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Abstract Let L be the complete lattice generated by a nest N on an infinite-dimensional separable Hilbert
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groups Hn(Alg(L), B(H)) of Alg(L) with coefficients in B(H) are trivial for all n � 1.
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1 Introduction

Triangular algebras, introduced by Kadison and Singer [8], and reflexive algebras are two important
classes of non-selfadjoint operator algebras. They are closely related to the study of structural properties
of bounded linear operators, such as the invariant subspace problem for operators. The intersections
of these two are nest algebras [2, 11]. Many people have tried to extend selfadjoint theory, as well as
its techniques and invariants, to non-selfadjoint algebras. Recently, combining triangularity, reflexivity
and von Neumann algebra property into one consideration, Ge and Yuan introduced a new class of
non-selfadjoint algebras which they call Kadison-Singer algebras or KS-algebras for simplicity [3]. These
algebras are reflexive, maximal triangular with respect to their “diagonal subalgebras”. A more direct
connection of Kadison-Singer algebras and von Neumann algebras is through the lattice of invariant
projections of a KS-algebra. The lattice is reflexive and “minimally generating” in the sense that it
generates the commutant of the diagonal as a von Neumann algebra. Nest algebras are KS-algebras with
“abelian cores” and commutative lattices of invariant projections.

In [3], using the tensor product structure of hyperfinite factors, Ge and Yuan constructed the examples
of Kadison-Singer algebras with hyperfinite ones as their diagonals. In [4], making use of von Neumann
algebra techniques, they proved that the reflexive lattice generated by a double triangular lattice with
three nontrivial projections is, in general, isomorphic to the two-dimensional sphere S

2 (plus two distinct
points corresponding to 0 and I), and the corresponding reflexive algebra is a Kadison-Singer algebra.
Wang and Yuan showed that the reflexive algebra, corresponding to the one point extension of a maximal
nest on an infinite-dimensional separable Hilbert space by a rank one projection which is determined by
a separating vector for the diagonal of the nest algebras, is a KS-algebra [13].
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KS-algebras are generalizations of nest algebras and are a much broader class of (reflexive) non-
selfadjoint operator algebras, whose lattices of invariant projections may be noncommutative and non
distributive [3,4]. Nest algebras have many nice properties such as the existence of rank one operators, the
innerness of bounded derivations and vanishing bounded cohomology groups. It becomes an interesting
problem whether all or some of these properties are still true for some or all KS-algebras.

In this paper, using some techniques in [13], we show that the reflexive algebra Alg(L), with L generated
by a nest on a separable Hilbert space and a rank one projection determined by a separating vector for
the core of the nest algebra, is a KS-algebra. Here we do not require that the nest is maximal. Our result
generalizes the main result in [13]. We will determine its center, the commutator of this algebra modulo
itself. We also show that every bounded derivation from Alg(L) into itself is inner, and all n-th bounded
cohomology groups Hn(Alg(L), B(H)) of Alg(L) with coefficients in B(H) are trivial for all n � 1.

Now we recall the definitions of some well-known classes of non-selfadjoint operator algebras. For
details on triangular algebras and nest algebras, we refer to [2, 8].

Let H be a separable Hilbert space and B(H) the algebra of all bounded linear operators on H. For
a set L of orthogonal projections in B(H), we denote by Alg(L) the set of all bounded linear operators
on H leaving each element in L invariant. Then Alg(L) is a unital weak-operator closed subalgebra of
B(H). Similarly, for a subset S of B(H), we let Lat(S) be the invariant projection lattice of S consisting
of all projections invariant under each operator in S. Then Lat(S) is a strong-operator closed lattice of
projections. A subalgebra A of B(H) is said to be reflexive if A = Alg(Lat(A)). Similarly, a lattice L
of projections in B(H) is called reflexive if L = Lat(Alg(L)). A nest N is a totally ordered family of
projections on H which contains the zero operator 0 and the identity operator I on H and is closed in
strong operator topology. If N is a nest, then N is reflexive and Alg(N ) is called a nest algebra. The
von Neumann algebra N ′′ generated by N is called the core of Alg(L); Alg(L) ∩Alg(L)∗ = N ′ is called
the diagonal of Alg(L). Obviously, N ′′ ⊆ N ′.

Definition 1.1. A subalgebra A of B(H) is called a Kadison-Singer (operator) algebra (or KS-algebra)
if A is reflexive and maximal with respect to the diagonal subalgebra A ∩ A∗ of A, in the sense that if
there is another reflexive subalgebra B of B(H) such that A ⊆ B and B ∩ B∗ = A ∩ A∗, then A = B.
When the diagonal of a KS-algebra A is a factor, we say A is a Kadison-Singer factor (or KS-factor).

A lattice L of projections in B(H) is called a Kadison-Singer lattice (or KS-lattice) if L is a minimal
reflexive lattice that generates the von Neumann algebra L′′, or equivalently, L is reflexive and Alg(L) is
a Kadison-Singer algebra.

Clearly nest algebras are KS-algebras. When A is a KS-algebra and A ∩A∗ is a von Neumann algebra
(or factor) of type I, II and III, then A is called a KS-algebra (or KS-factor) of the same type. In the
same way, one can further classify KS-factors into II1, II∞, etc., similar to usual factors. Since a nest
generates an abelian von Neumann algebra, the nest algebras are “type I” KS-algebras.

Next we recall some notions in Hochschild cohomology theory. For details on cohomology theory of
Banach algebras, von Neumann algebras and nest algebras, we refer to [6,9,12]. Let A be a unital Banach
algebra, and M a unital Banach A-bimodule. A linear mapping δ from A into M is called a derivation
if δ(AB) = Aδ(B) + δ(A)B for all pairs A, B in A; if there exists M in M such that δ(A) = AM − MA

for each A in A, then δ is called an inner derivation. Every derivation from a nest algebra acting on a
separable Hilbert space H into B(H), or into itself, is inner, and hence, automatically bounded [1].

For n = 1, 2, 3, . . . , we denote by Cn(A,M) the complex vector space of all bounded n-linear mappings
(also called n-cochains) of A× · · ·×A into M. By convention, we let C0(A,M) be M. The coboundary
operator ∂n : Cn(A,M) → Cn+1(A,M) is given by ∂0(M)(A) = AM −MA for A ∈ A and M ∈ M; for
n � 1, ϕ ∈ Cn(A,M), A1, . . . , An+1 ∈ A, let

∂nϕ(A1, A2, . . . , An+1) = A1ϕ(A2, . . . , An+1)

+
n∑

j=1

(−1)jϕ(A1, . . . , AjAj+1, . . . , An+1)

+ (−1)n+1ϕ(A1, . . . , An)An+1.
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The kernel of ∂n in Cn(A,M) is denoted by Zn(A,M) and called the space of n-cocycles. The image of
∂n−1 in Cn−1(A,M), denoted by Bn(A,M), is called the space of n-coboundaries. It is standard that
∂n∂n−1 = 0, so Bn(A,M) ⊆ Zn(A,M). (We shall simply denote all these coboundary operators by the
same symbol ∂.) The bounded n-th Hochschild cohomology group of A with coefficients in M is defined
as the quotient vector space:

Hn(A,M) = Zn(A,M)/Bn(A,M), n � 1.

