ∑
Q∈N

‖TλKf‖
p
Lp(Q)

) 1
p

⩽ CK
2m( 1

2−
1
p )

1

(∑
π∈I

‖TλKfπ‖
p
Lp(ωBR

)

) 1
p

⩽ C̄CεR
εK−ε

1 K
2m( 1

2−
1
p )−(n−1)+ 2n

p

1

(∑
π∈I

‖fπ‖pLp(Bn−1
1 (0))

) 1
p

⩽ C̄CεR
εK−ε

1 K
2m( 1

2−
1
p )−(n−1)+ 2n

p

1 ‖f‖Lp(Bn−1
1 (0)),
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where C̄ is a large constant.
If p ⩾ 2(n−m)

n−m−1 , we obtain

( ∑
Q∈N

‖TλKf‖
p
Lp(Q)

) 1
p

⩽ CεR
ε‖f‖Lp(Bn−1

1 (0)). (3.26)

3.5 Broad estimate

We show the broad estimate using the bilinear arguments.
Proposition 3.8 (Broad estimate). Let p ⩾ 2(n+2)

n . We have∑
Q∈B

‖TλKf‖
p
Lp(Q) ⩽ CKO(1)‖f‖p

L2(Bn−1
1 (0))

. (3.27)

To prove Proposition 3.8, we naturally need to obtain the bounds of ‖TλKf‖
p
Lp(Q) for each Q first, and

then sum them together. For this purpose, we first present two lemmas.
Lemma 3.9. For any Q ∈ B, there are two K−1-balls τ1, τ2 ∈ Sp(Q) satisfying the strongly separated
condition (3.23) such that

‖TλKf‖Lp(Q) ⩽ CKO(1)‖TλKfτ1‖
1
2

Lp(Q)‖T
λ
Kfτ2‖

1
2

Lp(Q). (3.28)

Proof. Let Q ∈ B. Then, #Sp(Q) ⩾ 2. Suppose that there does not exist two K−1-balls τ1, τ2 ∈ Sp(Q)

satisfying the strongly separated condition (3.23). Applying the Proposition 3.7 to Sp(Q), we get

τ ⊂ NCK−1
1
V for all τ ∈ Sp(Q)

for some m-dimensional affine subspace V . This forces all Gλ(x, τ) to be in the neighborhood NCK−1
1
W

of some m-dimensional subspace W . Thus, Q is a narrow cube, which contradicts our assumption. Thus,
we can find τ1, τ2 ∈ Sp(Q) satisfying the strongly separated condition (3.23) such that

‖TλKf‖Lp(Q) ⩽ (100#T)‖TλKfτ1‖
1
2

Lp(Q)‖T
λ
Kfτ2‖

1
2

Lp(Q)

⩽ CKO(1)‖TλKfτ1‖
1
2

Lp(Q)‖T
λ
Kfτ2‖

1
2

Lp(Q). (3.29)

This completes the proof.

Lemma 3.10. Suppose that f ∈ L2(Rn−1) with support supp f ⊂ Bn−1
K−1(ξ̄) ⊂ Bn−1

1 (0). Then, we have

|TλKf(x)| = |(e−2πiϕλ
K(·,ξ̄)TλKf) ∗ ψK/C(x)|+RapDec(λ)‖f‖L2(Rn−1), (3.30)

where ψK/C(x) = CnK−nψ(CK−1x) with supp ψ̂ ⊂ Bn2 (0) and ψ̂ = 1 on Bn1 (0).
Proof. We observe that

F(e−2πiϕλ
K(·,ξ̄)TλKf(·))(ω) =

∫
Rn

∫
Bn−1

1 (0)

e2πi(ϕ
λ
K(x,ξ)−ϕλ

K(x,ξ̄)−x·ω)aλ(x, ξ)f(ξ)dξdx

=

∫
Bn−1

1 (0)

Fλ(ξ, ω)f(ξ)dξ,

where
Fλ(ξ, ω) :=

∫
Rn

e2πi(ϕ
λ
K(x,ξ)−ϕλ

K(x,ξ̄)−x·ω)aλ(x, ξ)dx.

