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Abstract In a hybrid automatic repeat request with chase combining (HARQ-CC) system, we analyze

physical layer secure performance and determine the secrecy redundancy rate by proposed quasi-concave

optimization methods with effective secrecy throughput (EST) criteria. First, key performance metrics,

including connection outage probability (COP), secrecy outage probability (SOP), EST, and delay, are dis-

cussed. Then, under the constraint of COP, we optimize the secrecy redundancy rate to maximize the EST,

which is a quasi-concave function, by both the bisection and fixed-point methods. Furthermore, under the

simultaneous constraints of COP and SOP, the bisection and Lagrangian multiplier methods are applied to

optimize the secrecy redundancy rate. From the comparison of the numerical and simulated results, it is

concluded that EST demonstrates practical secure performance of HARQ-CC, and the proposed optimization

methods adjust the secrecy redundancy rate for improved security.

Keywords physical layer security (PLS), hybrid automatic repeat request (HARQ), chase combining (CC),

effective secrecy throughput (EST), quasi-concave optimization
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1 Introduction

From the perspective of information theory, physical layer security (PLS) assures the confidentiality of

data transmissions according to the characteristics of a wireless channel. With the increasing requirements

of information security, PLS becomes a critical replacement for or supplement to traditional encryption

technology. As a pioneer, Wyner [1] established the wiretap model and constructed the classical secure

coding method. Based on his study, several performance-analysis and signal-processing methods were

proposed to improve secrecy. Csiszar et al. [2] and Leung-Yan-Cheong et al. [3] extended the wiretap

model to broadcast and Gaussian channels, respectively. The secrecy capacity, defined as the maxi-

mum secrecy transmission rate when an eavesdropper is unable to decode any information, was analyzed

over a fading channel [4, 5]. Using the connection outage probability (COP) and secrecy outage prob-

ability (SOP), reliability and security were evaluated separately [6, 7], resulting in more comprehensive

performance evaluation. As another important metric, the widely discussed secrecy throughput pre-

sented the average reliable and secure rate during each transmission [8–10]. Moreover, signal-processing

methods, e.g., beamforming and artificial noise, efficiently enhanced the secrecy performance [11–18]. It

was also proposed that diversity technologies had their special functions in PLS, including multi-input

multi-output (MIMO) diversity and multi-user diversity [19].
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As a typical time-diversity technology, hybrid automatic repeat request (HARQ) has also been dis-

cussed in regard to improving PLS. In HARQ with chase combining (HARQ-CC), the same codewords or

redundancy versions of erroneous ones will be retransmitted upon the feedback of negative acknowledge-

ment (NACK), and new transmissions will be triggered by acknowledgement (ACK) when decoding is

successful. It was proved that the diversity gain of HARQ brought enhanced PLS performance, because

retransmissions totally depended on the decoding of a legitimate user [20]. To efficiently use HARQ,

Tomasin designed a multiple-encoding HARQ scheme with statistics channel state information (CSI). As

channel capacity is not suitable for HARQ that combines retransmitted codewords, secrecy throughput

was widely discussed with respect to PLS of HARQ [21–23]. Tang et al. [21] analyzed SOP, secrecy

throughput, and their asymptotic properties; Mheich et al. [22] optimized secrecy throughput as ex-

tended; Treust et al. [23] designed an adaptive rate transmission scheme to improve secrecy throughput.

The above studies did not consider the influence of secrecy outage on secrecy throughput. The definition

of secrecy throughput only included connection outage, which led to overestimated secrecy throughput.

Inspired by this problem, this paper extends the proposed effective secrecy throughput (EST) of a

single transmission [10] to a HARQ-CC system. Because the coding scheme is critical, we determine

and analyze the secrecy redundancy rate to maximize EST by quasi-concave optimization. The major

contributions of our study include the following: (1) The closed-form expressions of COP and SOP are

deduced in the HARQ-CC system, and the EST of HARQ-CC is defined. Meantime, we discuss the

delay performance as well. (2) Under the constraint of COP, the bisection method is applied to solve the

quasi-concave optimization problem of the secrecy redundancy rate, so as to maximize EST. The optimal

value is converted to the feasible solution of a reformulated concave set. By the fixed point method, we

give the closed-form solution of the above optimization problem, and asymptotic results are considered.

(3) Under the simultaneous constraints of COP and SOP, we use the bisection and Lagrangian multiplier

methods to solve the above problem again, for special applications with a given secrecy requirement.