By convention, H0(A,M) = {M ∈ M| AM = MA, for each A ∈ A}. In [9], Lance proved that all n-th
bounded cohomology groups Hn(Alg(N ),M) of each nest algebra on a separable Hilbert space H with
coefficients in M are trivial for all n � 1, where M is an ultraweakly bimodule of Alg(N ) satisfying that
Alg(N ) ⊆ M ⊆ B(H).

2 One point extension of a nest

In the rest, let H be an infinite dimensional separable Hilbert space and B(H) be the space of all the
bounded linear operators acting on H. In this paper, we do not distinguish a projection with its range,
so write γ ∈ P for an orthogonal projection P to mean that γ belongs to the range of P . Let P⊥ denote
the orthogonal complement I − P of a projection P . For projections P < Q, we write Q � P for the
projection Q − P .

Let N be a nontrivial nest of projections on H, and Alg(N ) be the corresponding nest algebra. Since
the core N ′′ of nest algebra Alg(N ) is abelian, it has a separating vector, say ξ, which means the mapping
T → Tξ, from N ′′ into H, is injective [7]. We assume that ‖ξ‖ = 1. Let Pξ be the orthogonal projection
from H onto the one-dimensional subspace of H generated by ξ. Then for each projection P ∈ N with
P �= 0, I, we have ξ /∈ P , ξ /∈ P⊥ and hence P ∧Pξ = 0. Obviously, P ∨Pξ is just the orthogonal projection
from H onto the closed subspace P (H) + Cξ. Hence for each pair P, Q in N , P ∧ (Q∨ Pξ) = P ∧Q. Let
L be the complete lattice of projections generated by N and Pξ, which is called an one point extension
of N by Pξ. It is not difficult to show that L = {0, I, P, Pξ, P ∨ Pξ : P ∈ N , P �= 0, I}.

Similarly, we could consider the dual of the nest N . Let Ñ = {0, I, P⊥ : P ∈ N}. Then Ñ is a nest
such that Alg(N )∗ = Alg(Ñ ), so these two nest algebras have the same diagonal and core. Let L̃ be the
one point extension of Ñ by Pξ, i.e., L̃ = {0, I, P, Pξ, P ∨ Pξ : P ∈ Ñ , P �= 0, I}.
Question. Are L and L̃ KS-lattices?

Remark. Notice that the core N ′′ is contained in the diagonal N ′ of nest algebra Alg(N ), i.e.,
N ′′ ⊆ N ′. If we assume that ξ is a separating vector for N ′, then ξ is a generating vector for N ′′,
which implies that N ′′ is a maximal abelian self-adjoint subalgebra of B(H), and hence N ′ = N ′′ [7].

Theorem 2.1 [13]. Suppose that ξ is a separating vector for N ′. Then L and L̃ are KS-lattices, and
hence Alg(L) and Alg(L̃) are KS-algebras ; Moreover, they have the same diagonals equal to CI.

Inspecting the proof in [13], we can show that L is a KS-lattice, even though ξ is a separating vector
only for N ′′. Firstly, we recall some notions on complete projection lattices. Let F be a complete lattice
of projections on H. For P ∈ F , we let

PF
− = ∨{Q ∈ L : Q � P} for P �= 0, 0F− = 0.

If F is a nest, then PF
− = ∨{Q ∈ F : Q < P} for P �= 0, and we call PF

− the immediate predecessor of P

in F if there is one; otherwise PF− = P . If there is no immediate predecessor for each nonzero projection
in F , then F is called a continuous nest. Similarly, for a projection P in a nest F , we define

PF
+ = ∧{Q ∈ F : P < Q} for P �= I, IF+ = I,

and call PF
+ the immediate successor of P in F if there is one; otherwise PF

+ = P .
For nonzero vectors γ and η in H, we denote by γ ⊗ η the rank one operator, defined by (γ ⊗ η)(z) =

〈z, η〉γ for all z ∈ H. The following Lemma 2.2 comes from [13], and the main ideas in the proof of
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the following Proposition 2.3 and Theorem 2.4 also come from [13], although we use the langue of nest
algebras.

Lemma 2.2 [13]. Suppose E ∈ Lat(Alg(L)), E �= 0, I. For P ∈ N with P �= 0, I, if there exists a
nonzero vector ζ in E(H) such that P⊥ζ and P⊥ξ are linearly independent, then P � E.

Proof. Let η = P⊥ζ− 〈ζ, P⊥ξ〉
‖P⊥ξ‖2 P⊥ξ. Then η �= 0, η ∈ (P ∨Pξ)⊥. It is easy to show that for each nonzero

vector β in P , the rank one operator β ⊗ η is in Alg(L) (see also Corollary 3.3). Hence (β ⊗ η)ζ ∈ E. By
calculation, we have

(β ⊗ η)ζ =
(
‖P⊥ζ‖2 − |〈P⊥ζ, P⊥ξ〉|2

‖P⊥ξ‖2

)
β.

Since P⊥ζ and P⊥ξ are linearly independent, we have

‖P⊥ζ‖2 − |〈P⊥ζ, P⊥ξ〉|2
‖P⊥ξ‖2

�= 0,

which implies that β ∈ E. Consequently, P � E.

Proposition 2.3. Suppose that ξ is a separating vector for N ′′. Then L is a reflexive lattice.

Proof. Obviously, L ⊆ Lat(Alg(L)). In order to obtain the reflexivity of L, it suffices to show that
Lat(Alg(L)) ⊆ L. Let E be an arbitrary projection in Lat(Alg(L) with E �= 0, I, Pξ. Define

Q = ∨{P ∈ N : P � E}.

Obviously, Q ∈ N and 0 � Q � E < I. If Q = E, then E ∈ L. So we assume that Q < E. Now we show
that E = Q ∨ Pξ. If it is true, then E ∈ L.

We take two separate cases, depending on whether Q has an immediate successor in N or not.
Suppose that QN

+ = Q. Then there exists a strictly decreasing sequence {Qn} in N : I > Q1 > Q2

> · · · > Qn > · · · > Q, such that limn Qn = Q in the strong operator topology. For each n � 1, it follows
that Qn � E. Then, by Lemma 2.2, for each nonzero vector ζ in E, we have Q⊥

n ζ and Q⊥
n ξ are linearly

dependent, i.e.,
Q⊥

n ζ = λnQ⊥
n ξ for each n � 1 and for some λn ∈ C.

Notice that Qn < Q1 for each n > 1. Hence Q⊥
1 (Q⊥

n ζ) = Q⊥
1 (λnQ⊥

n ξ), and then Q⊥
1 ζ = λnQ⊥

1 ξ. Also
since Q⊥

1 ζ = λ1Q
⊥
1 ξ, it follows from Q⊥

1 ξ �= 0 that we have λn = λ1 for all n � 1. Consequently, we have

Q⊥
n ζ = λ1Q

⊥
n ξ for each n � 1 and λ1 ∈ C.

Let n → ∞. We have ζ − Qζ = λ1(ξ − Qξ), which yields that ζ = (Qζ − λ1Qξ) + λ1ξ ∈ Q ∨ Pξ for each
nonzero vector ζ in E. Hence E � (Q ∨ Pξ). On the other hand, since Q < E, we choose a unit vector
ζ0 ∈ E such that ζ0 ∈ Q⊥. Since we have proved that ζ0 − Qζ0 = μ(ξ − Qξ) for some μ ∈ C, we have
ζ0 = μ(ξ − Qξ) �= 0, and hence ξ = 1

μζ0 + Qξ ∈ E, which implies that E � (Q ∨ Pξ). Consequently,
E = Q ∨ Pξ.