We can rewrite as
Fλ(ξ, ω) := λn

∫
Rn

e2πiλ(ϕK(x,ξ)−ϕK(x,ξ̄)−x·ω)a(x, ξ)dx.
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For |ω| ⩾ CK−1 and x ∈ Bn1 (0), we have

|∇xϕK(x, ξ)−∇xϕK(x, ξ̄)− ω| ⩾ K−1.

From integration by parts, it follows that

|Fλ(ξ, ω)| ⩽ RapDec(λ)(1 + |ω|)−(n+1). (3.31)

Thus, we have

F(e−2πiϕλ
K(·,ξ̄)TλKf(·))(ω) = ψ̂K/C(ω)F(e−2πiϕλ

K(·,ξ̄)TλKf(·))(ω) + U(f, λ)(ω),

where
|U(f, λ)(ω)| ⩽ RapDec(λ)(1 + |ω|)−(n+1)‖f‖L2(Bn−1

1 (0)).

Using the Fourier inversion, we obtain

e−2πiϕλ
K(x,ξ̄)TλKf(x) = ψK/C ∗ (e−2πiϕλ

K(·,ξ̄)TλKf(·))(x) + RapDec(λ)‖f‖L2(Bn−1
1 (0)).

Then, (3.30) holds obviously.

Lemma 3.11. For any two K−1-balls τ1 and τ2 satisfying the strongly separated condition (3.23), it
holds that∑

Q∈B

‖TλKfτ1‖
p
2

Lp(Q)‖T
λ
Kfτ2‖

p
2

Lp(Q) ⩽ KO(1)‖f‖p
L2(Bn−1

1 (0))
+RapDec(λ)‖f‖Lp(Bn−1

1 (0)). (3.32)

Proof. Without loss of generality, we may assume ‖f‖L2(Bn−1
1 (0)) = 1. By Lemma 3.10, we have

|TλKfτ (x)| = |(e−2πiϕλ
K(·,ξ̄)TλKfτ (·)) ∗ ψK/C(x)|+RapDec(λ)

for each τ . To prove (3.32), we just need to show∑
Q∈B

‖(e−2πiϕλ(·,ξτ1 )TλKfτ1) ∗ ψK/C‖
p
2

L∞(Q)‖(e
−2πiϕλ(·,ξτ2 )TλKfτ2) ∗ ψK/C‖

p
2

L∞(Q)

⩽ KO(1)‖f‖p
L2(Bn−1

1 (0))
. (3.33)

Define
ζK(x) := sup

|y−x|⩽K2

|ψK/C(x)|.

By the locally constant property, one can choose some cube IQ ⊂ Q with |IQ| ≲ 1 such that

‖(e−2πiϕλ(·,ξτ1 )TλKfτ1) ∗ ψK/C‖L∞(Q)‖(e−2πiϕλ(·,ξτ2 )TλKfτ2) ∗ ψK/C‖L∞(Q)

⩽
∫
IQ

∫
Rn

∫
Rn

|TλKfτ1(x− y)ζK(y)TλKfτ2(x− z)ζK(z)|dydzdx.

Then, we only need to show

∑
Q∈B

(∫
IQ

∫
Rn

∫
Rn

|TλKfτ1(x− y)ζK(y)TλKfτ2(x− z)ζK(z)|dydzdx
) p

2

⩽ KO(1)‖f‖p
L2(Bn−1

1 (0))
.

Using Hölder’s inequality, for p ⩾ 2(n+2)
n , we have

∑
Q∈B

(∫
IQ

∫
Rn

∫
Rn

|TλKfτ1(x− y)ζK(y)TλKfτ2(x− z)ζK(z)|dydzdx
) p

2



Gao C W et al. Sci China Math April 2025 Vol. 68 No. 4 887

⩽ KO(1)
∑
Q∈B

∫
IQ

∫
Rn

∫
Rn

|TλKfτ1(x− y)TλKfτ2(x− z)|
p
2 ζK(y)ζK(z)dydzdx

⩽ KO(1) sup
y,z

(∫
Bn

R(0)

|TλKfτ1(x− y)|
p
2 |TλKfτ2(x− z)|

p
2 dx

)
⩽ KO(1)‖f‖p

L2(Bn−1
1 (0))

,

where we have used Theorem 3.5 in the last inequality. Hence, we complete the proof of Lemma 3.11.
Finally, we use the three lemmas above to give the proof of Proposition 3.8.