The rest of this paper is organized as follows. Section 2 describes the overall system model and assump-

tions. Section 3 gives closed-form expressions of COP and SOP with retransmissions and combinations,

along with the definition of EST in a HARQ-CC system. Section 4 proposes the quasi-concave optimiza-

tion of secrecy redundancy rate to maximize EST, and the numerical and simulated results are presented

in Section 5. Section 6 provides our conclusion.

2 System model of secure HARQ-CC

We consider a secure transmission system of HARQ-CC, as shown in Figure 1. The transmitter (Alice)

sends confidential message w with secrecy redundancy message v to the legitimate receiver (Bob) over

the main channel, while a passive eavesdropper (Eve) intercepts the transmission through a wiretap

channel. Assume that the main and wiretap channels are independent Rayleigh block-fading channels.

On the one hand, if Bob decodes the received codeword successfully, a bit of an ACK message will be

sent back to Alice over the error-free feedback channel to start new transmissions. On the other hand, if

the decoding fails, a NACK message will trigger retransmissions until successful decoding occurs or the

maximum transmission number (K) is reached. All of the feedback messages are completed depending on

the decoding results of Bob. The feedback channel is assumed to be public, thus ACK/NACK messages

transmitted over this channel can be also received by Eve. However, the erroneous codeword of Eve may

not be retransmitted by Alice unless Bob has the same erroneous one. Therefore, there is much more

diversity gain obtained by Bob than Eve.

Alice encodes confidential message w and secrecy redundancy message v into codeword x(k) by the

Wyner secrecy code [1], where k is the transmission number (1 6 k 6 K). The codeword rate and secrecy

redundancy rate are denoted as RB and RE , respectively. Thus the secrecy rate is given by RS = RB−RE .

Assume that the transmission power is fixed at P , and E[|x(k)|2] = 1, E [·] is the expectation function.

We denote the fading parameter of the main and wiretap channels by hB(k) and hE(k), respectively,

which are independently and identically distributed (i.i.d.) complex Gaussian random variables with zero
 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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Figure 1 (Color online) Secure HARQ-CC system model.

mean and unit variance. We denote the additive Gaussian white noise by zB(k) and zE(k), respectively,

their means are zero, and their variances are respectively σ
2
B and σ

2
E . In each slot, the received signals

of Bob and Eve after k transmissions are
{

yB(k) =
√
PhB(k)x(k) + zB(k),

yE(k) =
√
PhE(k)x(k) + zE(k).

(1)

For simplicity, we denote the average received signal-to-noise ratio (SNR) of the main channel and

wiretap channel by λ̄B = P
σ2
B

and λ̄E = P
σ2
E

, respectively. After k transmissions of HARQ-CC, Bob and

Eve use the maximal ratio combining (MRC) before decoding. Their combined SNR becomes:



























γB(k) =

k
∑

i=1

λ̄B |hB(i)|2,

γE(k) =

k
∑

i=1

λ̄E |hE(i)|2.
(2)

3 Secure performance metrics

Based on the above system model of secure HARQ-CC, we analyze some critical security performance

metrics, including connection outage probability (COP), secrecy outage probability (SOP), and effective

secrecy throughput (EST). Connection outage occurs when the legitimate receiver (Bob) cannot decode

transmitted codewords, while secrecy outage occurs when the eavesdropper (Eve) cannot be confused by

secrecy redundancy after the k-th transmission.

We first consider COP after k transmissions, denoted by Pe(k). COP is defined as the probability that

a connection outage occurs, i.e., the mutual information after the k-th transmission, IB(k), is less than

the codeword rate RB,

Pe(k) = Pr{IB(k) < RB}. (3)

As the combined SNR in (2), the mutual information of the main channel is

IB(k) = log2

(

1 +
k
∑

i=1

λ̄B |hB(i)|2
)

. (4)

Substituting (4) into (3), we have

Pe(k) = Pr

{

k
∑

i=1

|hB(i)|2 <
2RB − 1

λ̄B

}

. (5)

 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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We know the fading parameters are independent zero-mean unit-variance complex Gaussian random

variables. Hence, the sum of their modular square is distributed according to the chi-squared distribution:

Pe(k) = Fχ2

[

2
(

2RB − 1
)

λ̄B

, 2k

]

=
γ(k, 2

RB−1
λ̄B

)

Γ (k)
, (6)

where Fχ2 [·] is the cumulative distribution function (CDF) for a chi-squared random variable.