Suppose that QN
+ > Q. Now we claim that, for each nonzero vector ζ in E, Q⊥ζ and Q⊥ξ are linearly

dependent. For, otherwise, there exists a nonzero vector ζ0 in E such that Q⊥ζ0 and Q⊥ξ are linearly
independent. Then Q⊥ζ0 �= 0. If we let β = Q⊥ζ0 − 〈ζ0, Q⊥ξ〉

‖Q⊥ξ‖2 Q⊥ξ, then β �= 0 and β ∈ (Q ∨ Pξ)⊥.
Hence y ⊗ β is a rank one operator in Alg(L) for each nonzero vector y in QN

+ (see Corollary 3.3(i));
in particular, (y ⊗ β)ζ0 ∈ E, and hence 〈ζ0, β〉y ∈ E, for each nonzero vector y in QN

+ . It follows from

the independence of Q⊥ζ0 and Q⊥ξ that 〈ζ0, β〉 = ‖Q⊥ζ0‖2 − |〈Q⊥ζ0, Q⊥ξ〉|2
‖Q⊥ξ‖2 �= 0. Hence y ∈ E for each

nonzero vector y in QN
+ , and thus QN

+ ⊆ E, which contradicts the maximality of Q. We have established
the claim. In other words, we have shown that, for each nonzero vector ζ in E, there is μ ∈ C such that
Q⊥ζ = μQ⊥ξ, which implies that ζ = (Qζ − μQξ) + μξ ∈ Q ∨ Pξ. Hence E � (Q ∨ Pξ). By the same
argument as in above paragraph, we can prove that ξ ∈ E, so E � (Q∨Pξ). Consequently, E = (Q∨Pξ).

Theorem 2.4. Suppose that ξ is a separating vector for N ′′. Then L is a KS-lattice, and hence Alg(L)
is a KS-algebra.
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Proof. Suppose N is a trivial nest, i.e., N = {0, I}. Then L is a nest, and hence a KS-lattice. We
assume that N is nontrivial. In this case, L is noncommutative, since for each nontrivial projection P in
N , PPξ �= PξP (otherwise, Pξ = PξPξ, so Pξ = λξ for some λ ∈ C, which is a contradiction).

Let L0 be a reflexive sublattice of L such that L′
0 = L′. Noticing L′′ (= L′′

0 ) is a non-abelian von
Neumann algebra, we have L0 � N and L0 � {P ∨Pξ : P ∈ N}. In other words, there exist P0, Q0 ∈ N
with 0 < P0 < I, 0 � Q0 < I such that Q0 ∨ Pξ �= I, P0 ∈ L0 and Q0 ∨ Pξ ∈ L0.

Claim 1. Pξ ∈ L0.

We let Q = ∧{P ∈ N : (P ∨ Pξ) ∈ L0}. Then Q ∈ N , Q � Q0 < I and (Q ∨ Pξ) = ∧{P ∨ Pξ ∈ L0 :
P ∈ N} ∈ L0. Suppose Q > 0. Then 0 < Q � Q0 < I. For each M ∈ L0, if M ∈ N then MQ = QM ;
if M /∈ N then M = P ∨ Pξ for some P ∈ N with 0 � P < I, and hence Q � P < M , so, MQ = QM .
Hence Q ∈ L′

0. It follows from L′
0 = L′ that QPξ = PξQ, which is a contradiction. Consequently, Q = 0

and hence Pξ ∈ L0.

Claim 2. For each P ∈ N with 0 < P < I, we have P ∈ L0.

Suppose, on the contrary, there exists P1 ∈ N such that 0 < P1 < I and P1 /∈ L0. We have two cases.

Case 1. Suppose P /∈ L0 for each projection P ∈ N with P1 � P < I.

We let
P2 = ∨{P ∈ N : P �= I, P ∈ L0}.

Then P2 ∈ L0 and 0 < P0 � P2 < P1 < I. Obviously, P2 ∨ Pξ �= I (see Lemma 3.2). Now we show that
M0 := P2 ∨ Pξ is in L′

0, but M0 /∈ L′. If so, this case cannot occur.
In fact, for each M ∈ L0 with 0 < M < I, if M has the form P ∨ Pξ for some P ∈ N , then M and

M0 are commutative; if M ∈ N , then M � P2 < M0, so MM0 = M0M . Hence M0 = P2 ∨ Pξ ∈ L′
0.

However, (P2 ∨ Pξ)P1 �= P1(P2 ∨ Pξ), for otherwise, (P2 ∨ Pξ)P1ξ = P1(P2 ∨ Pξ)ξ = P1ξ, which yields
that P1ξ = ζ + λξ for some ζ ∈ P2 and λ ∈ C. Using P⊥

2 acts on both sides of the equation and noticing
that P2 < P1, we get (P⊥

2 P1 − λP⊥
2 )ξ = 0, which is a contradiction, for (P⊥

2 P1 − λP⊥
2 ) is a nontrivial

operator in N ′′. Hence M0 /∈ L′.

Case 2. Suppose that there is a projection P3 in N such that P1 < P3 < I and P3 ∈ L0.

We let
Q1 = ∨{M ∈ N : M ∈ L0, M < P1}, Q2 = ∧{M ∈ N : M ∈ L0, M > P1}.

Then Q1, Q2 ∈ L0 ∩ N , 0 � Q1 < P1 < Q2 � P3 < I. By the definitions of Q1 and Q2, for each P in N
with Q1 < P < Q2, we have P /∈ L0, and hence (P ∨ Pξ) /∈ L0 by noticing that (P ∨ Pξ) ∧ Q2 = P and
Q2 ∈ L0. Since (P1 − Q1)ξ �= 0 and (Q2 − P1)ξ �= 0, we let

η = (Q2 − P1)ξ − ‖(Q2 − P1)ξ‖2

‖(P1 − Q1)ξ‖2
(P1 − Q1)ξ.

Then η �= 0, η ∈ Q2, η ∈ Q⊥
1 , η ∈ P⊥

ξ , η /∈ P1, η /∈ P⊥
1 . Let A = η ⊗ η. Since P1η and η are linearly

independent, we have AP1 �= P1A, so A /∈ L′. Now we show that A ∈ L′
0.

For each M ∈ L0 with 0 < M < I, if M ∈ N then M � Q1 or M � Q2, and hence MA = AM = 0 or
AM = MA = A; if M has the form P ∨ Pξ for some P ∈ N with 0 < P < I, then P � Q1 or P � Q2,
and hence MA = AM = 0 or AM = MA = A. Hence A ∈ L′

0. Consequently, we have constructed a
rank operator A in L′

0, but not in L′, which is a contradiction. This case also could not occur.
By Cases 1 and 2, we have established Claim 2. By Claims 1 and 2, for each reflexive sublattice of L

such that L′
0 = L′, we have that L0 and L are equal. Hence L is a KS-lattice.

The following are examples of KS-algebras.

Example 2.1 [13]. Suppose H is an infinite dimensional separable Hilbert space with an orthogonal
basis {en : n ∈ N}. For each n ∈ N, let Pn be the orthogonal projection of H onto the linear subspace of H
generated by {e1, e2, . . . , en}. Then N = {0, I, Pn : n = 1, 2, . . .} is an N-ordered nest with IN− = I and
0N+ = P1. Let ξ =

∑∞
n=1

1
nen ∈ H. Then ξ is a separating vector of N ′. Hence L = {0, I, Pn, Pξ, Pn ∨Pξ :

n ∈ N} is a KS-lattice, and Alg(L) is a Kadison-Singer algebra.
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Remark. If let Ñ = {0, I, P⊥
n : n = 1, 2, . . .}. Then Ñ also is a nest with 0Ñ+ = 0, IÑ− = P⊥

1 < I, and
IÑ− ∨ Pξ = I. Hence L̃ = {0, I, P⊥

n , Pξ, P
⊥
n ∨ Pξ : n ∈ N} is a KS-lattice.