Proof of the broad estimate. By Lemmas 3.9–3.11, we have∑
Q∈B

‖TλKf‖
p
Lp(Q) ⩽ CKO(1)

∑
Q∈B

∑
τ1,τ2∈Sp(Q)

τ1 and τ2 satisfy (3.23)

‖TλKfτ1‖
p
2

Lp(Q)‖T
λ
Kfτ2‖

p
2

Lp(Q)

= CKO(1)
∑

τ1 and τ2 satisfy (3.23)

∑
Q∈B:τ1,τ2∈Sp(Q)

‖TλKfτ1‖
p
2

Lp(Q)‖T
λ
Kfτ2‖

p
2

Lp(Q)

⩽ CKO(1)‖f‖p
L2(Bn−1

1 (0))
,

where we have used the fact that T ⩽ KO(1) in the last inequality. Then, we finish the proof of
Proposition 3.8.

For all m ⩽ b(n − 1)/2c, we prove Theorem 1.1 using the narrow estimate (3.26) and the broad
estimate (3.27).

Recall that (3.4) holds for 1 ⩽ λ′ ⩽ λ/2, and thus we have Qp(λ̃, R̃) ⩽ CεR̃
ε, where λ̃ = K−2λ < λ/2

and R̃ = K−2R ⩽ λ̃. Thanks to the relation of K, K1, and R in (3.24), we conclude that

Qp(λ,R) ⩽ CεR
εK−ε

1 + CKO(1) ⩽ CεR
ε

holds for

p ⩾ max
0⩽m⩽⌊n−1

2 ⌋

{
2(n+ 2)

n
,
2(n−m)

n−m− 1

}
. (3.34)

This inequality is equivalent to

p ⩾


2(n+ 1)

n− 1
for n odd,

2(n+ 2)

n
for n even.

(3.35)

Then, we finish the proof of Theorem 1.1.

4 Proof of the decoupling theorem
4.1 Reduction

First, we recall the decoupling theorem of Bourgain and Demeter [4]. Let S be a compact hypersurface
with nonvanishing Gaussian curvature, and Nδ(S) be the δ-neighborhood of S. Decompose Nδ(S) into a
collection of finitely-overlapping slabs {△} of dimension δ1/2 in the tangent direction and δ in the normal
direction. We have the decomposition

f =
∑
△
f△,

where suppf̂△ ⊂△. A classical decoupling result associated with this decomposition is as follows.
Theorem 4.1 (See [4]). Let S be a compact smooth hypersurface in Rn with nonvanishing Gaussian
curvature. If suppf̂ ⊂ Nδ(S), then for p ⩾ 2(n+1)

n−1 and ε > 0,

‖f‖Lp(Rn) ⩽ε δ
n
p −n−1

2 −ε
(∑

△
‖f△‖pLp(Rn)

) 1
p

. (4.1)
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They also have a local version of decoupling

‖f‖Lp(Bn
R) ⩽ε δ

n
p −n−1

2 −ε
(∑

△
‖f△‖pLp(ωBn

R
)

) 1
p

. (4.2)

For 1 � R ⩽ λ, let Dp(λ,R) be the optimal constant such that

‖TλKf‖Lp(Bn
R) ⩽ Dp(λ,R)

(∑
θ

‖TλKfθ‖
p
Lp(wBn

R
)

)1/p

+RapDec(λ)‖f‖Lp (4.3)

holds for all asymptotically flat phase ϕK and for all a satisfying (2.4), and uniformly for all f ∈
Lp(Bn−1

1 (0)). To prove Theorem 1.3, it suffices to show that

Dp(λ,R) ⩽ CεR
n−1
2 −n

p +ε. (4.4)

Indeed, by Hölder’s inequality, we have

‖Tλf‖Lp(Bn
R) ⩽ K(n−1)/p′

(∑
τ

‖Tλfτ‖pLp(Bn
R)

)1/p

. (4.5)

For each τ , performing the similar procedure as in the proof of Lemma 2.3, we have

‖Tλfτ‖pLp(Bn
R) ⩽ CKO(1)