The average transmission number N̄ is determined by the main channel, and it equals the expectation

of the actual transmission number N :

N̄ = E[N ] = 1 +

K−1
∑

k=1

Pe(k). (7)

Then we reformulate N̄ as

N̄ = 1 +
K−1
∑

k=1

k · (Pe(k)− Pe(k + 1)) + (K − 1)Pe(K). (8)

According to (6) and the properties of the Gamma function and incomplete Gamma function, i.e.,

when s is an integer, Γ(s) = (s− 1)! and γ(s+ 1, x) = sγ(s, x)− xse−x, we have

Pe(k + 1) =
γ(k + 1, 2RB−1

λ̄B

)

Γ(k + 1)

=
kγ(k, 2RB−1

λ̄B

)− (2
RB−1
λ̄B

)ke
−( 2

RB−1

λ̄B

)

k!

= Pe(k)−
(2

RB−1
λ̄B

)ke
−( 2

RB −1

λ̄B

)

k!
. (9)

Therefore, the second part in the right-hand side (RHS) of (8) becomes

K−1
∑

k=1

k · (Pe(k)− Pe(k + 1)) =

K−1
∑

k=1

k
(2

RB−1
λ̄B

)ke
−( 2

RB−1

λ̄B

)

k!

=

(

2RB − 1

λ̄B

)

e
−( 2

RB−1

λ̄B

)
K−1
∑

k=1

(2
RB−1
λ̄B

)k−1

(k − 1)!
. (10)

The maximum transmission number K is generally large enough to ensure a low connection outage

probability [24]. Then

K−1
∑

k=1

k · (Pe(k)− Pe(k + 1)) ≃
(

2RB − 1

λ̄B

)

e
−( 2

RB −1

λ̄B

)
e
( 2

RB−1

λ̄B

)

=
2RB − 1

λ̄B

. (11)

Under the same conditions, Pe(K) is approximated as 0, and the third part in the RHS of (8) becomes

(K − 1)Pe(K) ≃ 0. (12)

Substituting (11) and (12) into (8), we can approximate N̄ as

N̄ ≃ 1 +
2RB − 1

λ̄B

. (13)

 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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The SOP of HARQ-CC, denoted by Ps(k), is defined as the probability that a message transmitted by

Alice can be decoded successfully by Eve after k transmissions. As a passive receiver, Eve only receives

messages while retransmissions are requested by Bob. When the number of transmissions in the main

channel is N ,

Ps(k) =
k
∑

i=1

Pr {N = i} · Pr {IE(i) > RE}, (14)

where IE is the mutual information of the wiretap channel, Pr {N = i} is the probability that the i-th

transmission occurs, and Pr {N = i} = Pe(i− 1)− Pe(i). We define

φ(i) = Pr {IE(i) > RE}

= Pr







log2



1 +

i
∑

j=1

λ̄E |hE(i)|2


 > RE







= 1−
γ(i, 2

RE−1
λ̄E

)

Γ (i)

= Q

(

2RE − 1

λ̄E

, i

)

, (15)

where Q(·, ·) is a regularized Gamma function. Hence the SOP after K transmissions becomes

Ps(K) =
K
∑

i=1

Pr {N = i} · φ(i) = E[φ(N)]. (16)

As N is an integer, φ(N) is also the CDF of a Poisson random variable. With a given RE , this CDF is

well known as a log-concave function of N . In other words, logφ(N) is concave with respect to N . Under

the above assumption that K is large enough to ensure a low Pe(K),
∑K

i=1 Pr {N = i} = 1. According

to Jenson’s inequality, we have

logφ (E[N]) 6 E [logφ(N)] =

K
∑

i=1

Pr {N = i} · logφ(i)

=

K
∑

i=1

logφ(i)Pr{N=i} = log

K
∏

i=1

φ(i)Pr{N=i}

(a)

6 log

K
∑

i=1

Pr {N = i} · φ(i) = logPs(K), (17)

where (a) is true based on the general mean inequality. Ps(K) and φ (E[N ]) are both positive. Thus

Ps(K) > φ (E[N ]) . (18)

Substituting (15) into (18), we approximate the SOP of the K-th transmission by its lower bound, as

follows:

Ps(K) ≃ 1−
γ(N̄ , 2RE−1

λ̄E

)

Γ(N̄)
. (19)

For simplicity, we define Pe = Pe(K) and Ps = Ps(K), which means the maximum transmission

number of COP and SOP has been reached.