Suppose that H has an orthogonal basis {ek : k ∈ Z}. For each k ∈ Z, let Qk be the orthogonal
projection of H onto the closed subspace of H generated by {el : l ∈ Z, l � k}. Then N = {0, I, Qk :
k ∈ Z} is a Z-ordered nest with IN− = I and 0N+ = 0. Let ξ =

∑+∞
−∞

1
2|k| ek ∈ H. Then ξ is a separating

vector of N ′, and hence L = {0, I, Qk, Pξ, Qk ∨ Pξ : k ∈ Z} is a KS-lattice, Alg(L) is a Kadison-Singer
algebra.

Example 2.2. Let H, Pn, n = 1, 2, . . . , and ξ be as in Example 2.1. For a nontrivial subsequence
{nk} of N: 1 � n1 < n2 < · · · < nk < · · · and limk nk = ∞, we let Qk = Pnk

. Then N = {0, I, Qk :
k = 1, 2, . . .} is a nest and ξ is a separating vector for N ′′, but not for N ′. Then the complete lattice
generated by N and Pξ is a KS-lattice.

Example 2.3 [13]. Let H = L2[0, 1] be the Hilbert space consisting of all measurable complex-valued
functions f on [0, 1] for which

∫ 1

0 |f(x)|2dx < ∞ (with respect to the Lebesgue measure on [0, 1]). For
any t ∈ (0, 1), let Pt = Mχ[0,t] be the multiplication operator by the characteristic function χ[0,t] of
[0, t] on H, i.e., Pt(g) = χ[0,t]g for each g in H. Then N = {0, I, Pt : t ∈ (0, 1)} is a continuous nest.
Let ξ be the constant function 1. Then ξ is a separating vector of N ′. Hence the complete projection
lattice L generated by the nest N and the projection Pξ is a Kadison-Singer lattice, and thus Alg(L) is
a Kadison-Singer algebra.

3 Commutant

Let L be a one point extension of a nontrivial nest N on H by Pξ, defined as in Section 2, where ξ

is a separating vector for N ′′. In this section, we consider the rank one operators in Alg(L) and their
applications. For nonzero vectors γ and η in H, we denote by γ ⊗ η the rank one operator, defined by
(γ ⊗ η)(z) = 〈z, η〉γ for all z ∈ H. The following lemma is a well-known fact. For completeness, we give
a proof.

Lemma 3.1 [10]. For a complete lattice F of projections on H, a rank one operator γ ⊗ η ∈ Alg(F) if
and only if there exists P ∈ F such that γ ∈ P and η ∈ (PF

− )⊥.

Proof. Suppose that 0 �= γ ∈ P and 0 �= η ∈ (PF− )⊥ for a nonzero projection P in F . Let 0 �= Q ∈ F ,
and x be an arbitrary vector in Q. If Q � P , then (γ⊗η)(x) = 〈x, η〉γ ∈ P ⊆ Q; if Q � P , then Q � PF

− ,
and thus 〈x, η〉 = 0, which implies that (γ ⊗ η)(x) = 0. Both cases yield that (γ ⊗ η)(Q) ⊆ Q. Hence
γ ⊗ η ∈ Alg(F).

On the other direction, let γ ⊗ η be a rank one operator in Alg(F). Let Mγ = ∧{P ∈ F : γ ∈ P}.
Then 0 �= Mγ ∈ F and γ ∈ Mγ . Now we show that η ∈ ((Mγ)F−)⊥. Let Q ∈ F with Q � Mγ . Then
γ /∈ Q. It follows that η ∈ Q⊥, for otherwise, there exists a nonzero vector x in Q such that 〈x, η〉 �= 0.
Since γ⊗η ∈ Alg(F), we have (γ⊗η)(x) = 〈x, η〉γ ∈ Q, and thus, γ ∈ Q, which is a contradiction. Hence
η ∈ Q⊥. Since Q is arbitrary, we have η ∈ ((Mγ)F−)⊥.

In the rest, we replace ML
− with M− for a nonzero projection in L; if M is also in N , we still denote

by MN
− predecessor of M in N .

Lemma 3.2 (i) If P, Q ∈ N with 0 < P < Q < I, then (P ∨ Pξ) < (Q ∨ Pξ) and (P ∨ Pξ) � Q. In
particular, for each pair P, Q ∈ N with P, Q �= 0, I, we have P ∨ Pξ = Q ∨ Pξ if and only if P = Q ;

(ii) I− = IN− ∨ Pξ ; Moreover, if ξ is a separating vector for N ′, then IN− ∨ Pξ = I, no matter whether
I has an immediate predecessor in N or not ;

(iii) P− = PN
− ∨ Pξ for a projection P in N with 0 < P < I ;

(iv) (Pξ)− = IN− , (P ∨ Pξ)− = IN− ∨ Pξ for each nonzero projection P in N ; Moreover, if ξ is a
separating vector for N ′, then (P ∨ Pξ)− = I, no matter whether I has an immediate predecessor in N
or not.
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Proof. (i) Let P, Q ∈ N with 0 < P < Q < I. Then (P ∨ Pξ) � (Q ∨ Pξ). If (P ∨ Pξ) = (Q ∨ Pξ)
or (P ∨ Pξ) � Q, choose a unit vector y0 in Q � P . Hence y0 ∈ (P ∨ Pξ), which implies that there
exist a nonzero vector z0 ∈ P and a nonzero complex number λ such that y0 = z0 + λξ. Consequently,
ξ = 1

λ(y0 − z0) ∈ Q, which contradicts with the assumption that ξ is a separating vector. Hence
(P ∨ Pξ) < (Q ∨ Pξ) and (P ∨ Pξ) � Q.

(ii) By the definition, we have I− = ∨{M ∈ L : M < I} = IN− ∨ Pξ. Suppose ξ is a separating vector
for N ′. If (IN− ∨Pξ) < I, we let M = (IN− ∨Pξ)⊥, and then M is a nonzero projection in N ′, but Mξ = 0,
which contradicts with the assumption that ξ is a separating vector for N ′. Hence (IN− ∨ Pξ) = I.

(iii) Let P ∈ N , P �= 0, I. For each M ∈ L with M � P , if M ∈ N then M < P , which implies that
M � PN− � (PN− ∨ Pξ); if M /∈ N then there exists Q ∈ N such that Q < P and M = Q ∨ Pξ, which
implies that M � (PN

− ∨Pξ). Hence it follows from the arbitrariness of M that P− � (PN
− ∨Pξ). On the

other hand, since P− � PN
− and P− � Pξ, we have (PN

− ∨ Pξ) � P−. Hence P− = PN
− ∨ Pξ.

(iv) By the definition, we have (Pξ)− = ∨{M ∈ L : M � Pξ} = ∨{M ∈ L : ξ /∈ M} = ∨{M ∈ N :
ξ /∈ M} = ∨{M ∈ N : M < I} = IN− .

