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ABSTRACT

Attention has been paid to the fact that grouping association between particles exists ip
clouds as well as in rain. Coherent scattering of radar waves from cloud and raindrops de-
pendent on each other has been evaluated and a new radar equation derived. The equation involves
the old one as its special form in the case of incoherent scattering. It is found that the effect of
coherent scattering in some cases is not quite small and should not be neglected.

I. InTrRODUCTION

As one of the important tools in modern meteorology, radar has become
more and more a part in the equipment for observation of precipitation weather
system as well as for the study of cloud physics. At present, radar meteorology
has developed into an independent branch of modern meteorology.

Serving as the theoretical basis of radar meteorology, the radar equation
deals with the correlations between the physical characteristics of precipitation
and the power of received waves, thus making it possible to deduce the physical
characteristics of precipitation ptocesses by the aid of radar observations.

The radar equation extensively used today is as follows!!:

P, — P,A;0-P-7-¢ o, (1)

72M*R?

where P, represents the mean power of the received waves, P,, A, %, 0, ¢, T,
and ¢ respectively the transmitting power, the antenna area, the transmitted
wavelength, the vertical beam width, the horizontal beam width, the pulse dura-
tion, and the velocity of light; while ¢ and 7 are respectively the radar cross-
section, and the mean number of drops per unit volume of the scattering particles,
and R is the distance of the irradiated volume from the radar.

* First published in Chinese in Acta Meteorologica Sinica, Vol. 32, No. 2, pp. 119—128,
1962,
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In the present paper it is intended to discuss the relation between P, and
the number of scattering particles. For the sake of convenience (1) is here
simplified into

P, = C-o-N. (1)

where C is the factor determined by both the radar parameters and the distance
R, while N is the total number of scattering particles in the irradiated volume.

Equation (1) is derived on the basis of a very important assumption that
the scattering particles are independent of each other, and hence there is no
fixed phase relation between the waves scattered by them, and that the scattered
waves do not mutually interfere!”, It thus becomes clear that equation (1) holds
only when the conditions of independent or incoherent scattering are satisfied.

Since equation (1) is very important, quite a number of workers have made
attempts to verity its accuracy experimentally. One way to achieve this is to
make simultaneous accurate measurements of the power of received waves, the
radat parameters and the rain droplet-size distribution. But up to date no
satisfactory results have been obtained because it is difficult to measure at the
same time both the power of received waves and the droplet-size distribution
of the rain from which the echo comes. Another way to verify equation (1) is
to conduct measurements simultaneously with a number of radars having a series

of different wavelengths: from (1”) the theoretical value of ;’-—E-i-% is represented
r 2

. C(h) a(Ay) : : Pr()'l.)

by the ratio =22 X —=22. which can be exactly determined, and —2~

C(2) o( ) P.(,)

can be measured experimentally; thus by comparing these the accuracy of equa-
tion (1) is verified. This method appears to be more practicable.

Led by the latter scheme, J. E. N. Hooper and A. A. Kippax®! made some
observations with radars having three wavelengths and obtained the following

results:
2, =9.1cm A, =9.1cm
A;=3.2cm A, =1.25cm
B ~6.4db ~3.4db
gggfé’dﬁgﬁﬁfe ~6.0 — —6.3db —2.3 — —2.5db

The observations showed that the increase of P, with decrease of 1 is
smaller than that calculated from equation (1). This fact was also pointed out
by H. Goldstein!?. It should be noted that this discrepency can not be explained
as due to negligence of the possible Mie scattering effect in the calculation of

o(h) on the contrary, the difference would be greater if corrections for the

a(22) ’
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Mie scattering are introduced!!). This discrepency can only be explained by the
inexactness of equation (1).