Most analysis of secrecy throughput in the literatures does not consider the SOP [21], but this has

been found to be inaccurate [25]. Therefore, we extend the EST with no feedback channel [10] to the

HARQ-CC system.
 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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Definition 1. Effective secrecy throughput (EST) of HARQ-CC is defined as

ηs =
(RB −RE) · (1− Pe) · (1− Ps)

N̄
. (20)

According to the renewal-reward theorem [21, 26, 27], EST can be obtained by ηs = E[Rs]/E[N ],

where Rs represents the reliable and secure transmission rate. RB − RE is the maximum rate of each

transmission. When COP is Pe, SOP is Ps, we have Rs = RB − RE if neither connection outage nor

secrecy outage occurs, and Rs = 0 if either connection outage or secrecy outage occurs, or both of them

take place. Hence, E[Rs] = (RB −RE) · (1− Pe) · (1− Ps). And the average transmission number is

given by E[N ] = N̄ . Therefore, ηs in (20) indicates the average reliable and secure transmission rate of

each transmission. This metric can be applied to evaluate secure performance more comprehensively and

adapt the transmission rate or secrecy redundancy rate to enhance the performance.

As another critical metric, delay performance is also discussed in HARQ-CC system. In general, delay

limit and average delay are presented by maximum transmission number and average transmission num-

ber, respectively, which denoted by K and N̄ here. Most literatures focus on the relationship between

delay limit and other performance metrics, such as outage probability and throughput, while N̄ is de-

termined by transmission scheme, transmission rate, and channel fading with given delay limit. Hence,

this study mainly considers the COP, SOP and EST with different delay limit, K, in secure HARQ-CC

system.

Owing to the diversity gain, COP decreases by retransmissions and combining when K increases. It has

been well proved in conventional HARQ system. As mentioned above, retransmissions totally depends

on the decoding result of Bob. In another word, Eve cannot obtain diversity gain when her erroneous

codewords are successfully decoded by Bob. Hence, largerK may result in increased probability of secrecy

outage, but this rise is limited. From (19), we know SOP will be stable when N̄ reaches the maximum

value given in (13). According to Definition 1, with given RB and RE , EST will also be stable when SOP

and N̄ converge, and COP is small enough to be trivial.

4 Quasi-concave optimization of secrecy redundancy rate

In this section, we optimize the secrecy redundancy rate RE to maximize the EST of HARQ-CC, thus

improving the performance of secrecy transmission. Two cases will be considered. Under the constraint

of COP, we optimize RE with the EST criteria. Then this problem is extended to the simultaneous

constraints of COP and SOP.

4.1 Optimization with COP constraint

Reliability is the fundamental requirement in a wireless communication system. Thus the maximum

transmission number is generally large enough to ensure a low COP, as mentioned above. Here, we

consider the problem of how to determine the coding rate to maximize the EST:

max
RB ,RE

ηs

s.t. Pe 6 P ⋆
e , 0 6 RE 6 RB ,

(21)

where Pe, Ps, and ηs are obtained by (6), (19), and (20), respectively. The target COP is P ⋆
e , hence the

COP constraint is Pe 6 P ⋆
e . Because P ⋆

e is generally extremely small, such as 10−3 or 10−4, we reflex

COP constraint to Pe = P ⋆
e . Correspondingly, from (6) we have the optimal RB:

R⋆
B = log2

[

1 +
λ̄m

2
F−1

χ2 [P
⋆
e , 2K]

]

, (22)

where F−1
χ2 [·] is the inverse function of the CDF of the chi-squared distribution. Then the EST of HARQ-

CC becomes

ηs =
(1− P ⋆

e )

N̄
· (R⋆

B −RE) · (1− Ps) , (23)

 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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where P ⋆
e , R

⋆
B, and N̄ are determined, while Ps is given in (14) and approximated in (19).

Proposition 1. ηs is a quasi-concave function on 0 6 RE 6 R⋆
B, with existed maximum value.

Proof. Take the logarithm of both sides of (23),

log ηs = log (1− P ⋆
e )− log N̄ + log (R⋆

B −RE) + log (1− Ps), (24)

where the first two parts in the RHS of (24) are determined. In the third part, log (R⋆
B −RE) is a

composition function f = log (g (RE)) on 0 6 RE 6 R⋆
B, and g (RE) = R⋆

B − RE . g (RE) is obviously

cancave. Based on the convexity-preserving properties, log (R⋆
B −RE) is still concave on 0 6 RE 6 R⋆

B.