Similarly, for P ∈ N with P �= 0, I, we have (P ∨ Pξ)− = ∨{M ∈ L : M � (P ∨ Pξ)} = (∨{Q ∈ N :
Q < I}) ∨ (∨{Q ∨ Pξ : Q ∈ N , Q < P}) = IN− ∨ Pξ.

Using Lemmas 3.1 and 3.2, we have the following corollaries.

Corollary 3.3. For nonzero vectors x and y in H, the rank one operator x ⊗ y ∈ Alg(L) if and only
if one of the following statements holds :

(i) there exists P ∈ N with P �= 0, I such that x ∈ P and y ∈ (PN
− ∨ Pξ)⊥ ;

(ii) IN− < I, and x ∈ Cξ, y ∈ (IN− )⊥ ;
(iii) (IN− ∨ Pξ) < I, and x ∈ H, y ∈ (IN− ∨ Pξ)⊥.

Corollary 3.4. Suppose that IN− = I. Then for each rank one operator x ⊗ y, (x ⊗ y)(ξ) = 0. Hence
if let R1(Alg(L)) be the linear span generated by all the rank one operators in Alg(L), then R1(Alg(L))
is not dense in Alg(L) under the ultra-weak topology.

Corollary 3.5. Suppose that IN− = I. Then every rank n operator F in Alg(L) can be written a sum
of n rank one operators in Alg(L).

Proof. For a rank n operator F in Alg(L), we have F ∈ Alg(N ). Hence F = e1 ⊗ f1 + · · · + en ⊗ fn,
where ei ⊗ fi ∈ Alg(N ), fi �= 0 for each i, and e1, . . . , en are linearly independent in the range of F . So
there exists Pi ∈ N such that ei ∈ Pi and fi ∈ (Pi

N
− )⊥ for each i. Since IN− = I, we have Pi �= I for

every i. Also since F (ξ) ∈ Cξ, we get that 〈ξ, f1〉e1 + · · · + 〈ξ, fn〉en = λξ for some λ ∈ C. If λ �= 0,
then ξ ∈ P1 ∨ · · · ∨ Pn(�= I), which contradicts with the assumption that ξ is a separating vector. Hence
〈ξ, f1〉e1 + · · · + 〈ξ, fn〉en = 0. Using the linear independence of e′is, we have 〈ξ, fi〉 = 0, which implies
that ei ⊗ fi ∈ Alg(L) for every i. Hence F can be written as a sum of n rank one operators in Alg(L).

Theorem 3.6. (i) If IN− = I or (IN− ∨ Pξ) < I, then (Alg(L))′ = CI. In particular, the center of
Alg(L) is trivial.

(ii) If IN− < I and (IN− ∨ Pξ) = I, then T ∈ Alg(L)′ if and only if there exist λ, μ ∈ C such that
TQ = λQ and Tξ = μξ, where Q = IN− . Hence (Alg(L))′ ⊆ Alg(L) is a two-dimensional subalgebra. In
particular, the center of Alg(L) has dimension two.

Proof. (i) Let T be a nonzero operator in B(H) such that TS = ST for each S in Alg(L).
Suppose IN− = I. Then there exists a strictly increasing sequence {Qn} in N such that Q1 > 0 and

limn→∞ Qn = I in the strong operator topology. By Lemma 3.2, we have (Qn ∨ Pξ) < I, so that we can
choose a unit vector yn ∈ (Qn ∨Pξ)⊥ for each n. It follows from Corollary 3.3 that (Qnx)⊗ yn ∈ Alg(L)
for each x ∈ H and each n. Hence T ((Qnx) ⊗ yn) = ((Qnx) ⊗ yn)T , which implies that

TQnx = 〈Tyn, yn〉Qnx. (1)

For a given nonzero vector x in H, since limn Qnx = x, we can assume that Qnx �= 0 for each n. Since
|〈Tyn, yn〉| � ‖T ‖ for each n, there exists a convergence subsequence in {〈Tyn, yn〉}. Without loss of
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generality, we assume that {〈Tyn, yn〉} converges to λ ∈ C. Let n → ∞ in both sides of (1). We have
Tx = λx. Since x is arbitrary, we have T ∈ CI. Hence Alg(L)′ = CI.

Suppose (IN− ∨ Pξ) < I. Choose a unit vector y0 ∈ (IN− ∨ Pξ)⊥. Then for each nonzero vector x in
H, it follows from Corollary 3.3 that x ⊗ y0 ∈ Alg(L). Hence T (x ⊗ y0) = (x ⊗ y0)T , which implies that
Tx = 〈Ty0, y0〉x. Consequently, T ∈ CI.

(ii) Let Q = IN− . Since IN− < I and (IN− ∨ Pξ) = I, we have H = Q(H) + Cξ and Q(H) has
codimension 1. For T ∈ B(H), suppose that there exist λ, μ ∈ C such that TQ = λQ and Tξ = μξ. For
an arbitrary S ∈ Alg(L) and a nonzero vector x ∈ H, we let Sξ = αξ and x = x0 + βξ for x0 ∈ Q(H)
and α, β ∈ C. Hence

TSx = TS(x0 + βξ) = TSQx0 + αβμξ = TQ(SQx0) + αβμξ = λSx0 + αβμξ

and
STx = ST (x0 + βξ) = STQx0 + αβμξ = λSx0 + αβμξ.

Consequently, ST = TS for each S in Alg(L), which implies that T ∈ Alg(L)′. At this time, since
TP = λP for each P ∈ N with P < I and Tξ = μξ, we have T ∈ Alg(L).

On the other hand, suppose that T ∈ Alg(L)′. By Corollary 3.3, we have that ξ ⊗ Q⊥ξ ∈ Alg(L).
Hence T (ξ ⊗ Q⊥ξ) = (ξ ⊗ Q⊥ξ)T , which yields that

Tξ =
〈TQ⊥ξ, Q⊥ξ〉

‖Q⊥ξ‖2
ξ = μξ,

where

μ =
〈TQ⊥ξ, Q⊥ξ〉

‖Q⊥ξ‖2
.

In order to show that TQ = λQ for some λ ∈ C, we have two cases.
If QN− < Q, then using Lemma 3.2, we have (QN− ∨Pξ) < I. Choose a unit vector y0 in (QN−∨Pξ)⊥. Then

for each nonzero vector x in Q, Corollary 3.3 yields that x ⊗ y0 ∈ Alg(L). Hence T (x⊗ y0) = (x ⊗ y0)T ,
which implies that Tx = 〈Ty0, y0〉x. Consequently, TQ = λQ, where λ = 〈Ty0, y0〉 ∈ C.

If QN− = Q, then there exists a sequence {Qn} in N such that 0 < Q1 < Q2 < · · · < Qn < · · · < Q and
limn Qn = Q in the strong operator topology. Then by Lemma 3.2, we have (Qn ∨ Pξ) < I, so that we
can choose a unit vector yn ∈ (Qn ∨ Pξ)⊥ for each n. Then for each x ∈ Q, we have Qnx ⊗ yn ∈ Alg(L).
By a similar way to (i), we can show that there exists a complex number λ such that TQ = λQ.

Remark. Suppose that Q = IN− < I and (IN− ∨ Pξ) = I. If let

η =
Q⊥ξ

‖Q⊥ξ‖ ,

and Pη be the orthogonal projection onto Cη, then Q⊥ = Pη. Relative to I = Q + Q⊥, T ∈ (Alg(L))′ if
and only if T has the matrix representation

(
λ T12
0 μ

)
, where λ, μ ∈ C and T12η = μ−λ

‖Q⊥ξ‖Qξ. So

Alg(L)′ =
{

λQ + μQ⊥ +
μ − λ

‖Q⊥ξ‖2
Q(ξ ⊗ ξ)Q⊥ : λ, μ ∈ C

}
.