∑
Bn

R̃
⊂2R

‖T λ̃
K̃
f̃‖pLp(Bn

R̃
),

where f̃(·) = K−(n−1)f(K−1 · +ξτ ), R̃ = R/K2, K̃ = K0R̃
ε2 , λ̃ = λ/K2, and 2R is a rectangle of

dimensions R/K × · · · ×R/K ×R/K2. Then, by (4.4), we have

‖T λ̃
K̃
f̃‖Lp(Bn

R̃
) ⩽ Cε(R̃)

n−1
2 −n

p +ε

(∑
θ̃

‖T λ̃
K̃
f̃θ̃‖

p
Lp(wBn

R̃
)

)1/p

+RapDec(λ̃)‖f‖Lp(Bn−1
1 (0)), (4.6)

where θ̃ is a ball of dimension R̃−1/2. By reversing the change of variables, we finally obtain

‖Tλf‖Lp(Bn
R) ⩽ CεR

n−1
2 −n

p +ε

(∑
θ

‖Tλfθ‖pLp(wBn
R
)

)1/p

+RapDec(λ)‖f‖Lp(Bn−1
1 (0)).

4.2 Proof of (4.4)

Let τ ⊂ Bn−1
1 (0) be a ball of radius K−1. For convenience, define

H := {(ξ, 〈Mξ, ξ〉) : ξ ∈ Bn1 (0)},

and denote by Hτ a cap on H, i.e.,

Hτ := {(ξ, 〈Mξ, ξ〉) : ξ ∈ τ}.

If ω does not belong to a CK−1-neighborhood of H, by Lemma 3.3, we have

T̂λKf(ω) = RapDec(λ)‖f‖Lp(Bn−1
1 (0)).

Therefore,
TλKf = χCK−1(H)(D)TλKf +RapDec(λ)‖f‖Lp(Bn−1

1 (0)). (4.7)

Similarly,
TλKfτ = χCK−1(Hτ )(D)TλKfτ +RapDec(λ)‖f‖Lp(Bn−1

1 (0)). (4.8)
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Applying the local decoupling inequality (4.2) to (4.7) and (4.8), we have

‖TλKf‖Lp(Bn
R) ⩽ Cδ̄K

n−1
2 −n

p +δ̄

(∑
τ

‖TλKfτ‖
p
Lp(ωBn

R
)

)1/p

+RapDec(λ)‖f‖Lp(Bn−1
1 (0)),

where δ̄ > 0 is a small constant to be chosen later. By a similar way as in the proof of Lemma 2.3, we
have

‖TλKfτ‖
p
Lp(ωBn

R
) ⩽ C(K)

∑
Bn

R̃
⊂2R

‖T̃ λ̃
K̃
f̃‖pLp(Bn

R̃
) +RapDec(λ)‖f‖Lp(Bn

1 (0)), (4.9)

where f̃(ξ) = K−(n−1)f(ξτ +K
−1ξ) and ξτ is the center of τ . For each Bn

R̃
, by the definition of Dp(λ,R),

we have

‖T̃ λ̃
K̃
f̃‖Lp(Bn

R̃
) ⩽ Dp(λ̃, R̃)

(∑
θ̃

‖T̃ λ̃
K̃
f̃θ̃‖

p
Lp(wBn

R̃
)

)1/p

+RapDec(λ)‖f‖Lp(Bn−1
1 (0)), (4.10)

where {θ̃} is a collection of finitely-overlapping balls of radius R̃−1/2. By reversing the change of variables,
we finally have

‖TλKf‖Lp(Bn
R) ⩽ Cδ̄K

n−1
2 −n

p +δ̄Dp(λ̃, R̃)

(∑
θ

‖TλKfθ‖
p
Lp(wBn

R
)

)1/p

+RapDec(λ)‖f‖Lp(Bn−1
1 (0)). (4.11)

Recalling the definition of Dp(λ,R), we have

Dp(λ,R) ⩽ Cδ̄K
n−1
2 −n

p +δ̄Dp(λ̃, R̃). (4.12)

The inequality (4.12) yields, by the induction hypothesis, that

Dp(λ,R) ⩽ CεR
n−1
2 −n

p +εCδ̄K
δ̄−2ε. (4.13)

Choosing δ̄ = ε2 and K0 sufficiently large such that

Kε2−2ε
0 Cδ̄ ⩽ 1,

from (4.13), we can complete the induction procedure, i.e.,

Dp(λ,R) ⩽ CεR
n−1
2 −n

p +ε.
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