Finally, because 1 − Ps is the CDF of a chi-squared distribution, which is logarithmic concave, then

log (1− Ps) is concave. Therefore, ηs is logarithmic concave, and thus it is quasi-concave with maximum

value [28].

Based on the properties of a quasi-concave function, all of the α-upper contour sets defined as

Sα = {RE ∈ domηs|ηs > α} (25)

are concave when RE ∈ R++, where domηs denotes the domain of ηs, and R++ denotes the set of positive

real numbers.

Now, the upper contour sets of the quasi-concave function ηs are presented via a family of concave

inequalities. We will choose φt, indexed by t ∈ R++, with

ηs > t ⇔ φt > 0,

i.e., the t-upper contour set of the quasi-concave function ηs is the 0-upper contour set of the convex

function φt. φt must satisfy φt > 0 ⇒ φp > 0 for p 6 t. This is satisfied if for each RE , φt is a

nonincreasing function of t, i.e., φp > φt whenever p 6 t. Hence, its definition is given by

φt =

{

0, ηs > t,

−∞, ηs < t.
(26)

To solve problem (21), we reformulate it as

max
RE

t

s.t. φt > 0, 0 6 RE 6 R⋆
B .

(27)

By fixing t, the following problem of finding the feasible set is concave:

find RE

s.t. φt > 0, 0 6 RE 6 R⋆
B.

(28)

The bisection method is a common technique to solve quasi-concave problems (27). In brief, the

optimization problem (27) is tackled via the bisection method by iteratively increasing t until problem (28)

is feasible for t ∈ [t⋆, t⋆+ǫ], where t⋆ denotes the optimal value of problem (27) and ǫ is a preassigned small

positive real number, such as 10−3. Specifically, it is first assumed that t⋆ lies within [l, u], where both

the lower bound l and the upper bound u of the interval are predetermined by the associated constraints.

Here, we initialize them as l = 0 and u = R⋆
B . Next, we examine the feasibility of the midpoint (l+ u)/2

according to problem (28). If problem (28) is feasible, then we set l = t, and otherwise we update u = t.

The concave feasibility problem (28) will be tested again by using the new interval until u− l 6 ǫ. Then

the optimal RE is output and denoted by Ropt1
E . The bisection method for an ǫ-suboptimal solution is

summarized in Algorithm 1.

Proposition 2. Let R†
E = log2 (1 + N̄ · λ̄m). When RE > R†

E , we have ηs > ηs(R
†
E), which corresponds

to the α-sublevel sets of EST, where α = ηs(R
†
E) and ηs is concave.

Proof. Let f(RE) = R⋆
B − RE , g(RE) = 1 − Ps. When 0 6 RE 6 R⋆

B, we have that f(RE) is non-

negative and monotonically decreases with RE ,
df
dRE

= −1, d2f

dR2
E

= 0. From (19), we know that g(RE) is

 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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Algorithm 1 Bisection method for solving quasi-concave problem (21)

Input: l = 0, u = R⋆

B
, ǫ = 10−3;

1: while u− l 6 ǫ do

2: t ⇐ (u+ l)/2;

3: Solve the concave feasible problem (28);

4: if problem (28) is feasible then

5: l ⇐ t;

6: else

7: u ⇐ t;

8: end if

9: end while

Output: Ropt1

E
;

expressed by the CDF of the chi-squared distribution. When the degrees of freedom n is large enough,

the chi-squared distribution can be approximated as a normalized distribution with mean and variance

n and 2n, respectively. Then we use the error function to state this CDF, i.e.,

g(RE) =
1

2



1 + erf





2RE−1
λ̄E

− N̄

2
√
N̄







 .

Let g(R†
E) =

1
2 , R

†
E = log2

(

1 + N̄ · λ̄m

)

. When RE > R†
E , then

dg
dRE

> 0, d2g

dR2
E

< 0. Hence

d2(f · g)
dR2

E

=
d2f

dR2
E

· g + 2 · df

dRE

· dg

dRE

+ f · d2g

dR2
E

< 0.

Thus f · g is concave with respect to RE . From (23), we conclude that ηs is concave when RE > R†
E . A

maximum value of ηs must exist.