If A is a subalgebra of B(H) and M is a bimodule of A in B(H), we denote by C(A,M) the commutant
of A module M, i.e., C(A,M) = {T ∈ B(H) : TS − ST ∈ M for each S in A}. In [5], Han proved
that, for any ultraweakly closed bimodule of a commutative subspace lattice (CSL) algebra A satisfying
A ⊆ M ⊆ B(H), the commutant of A module M is equal to M, i.e., C(A,M) = M.

Proposition 3.7. C(Alg(L), Alg(L)) = Alg(L).

Proof. Obviously, C(Alg(L), Alg(L)) ⊇ Alg(L). Let T be an arbitrary nonzero element in C(Alg(L),
Alg(L)). Then TS − ST ∈ Alg(L) for each S in Alg(L). We first claim that T ∈ Alg(N ), i.e., TP ⊆ P

for each P in N satisfying 0 < P < I.
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Suppose that 0 � PN
− < P . Then using Lemma 3.2, we have (PN

− ∨ Pξ) < I and P � (PN
− ∨ Pξ).

Choose y0 ∈ (PN− ∨ Pξ)⊥ and z0 ∈ P such that 〈z0, y0〉 = 1. By Corollary 3.3, since x ⊗ y0 is in Alg(L)
for each nonzero vector x in P , we obtain that T (x ⊗ y0) − (x ⊗ y0)T ∈ Alg(L), which yields that
[T (x ⊗ y0) − (x ⊗ y0)T ]z0 ∈ P . Hence Tx − 〈Tz0, y0〉x ∈ P , and thus, Tx ∈ P for each x in P .

Suppose that PN− = P . Then there exists a sequence {Pn} in N such that 0 < P1 < P2 < · · · < Pn

< · · · < P and limn Pn = P in the strong operator topology. Then Lemma 3.2 yields that (Pn ∨ Pξ) < I

and P � (Pn ∨ Pξ) for each n. Choose yn ∈ (Pn ∨ Pξ)⊥ and zn ∈ P such that 〈zn, yn〉 = 1 for each n.
Then for each x ∈ P , we have Pnx ⊗ yn ∈ Alg(L). Hence T (Pnx ⊗ yn) − (Pnx ⊗ yn)T ∈ Alg(L), which
implies that [T (Pnx ⊗ yn) − (Pnx ⊗ yn)T ]zn ∈ P , and thus TPnx − 〈Tzn, yn〉Pnx ∈ P . So, TPnx ∈ P

for each n and each x ∈ P . Also since limn TPnx = Tx for each x ∈ P , we have Tx ∈ P . We have
established the claim.

Now we show that Tξ ∈ Cξ. If so, we can obtain that T ∈ Alg(L). We have two cases.
Suppose that 0N+ = 0. Then there exists a sequence {Qn} in N such that I > Q0 > Q1 > · · ·

> Qn > · · · and
∧

n�1 Qn = 0. It follows from Lemma 3.2 that (Qn ∨ Pξ) < I for each n � 1. Using
Corollary 3.3, we have Qnξ ⊗ y ∈ Alg(L) for each n and each y ∈ (Qn ∨ Pξ)⊥, which implies that
T (Qnξ⊗ y)− (Qnξ⊗ y)T ∈ Alg(L). Hence [T (Qnξ⊗ y)− (Qnξ ⊗ y)T ]ξ ∈ Cξ, and then, 〈Tξ, y〉Qnξ ∈ Cξ

for each n and each y ∈ (Qn ∨ Pξ)⊥. Since Qnξ /∈ Cξ for each n � 1, we have 〈Tξ, y〉 = 0 for each n and
each y ∈ (Qn∨Pξ)⊥, which yields that Tξ ∈ (Qn∨Pξ) for each n � 1. Let Tξ = x1+λ1ξ for some x1 ∈ Q1

and λ1 ∈ C. Since for each n > 1, there are xn ∈ Qn and λn ∈ C such that Tξ = xn + λnξ, we have
x1 − xn = (λn − λ1)ξ ∈ Q1. It follows that λ1 = λn, and then x1 = xn ∈ Qn. Hence x1 ∈ ∧

n�1 Qn = 0.
Consequently, Tξ = λ1ξ.

Suppose that 0N+ �= 0. Let P = 0N+ . Then x ⊗ y ∈ Alg(L) for each x ∈ P and each y ∈ P⊥
ξ . Fix

x0 ∈ P with x0 �= 0. Hence for each nonzero vector y ∈ P⊥
ξ , T (x0 ⊗ y) − (x0 ⊗ y)T ∈ Alg(L), and

then [T (x0 ⊗ y) − (x0 ⊗ y)T ]ξ ∈ Cξ. Consequently, 〈Tξ, y〉x0 ∈ Cξ for all y in P⊥
ξ , which implies that

〈Tξ, y〉 = 0 for all y in P⊥
ξ , so, Tξ ∈ Cξ.

4 Cohomology

In this section, we study the innerness of bounded derivations from Alg(L) into itself and into B(H).
Using the techniques in [9], we calculate n-th Hochschild cohomology group Hn(Alg(L), B(H)) of Alg(L)
with coefficients in B(H) for each n � 1.

Lemma 4.1. Suppose that IN− < I and (IN− ∨ Pξ) = I. Let T0 : IN− (H) → H be a bounded linear
operator, and η0 ∈ H. Then T0 can be uniquely extended to a bounded linear operator on H, denoted by
T , such that Tξ = η0 and ‖T ‖ � 4 max(‖T0‖, ‖η0‖)/‖(IN− )⊥ξ‖.
Proof. For convenience, we let Q = IN− . Then H = Q(H)+ Cξ, so Q(H) has codimension 1. Since each
x ∈ H has a unique decomposition x0 + λξ, where x0 ∈ Q(H), λ ∈ C, the mapping T on H, defined by

Tx = T0x0 + λη0

is well-defined. Obviously, T is a linear operator on H, T |Q(H) = T0 and Tξ = η0. Next we show that T

is bounded and estimate its norm.
Since Q(H) has codimension one, if let η = Q⊥ξ

‖Q⊥ξ‖ and Pη be the orthogonal projection onto Cη, we
have Q⊥ = Pη. For x ∈ H, we let x = x0 + λξ = x1 + μη, where x0, x1 ∈ Q(H) and λ, μ ∈ C. Then
‖x‖2 = ‖x1‖2 + |μ|2, x0 = x1 − μ

‖Q⊥ξ‖Qξ and λ = μ
‖Q⊥ξ‖ . Hence

‖Tx‖ = ‖T0x0 + λη0‖ � max(‖T0‖, ‖η0‖)(‖x0‖ + |λ|)
� max(‖T0‖, ‖η0‖)(‖x1‖ + 2|μ|/‖Q⊥ξ‖)
� [2 max(‖T0‖, ‖η0‖)/‖Q⊥ξ‖](‖x1‖ + |μ|)
� [2 max(‖T0‖, ‖η0‖)/‖Q⊥ξ‖]

√
2
√
‖x1‖2 + |μ|2

� [4 max(‖T0‖, ‖η0‖)/‖Q⊥ξ‖] · ‖x‖.
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Consequently, ‖T ‖ � 4 max(‖T0‖, ‖η0‖)/‖Q⊥ξ‖.
Theorem 4.2. Every bounded derivation δ from Alg(L) into B(H) is inner, i.e., there exists T ∈ B(H)
such that δ(A) = TA − AT for each A ∈ Alg(L). Hence H1(Alg(L), B(H)) = {0}.
Proof. We consider three cases.

(i) Suppose that (IN− ∨ Pξ) < I. Choose a unit vector y0 ∈ (IN− ∨ Pξ)⊥. Hence it follows from
Corollary 3.3 that for each x ∈ H, we have x ⊗ y0 ∈ Alg(L). Define a mapping T on H by

Tx = δ(x ⊗ y0)y0, x ∈ H.

Then T ∈ B(H) and TAx = δ(A)x + ATx for each A ∈ Alg(L) and x ∈ H. Hence δ is inner.
(ii) Suppose that IN− < I and (IN− ∨ Pξ) = I. If let Q = IN− , then H = Q(H) + Cξ and Q(H) has

codimension 1. Now we claim that there exists a bounded linear operator T0 from Q(H) into H such
that, for each A ∈ Alg(L), δ(A)|Q(H) = (T0A − AT0)|Q(H).

If QN
− < Q, then using Lemma 3.2, we have (QN

− ∨ Pξ) < I. Choose a unit vector y0 in (QN
− ∨ Pξ)⊥.

Then for each nonzero vector x in Q, Corollary 3.3 yields that x ⊗ y0 ∈ Alg(L). Let T0 be a mapping
from Q(H) into H, defined by

T0x = δ(x ⊗ y0)y0, x ∈ Q(H). (2)

Then T0 is a bounded linear operator on Q(H). For each A ∈ Alg(L), by calculation, we have T0Ax =
δ(Ax ⊗ y0)y0 = δ(A)x + AT0x for each x ∈ Q(H). Hence δ(A)|Q(H) = (T0A − AT0)|Q(H) for each
A ∈ Alg(L).

If QN
− = Q, then there exists a sequence {Qn} in N such that 0 < Q1 < Q2 < · · · < Qn < · · · < Q

and limn Qn = Q in the strong operator topology. Let n � 1 be fixed. Then Lemma 3.2 yields that
(Qn ∨ Pξ) < I, so that we can choose a unit vector yn ∈ (Qn ∨ Pξ)⊥. Hence for each x ∈ Q, we have
Qnx ⊗ yn ∈ Alg(L). Define a mapping Tn on Q(H) by

Tnx = δ(Qnx ⊗ yn)yn, x ∈ Q(H).

Then for each n, Tn is a bounded linear operator from Q(H) into H and ‖Tn‖ � ‖δ‖. Let k � n. Then
for each A ∈ Alg(L) and each x ∈ Q(H), we have TkAQnx = δ(QkAQnx ⊗ yk)yk = δ(AQnx ⊗ yk)yk =
δ(A)(Qnx ⊗ yk)yk + Aδ(QkQnx ⊗ yk)yk = δ(A)Qnx + ATkQnx = (δ(A) + ATk)Qnx. Hence

TkAQn|Q(H) = (δ(A) + ATk)Qn|Q(H) for each n � 1 and each k � n. (3)

Since {Tk} is a bounded sequence in B(Q(H),H), it has a convergence subsequence under the weak
operator topology. We can assume that {Tk} weakly converges to T0 ∈ B(Q(H), H). Let k → ∞, and
then, let n → ∞ in (3). We have δ(A)|Q(H) = (T0A−AT0)|Q(H) for each A ∈ Alg(L). We have established
the claim.

By Corollary 3.3, we remark that ξ ⊗ η ∈ Alg(L), where η = Q⊥ξ
‖Q⊥ξ‖ . Using Lemma 4.1, we can extend

the mapping T0 to be a bounded linear operator T on H such that

T |Q(H) = T0, T ξ = δ(ξ ⊗ η)η. (4)

For each A ∈ Alg(L), if let Aξ = λξ, then

TAξ = λT (ξ) = λδ(ξ ⊗ η)η = δ(Aξ ⊗ η)η = δ(A)ξ + ATξ.

Hence δ(A) = TA − AT , so δ is inner.
(iii) Suppose IN− = I. Then there is a strictly increasing sequence {Pm}m in N such that limm→∞ Pm =

I in the strong operator topology. For each m � 1, since (Pm ∨ Pξ) < I, we could choose a unit vector
ym ∈ (Pm ∨ Pξ)⊥. Then (Pmx) ⊗ ym ∈ Alg(L) for every x ∈ H. Define a mapping Tm on H by

Tmx = δ(Pmx ⊗ ym)ym, x ∈ H.
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Then Tm ∈ B(H), Tm = TmPm and ‖Tm‖ � ‖δ‖. Hence for each x ∈ H and each S ∈ Alg(L), if k � m,
we have TkSPmx = δ(PkSPmx ⊗ yk)yk = δ(SPmx ⊗ yk)yk = δ(S)(Pmx ⊗ yk)yk + Sδ(PkPmx ⊗ yk)yk =
δ(S)Pmx + STkPmx = (δ(S) + STk)Pmx. That is,

TkSPm = (δ(S) + STk)Pm for each m � 1 and each k � m.

Since {Tk} is a bounded sequence in B(H), it has a convergence subsequence under the weak operator
topology. We can assume that {Tk} weakly converges to T ∈ B(H). Hence δ(S) = TS − ST for each
S ∈ Alg(L).

Corollary 4.3. Every bounded derivation δ from Alg(L) into itself is inner, i.e.,

H1(Alg(L), Alg(L)) = {0}.
Proof. By Theorem 4.2, there exists T ∈ B(H) such that δ(A) = TA − AT for each A ∈ Alg(L). Note
that T ∈ C(Alg(L), Alg(L)). Proposition 3.7 yields that T is in Alg(L). Hence δ is inner.

Theorem 4.4. Hn(Alg(L), B(H)) = {0} for each n � 2.

Proof. Let σ ∈ Zn(Alg(L), B(H)) be a nonzero bounded n-cocycle. In order to show σ is a coboundary,
we consider four separate cases.

Case 1. Suppose (IN− ∨ Pξ) < I.

Choose a unit vector y0 ∈ (IN− ∨ Pξ)⊥. It follows from Corollary 3.3 that for each x ∈ H, we have
x ⊗ y0 ∈ Alg(L). Define a bounded (n − 1)-linear mapping ϕ ∈ Cn−1(Alg(L), B(H)) by

ϕ(A1, A2, . . . , An−1)x = (−1)nσ(A1, A2, . . . , An−1, x ⊗ y0)y0, Ai ∈ Alg(L), x ∈ H.

As in [9], we could show σ = ∂ϕ. In fact, for each x ∈ H and Ai ∈ Alg(L), we have

∂ϕ(A1, . . . , An)x

= A1ϕ(A2, . . . , An)x +
n−1∑

i=1

(−1)iϕ(A1, . . . , AiAi+1, . . . , An)x + (−1)nϕ(A1, . . . , An−1)Anx

= (−1)n

[
A1σ(A2, . . . , An, x ⊗ y0)y0 +

n−1∑

i=1

(−1)iσ(A1, . . . , AiAi+1, . . . , An, x ⊗ y0)y0

+ (−1)nσ(A1, . . . , An−1, Anx ⊗ y0)y0

]

= (−1)n[∂σ(A1, . . . , An, x ⊗ y0)y0 + (−1)nσ(A1, . . . , An)x]

= σ(A1, . . . , An)x.