Based on the above analysis, we know that if the optimal RE satisfies RE > R†
E and dηs

dRE
= 0, then

ηs has the maximum value on this RE . From (23),

dηs
dRE

=
1− P ⋆

e

N̄

[

−(1− Ps)− (R⋆
B −RE)

dPs

dRE

]

, (29)

where Ps is approximated as (19), and its first derivative is

dPs

dRE

≃ − 1

Γ(N̄)
·
(

2RE − 1

λ̄E

)N̄−1

· exp
(

−
(

2RE − 1

λ̄E

))

· 2
RE ln 2

λ̄E

. (30)

Substitute (19) and (30) in (29) and let dηs

dRE
= 0. Then we have the fixed-point equation of the approxi-

mated optimal RE :

Ropt1
E ≃ R⋆

B −
γ(N̄ , 2R

opt1
E −1
λ̄E

) · exp(2R
opt1
E −1
λ̄E

)

(2
R

opt1
E −1
λ̄E

)
N̄−1

· 2R
opt1
E ln 2
λ̄E

. (31)

Some classical techniques, e.g., the fixed-point iterative method, are suitable to solve (31). When RE >

R†
E is satisfied, the approximated optimal solution is obtained. It is obvious that Ropt1

E > R†
E .

Remark 1. As λ̄E → 0 , we obtain Ropt1
E = 0.

Proof. Because γ(s, x) → Γ(s) if x → ∞, when λ̄E → 0, we have γ(N̄ , 2
RE−1
λ̄E

) → Γ(N̄). Hence,

from (19), Ps → 0, and Eq. (23) becomes

ηs =
1− P ⋆

e

N̄
· (R⋆

B −RE). (32)

It is easy to find that the maximum value of ηs,
(1−P⋆

e
)·R⋆

B

N̄
, is obtained when RE = 0.
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Remark 2. As λ̄E → ∞, Ropt1
E can be obtained by solving the fixed-point equation:

Ropt1
E = R⋆

B − 2R
opt1

E − 1

2R
opt1

E · ln 2 · N̄
. (33)

Proof. Applying γ(s,x)
xs → 1

s
when x → 0, we have

lim
λ̄E→∞

γ(N̄, 2R
opt1

E −1
λ̄E

)

(2
R

opt1
E −1
λ̄E

)N̄
=

1

N̄
. (34)

Substituting (34) in (31), Eq. (33) can be obtained.

4.2 Optimization with COP and SOP constraints

In most transmission scenarios, reliability and security are both required, and can be evaluated by COP

and SOP. We now continue to discuss how to adapt the transmission rate with EST criteria under the

simultaneous constraints of COP and SOP. The optimization problem becomes

max
RB ,RE

ηs

s.t. Pe 6 P ⋆
e , Ps 6 P ⋆

s , 0 6 RE 6 RB,
(35)

where P ⋆
e and P ⋆

s are the target COP and SOP, respectively. Similar to the discussion above, we still

consider a small COP and RB = R⋆
B, as given in (22). Then ηs, as expressed in (23), is proved to be

quasi-concave. Let φt be defined as in (26) again, and this optimization problem becomes

max
RE

t

s.t. φt > 0, Ps 6 P ⋆
s , 0 6 RE 6 R⋆

B.
(36)

By fixing t, the following problem of finding the feasible set is concave:

find RE

s.t. φt > 0, Ps 6 P ⋆
s , 0 6 RE 6 R⋆

B.
(37)

The bisection method is also applied to solve the quasi-concave optimization problem (36), named as

Algorithm 2. For simplification, we do not repeat the discussion similarly to Algorithm 1. It is notable

that in each iteration, we should examine the feasible solution depending on (37), to which the SOP

constraint is added.

Below we will solve the quasi-concave optimization problem (35) using the Lagrangian multiplier

method. The constraint of SOP, i.e., Ps 6 P ⋆
s , requires that RE > R⋆

E , where R⋆
E can be obtained

from (19) with Ps = P ⋆
s . From Proposition 2, when R⋆

E > R†
E , the quasi-concave optimization is

converted to a concave one:

max
RE

ηs

s.t. P ⋆
s − Ps > 0, RE > 0, R⋆

B −RE > 0,
(38)

where ηs is expressed in (23). Define

L = ηs + λ1(P
⋆
s − Ps) + λ2RE + λ3(R

⋆
B −RE). (39)

Then the KKT conditions are

∂L

∂RE

= 0, (40a)
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λ1 > 0, P ⋆
s − Ps > 0, λ1(P

⋆
s − Ps) = 0, (40b)

λ2 > 0, RE > 0, λ2RE = 0, (40c)

λ3 > 0, R⋆
B −RE > 0, λ3(R

⋆
B −RE) = 0. (40d)

For non-negative ηs, RE 6= 0. From (40c), we have λ2 = 0. Similarly, from (40d), we have λ3 = 0.