Hence σ = ∂ϕ, i.e., σ is an n-coboundary.

Case 2. Suppose IN− = I.

Then there is a strictly increasing sequence {Pm}m in N such that limm→∞ Pm = I in the strong
operator topology. For each m = 1, , 2, . . . , since (Pm∨Pξ) < I, we choose a unit vector ym ∈ (Pm∨Pξ)⊥.
Then (Pmx)⊗ ym ∈ Alg(L) for every x ∈ H. Define an (n− 1)-linear mapping ϕm on Alg(L) into B(H)
by

ϕm(A1, . . . , An−1)x = (−1)nσ(A1, . . . , An−1, (Pmx) ⊗ ym)ym, for each x ∈ H,

for all A′
is in Alg(L). Then ϕm ∈ Cn−1(Alg(L), B(H)) and ‖ϕm‖ � ‖σ‖. Consequently, {ϕm :m =

1, 2, . . .} is a bounded sequence in Cn−1(Alg(L), B(H)).
Note that space Cn−1(Alg(L), B(H)) is isometrically isomorphic to the dual of the (Banach space)

projective tensor product
n−1︷ ︸︸ ︷

Alg(L)⊗̂Alg(L)⊗̂ · · · ⊗̂Alg(L) ⊗̂B(H)∗,
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and the weak-* topology on the dual space corresponds to the topology of pointwisely ultraweak con-
vergence on Cn−1(Alg(L), B(H)), where B(H)∗ is the predual of B(H). It follows from the weak-*
compactness of the bounded set in the dual space of a Banach space that there is a subsequence
of {ϕm| m = 1, 2, . . .} which converges in the pointwisely ultraweak topology to an element ϕ in
Cn−1(Alg(L), B(H)). Without loss of generality, we assume that {ϕm| m = 1, 2, . . .} converges in the
topology to ϕ, which implies that {∂ϕm} converges in the topology to ∂ϕ.

Next we show that σ = ∂ϕ, which implies that σ is a coboundary. Let m � 1 and k � m be fixed. For
arbitrary A1, . . . , An ∈ Alg(L) and each x ∈ Pm(H), we have

∂ϕk(A1, . . . , An)x

= A1ϕk(A2, . . . , An)x +
n−1∑

i=1

(−1)iϕk(A1, . . . , AiAi+1, . . . , An)x + (−1)nϕk(A1, . . . , An−1)Anx

= (−1)n

[
A1σ(A2, . . . , An, Pkx ⊗ yk)yk + (−1)nσ(A1, . . . , An−1, PkAnx ⊗ yk)yk

+
n−1∑

i=1

(−1)iσ(A1, . . . , AiAi+1, . . . , An, Pkx ⊗ yk)yk

]

= (−1)n[∂σ(A1, . . . , An, Pkx ⊗ yk)yk − (−1)n+1σ(A1, . . . , An)Pkx]

= σ(A1, . . . , An)x,

where we use the fact that PkAnx = AnPkx for each x in Pm. Hence for each k � m, we have
∂ϕk(A1, . . . , An)Pm = σ(A1, . . . , An)Pm. Let k → ∞, and then let m → ∞. Then ∂ϕ = σ.

Case 3. Suppose (IN− ∨ Pξ) = I, IN− < I and (IN− )N− < IN− .

If let Q = IN− , then QN
− < Q < I, H = Q(H)+Cξ and Q(H) has codimension 1. Using Lemma 3.2, we

have (QN
− ∨Pξ) < I. Choose a unit vector y0 in (QN

− ∨Pξ)⊥. Then for each nonzero vector x in Q, we have

x ⊗ y0 ∈ Alg(L). Let η = Q⊥ξ
‖Q⊥ξ‖ . Then ξ ⊗ η ∈ Alg(L). For arbitrary operators A1, . . . , An−1 in Alg(L),

we define a bounded linear operator ϕ(A1, A2, . . . , An−1) ∈ B(H) by the following two conditions:

ϕ(A1, A2, . . . , An−1)x = (−1)nσ(A1, A2, . . . , An−1, x ⊗ y0)y0, x ∈ Q(H),

and
ϕ(A1, A2, . . . , An−1)ξ = (−1)nσ(A1, A2, . . . , An−1, ξ ⊗ η)η.

By Lemma 4.1, we have ‖ϕ(A1, A2, . . . , An−1)‖ � (4/‖Q⊥ξ‖)‖σ‖‖A1‖ · · · ‖An−1‖. Hence the mapping
ϕ : (A1, . . . , An−1) → ϕ(A1, A2, . . . , An−1) is a bounded (n − 1)-linear operator in Cn−1(Alg(L), B(H)).
Note that Aξ ∈ Cξ for each A in Alg(L). By similar calculations to Case 1, we have

∂ϕ(A1, A2, . . . , An)x = σ(A1, A2, . . . , An)x, for each x ∈ Q(H)

and
∂ϕ(A1, A2, . . . , An)ξ = σ(A1, A2, . . . , An)ξ,

for all Ai’s in Alg(L). Hence σ = ∂ϕ, i.e., σ is a coboundary.

Case 4. Suppose (IN− ∨ Pξ) = I, IN− < I and (IN− )N− = IN− .

If we let Q = IN− , then QN
− = Q < I, H = Q(H) + Cξ and Q(H) has codimension 1. Since QN

− = Q,
there exists a sequence {Qm} in N such that 0 < Q1 < Q2 < · · · < Qm < · · · < Q and limm Qm = Q in
the strong operator topology. Let m � 1 be fixed. Then Lemma 3.2 yields that (Qm ∨ Pξ) < I. Choose
a unit vector ym ∈ (Qm ∨ Pξ)⊥. Hence by Corollary 3.3, for each x ∈ Q, we have Qmx ⊗ ym ∈ Alg(L).
Notice that ξ ⊗ η ∈ Alg(L), where η = Q⊥ξ

‖Q⊥ξ‖ .
For each m � 1, we define ϕm in Cn−1(Alg(L), B(H)) by the following two conditions:

ϕm(A1, A2, . . . , An−1)x = (−1)nσ(A1, A2, . . . , An−1, Qmx ⊗ ym)ym, x ∈ Q(H),
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and
ϕm(A1, A2, . . . , An−1)ξ = (−1)nσ(A1, A2, . . . , An−1, ξ ⊗ η)η.

By Lemma 4.1, we have ‖ϕm(A1, A2, . . . , An−1)‖ � (4/‖Q⊥ξ‖)‖σ‖‖A1‖ · · · ‖An−1‖ for all Ai’s in Alg(L).
Hence {ϕm :m = 1, 2, . . .} forms a bounded sequence in Cn−1(Alg(L), B(H)).

Using a similar argument to Case 2, we can assume that {ϕm| m = 1, 2, . . .} converges in the point-
wisely ultraweak topology to ϕ, which implies that {∂ϕm} converges in the topology to ∂ϕ. Using a
similar way to the proof in Case 2, we can show that for each m � 1 and all Ai’s ∈ Alg(L),

∂ϕk(A1, . . . , An)Qm = σ(A1, . . . , An)Qm for each k � m;

∂ϕk(A1, . . . , An)ξ = σ(A1, . . . , An)ξ for each k � m.

Let k → ∞, and then let m → ∞. Then ∂ϕ = σ. Hence σ is a coboundary.
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