Thus L = ηs + λ1(P
⋆
s − Ps). As for λ1, two cases are considered.

When λ1 = 0, the optimal solution of problem (35), denoted by Ropt2
E , can be obtained only by (40a).

From (29) to (31), Ropt2
E = Ropt1

E . Because RE > R⋆
E and 0 6 RE 6 R⋆

B, R
opt2
E = Ropt1

E is the feasible

solution when R⋆
E 6 Ropt1

E 6 R⋆
B.

When λ1 > 0, from (40b) we obtain Ps = P ⋆
s . Thus Ropt2

E = R⋆
E . Then Eq. (40a) becomes dηs

dRE
−

λ1
dPs

dRE
= 0. Then dηs

dRE
= λ1

dPs

dRE
< 0, and Ropt1

E 6 R⋆
E . Combined with 0 6 RE 6 R⋆

B , R
opt2
E = R⋆

E is

the feasible solution when Ropt1
E 6 R⋆

E 6 R⋆
B .

There is no feasible solution when R⋆
E > R⋆

B.

Given the above, we summarize the solution of problem (38) when R⋆
E > R†

E :

Ropt2
E =

{

max{Ropt1
E , R⋆

E}, R⋆
E 6 R⋆

B,

∅, R⋆
E > R⋆

B.
(41)

When R⋆
E < R†

E , following the analysis above, we find Ropt2
E = Ropt1

E = max{Ropt1
E , R⋆

E}. Therefore,

Eq. (41) is the optimal solution of problem (35).

Remark 3. As λ̄E → 0, we obtain Ropt2
E = 0.

Proof. From (19), if λ̄E → 0, then we have Ps → 0 and R⋆
E → 0. According to (41), Ropt2

E = Ropt1
E .

Based on Remark 1, Ropt2
E = 0 is proved.

Remark 4. As λ̄E → ∞, the optimal solution of problem (35) is

Ropt2
E =















max

{

R⋆
B − 2R

opt2

E − 1

2R
opt2

E · ln 2 · N̄
, R⋆

E

}

, R⋆
E 6 R⋆

B,

∅, R⋆
E > R⋆

B.

(42)

Proof. When λ̄E → ∞, from (41) and Remark 2, Eq. (42) is easily obtained.

5 Numerical results

In this section, we verify our analysis of secrecy performance in the HARQ-CC system by numerical

(simulation) results. In Figure 2, we plot COP versus RB of different λ̄B, which is completely determined

by the main channel. The maximum transmission number is K = 10. Theoretical curves are obtained

by (6). We first observe that Monte Carlo simulations almost precisely match theoretical curves given

different channel conditions. Moreover, COP sharply increases with RB until Pe = 1. Focusing on three

groups of curves, we also observe that when λ̄B increases, a larger RB results in the same COP, which

demonstrates that a higher reliable transmission rate can be obtained with better conditions of the main

channel.

In Figure 3, we plot SOP versus RE for different λ̄E , which are both determined by the main channel

and eavesdropper channel. Theoretical and approximated Ps are obtained by (14) and (19), respectively.

For all of the curves, λ̄B = 10 dB, RB = 5, and K = 10. We first observe that simulation curves

precisely match theoretical Ps, while their differences from the approximated Ps are small. Then, with

more redundancy data of RE , SOP monotonically decreases, which means more redundancy will enhance

secrecy. Furthermore, it is critical to point out that to maintain the same value of SOP, a larger RE

is required when λ̄E increases. In other words, when the eavesdropper channel is better, we need more

secrecy redundancy to assure the same security level.
 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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Figure 2 (Color online) COP versus RB for different av-

erage received SNR of main channel. λ̄B ∈ {0, 5, 10} dB

and K = 10.

Figure 3 (Color online) SOP versus RE for different av-

erage received SNR of wiretap channel. λ̄E ∈ {0, 5, 10} dB,

λ̄B = 10 dB, RB = 5, K = 10.
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Figure 4 (Color online) EST versus RE for COP constraint P ⋆
e = 10−4 and different average received SNR of wiretap

channel λ̄E ∈ {0, 5, 10} dB, λ̄B = 10 dB, K = 10.

Figure 4 shows EST curves versus RE for the same COP constraint and different λ̄E , while the

maximum ESTs corresponding to the calculated optimal RE are marked. Parameters are set as λ̄B =

10 dB, K = 10, and P ⋆
e = 10−4. Theoretical and approximated ηs curves are generated according to Ps

and the approximated Ps, respectively. We first observe that the difference between the theoretical and

approximated ηs is limited, especially the maximum values. All of these ηs curves increase monotonically

to the maximum value with RE , and then decrease monotonically. When RE is less than its optimal

value Ropt1
E , its slope decreases from positive to negative. Although a similar rule is not obvious when

RE > Ropt1
E , we still conclude that ηs is concave with RE . The maximum ηs, using the bisection method

in Algorithm 1 and fixed-point method (31), are also plotted in Figure 4. We observe that these optimal

points well match the maximum approximated ηs. Moreover, the difference between the maximum ηs
and approximated ηs is small. Additionally, when λ̄E increases, the optimal RE increases and a higher

secrecy redundancy rate results in a smaller EST.

Under both COP and SOP constraints, we plot EST curves versus RE , and maximum EST corre-

sponding to calculated optimal RE again in Figure 5. The channel conditions are λ̄B = 20 dB and

λ̄E = 5 dB. To demonstrate them explicitly, they are separated into three subfigures with the same

COP constraint, i.e., P ⋆
e = 10−4, and different SOP constraints, i.e., P ⋆

s = 0.6, 10−1, 10−3. Theoretical

and approximated ηs curves are still generated according to Ps and the approximated Ps, respectively.

Their difference is also limited. The maximum ηs obtained by the bisection method in Algorithm 2 and
 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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Figure 5 (Color online) EST versus RE for same COP constraint P ⋆
e = 10−4 and different SOP constraints P ⋆

s ∈
{

0.6, 10−1, 10−3
}

, λ̄B = 20 dB, λ̄E = 5 dB, K = 10. (a) P ⋆
s = 0.6; (b) P ⋆

s = 10−1; (c) P ⋆
s = 10−3.
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Figure 6 (Color online) The relationship between delay and secrecy performances for different average received SNR of

wiretap channel. λ̄B = 20 dB, λ̄E ∈ {0, 5, 10} dB, RB = 5, RE = 3. (a) SOP versus K; (b) EST versus K.

Lagrangian multiplier method in (41) both precisely match the maximum value of the approximated ηs
curves. Then we compare these three groups of curves. From Figure 5(a), we validate the given solutions

for the quasi-concave optimization when Ropt1
E > R⋆

E . Because P ⋆
s = 0.6, we find that R⋆

E is relatively

small and its solution, i.e., Ropt2
E , equals Ropt1

E . From Figure 5(b) and (c), we validate these solutions

again when Ropt1
E ≃ R⋆

E and Ropt1
E < R⋆

E . For P
⋆
s = 10−1, Ropt2

E ≃ Ropt1
E as Ropt1

E ≃ R⋆
E . For P

⋆
s = 10−3,

R⋆
E is relatively large and Ropt2

E = R⋆
E .

To verify the relationship between delay and secrecy performances, we demonstrate SOP and EST

versus K for different λ̄E in Figure 6, in which parameters are set as λ̄B = 20 dB, λ̄E = 0, 5 or 10 dB,
 https://engine.scichina.com/doi/10.1007/s11432-019-2660-3
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RB = 5 and RE = 3. In Figure 6(a), theoretical and approximated Ps are still obtained by (14) and

(19), respectively. And their difference is also limited, considering the use of logarithmic coordinate. We

observe that SOP rises slowly and converges to a stable value with increased K, that caused by limited

diversity gain of wiretap channel and almost fixed N̄ of main channel. When wiretap channel is better,

i.e., λ̄E is larger, a greater SOP occurs which means Eve can obtain more information. In Figure 6(b),

the curves of theoretical and approximated ηs versus K are illustrated. It is confirmed that ηs tends to be

stable with increased K because all its affecting factors, i.e., COP, SOP and N̄ , converge. Furthermore,

larger λ̄E inevitably results in lower ηs.

6 Conclusion

In this paper, we discussed the quasi-concave optimization of the secrecy redundancy rate, RE , in the

HARQ-CC system. We extended the metric of EST into multiple transmissions involving COP and

SOP simultaneously. The quasi-concave optimization was solved by the bisection method and fixed-point

method under COP constraints. This problem was also worked out using the bisection method and

Lagrangian multiplier method with both COP and SOP constraints. Finally, numerical and simulation

results verified our analysis and demonstrated that although the optimization of RE is non-convex, our

proposed solutions still perform efficiently to improve the secrecy coding.
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