On the other hand, A. N. Dingle found that the rain droplet distribution
in space is in no way identical with the Poison distribution of independent par-
ticles!. He discovered that rain droplets have a tendency towards clustering,
and the volume of each cluster appears to be smaller than 1 litre (the exact size
was not determined on account of the insufficient resolving power of the instru-
ments used); on the average there are several droplets in each cluster and the
clusters are separated from one another by rather large intervals. A. N. Dingle
suggested that such a structure of rainy cloud may arise from the mechanism
of raindrop growth and break-up, atmospheric turbulence and wind shear, electric
effects, etc. This discovery, showing that the clustered raindrops can not be
entirely independent of each other and that among them there must be some
definite connections, is of great significance. This is also true in the case of
cloud dropsPl. Observations of the microstructure of clouds indicate that clouds
are made up of blob structures of the kind similar to that described by the
statistic theory of turbulence, an effect that may be due to the inevitable existence
of turbulence in clouds. Cloud drops in the same blob are not mutually in-
dependent. Consequently, the assumption, under which equation (1) was derived,
that the scattering particles are independent of cach other, may not completely
correspond to reality, and therefore the equation fails to hold.

In the present paper attempts will be made to consider the relations among
the scattering particles, to estimate the effect of coherent scattering, and on this
basis to derive a more accurate radar equation.

II. Couerent Scatrering oF RAnDrops

In solving this problem we shall first base ourselves on the observations
made by A. N. Dingle on the microstructure of showers, and then make a
reasonable generalization of the characteristics of rainy clouds to obtain the
following model:

1. The N raindrops in an irradiated volume are divided into # groups
(m>» 1), of which the Ith group has a scale 4, and there are #, raindrops,

m
cvidently Z n = N
i1=1
2. All the groups are independent of each other and are distributed at
random in space;
3. Raindrops in one and the same group possess the same statistical charac-
teristics;
4. All the raindrops are equal in radius (in calculations the mean value is
taken);
5. Coordinate variations of the raindrops are subjected to stationary
stochastic processes.
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The resultant electric field produced by N raindrops at the antenna should
be

and the mean power of the received waves P, should be

N e (Rs—R;'}>
A
e —

_ C’[N + <i i £—iF R =R, >J, (2

where the notations { ) and = respectively represent the mean and conjugate
4
complex, g = —= .

As a matter of fact, the first term in equation (2) represents incoherent
scattering, and the second, coherent scattering. The latter term should be zero
in case of incoherent scattering, since the probabilities for R,— R; to take various
values are equal.

In the following we shall examine the term that expresses coherent scattering.
By separating the contributions due to the “particle pairs” belonging to the same
group from those due to the “particle pairs” belonging to different groups, we
have

<E L —iER~R )> i <Z e—iB(R;—R; )>

i=1 j=1 =1

iwi i%i

m

PPy [gz i) 1 (303 enn )|, (3
s=1 k=1s¢=1
r3¥p k]

where the first suffix of each of the symbols R,,, and R;,, denotes the ordinal
number of the groups, and the second suffix, the ordinal number of raindrops
in the groups.

In expression (3) the second term in the square brackets represents the con-
tributions due to the “particles pairs” belonging to different groups (k=¢l). This
term should be cqual to zero, for the groups are independent of each other and
are subjected to random distribution in space, and so the probabilities for
(R,,p — Ry,,) to take different values are equal. Thus, the whole problem is
reduced to a mere calculation of the contributions due to the “particle pairs”
belonging to the same group, represented by the first term of equation (3).

Let W,(y) represent the probability density function of the random variable
R, — Ry, = (&R),,,. Considering that the statistical characteristics of the
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particles in the same group are similar to each other, we have

ny ny
(3 o) = 3 (eminern.s) =

i= =1
s&p %P
4o .
= =0 | owi . 4

To calculate (4), it is necessary to know the expression of the probability
density function W,(y). For this we take into account the following two possible
cases: (i) the group is a cylinder with radius 4, and (ii) the group is a sphere
with radius 2. No matter which shape is taken, the probability of appearance
of raindrops in the group can still be considered everywhere the same. The
distribution function W ,(y), which corresponds to the two cases mentioned above,
are denoted by W(y) and W& (y).

1. Cylindrical Groups

Let f%(R—R)) represent the distribution function of the raindrop with
coordinate taking the value R, here the central coordinate of the group is ex-
pressed by R, (as shown in Fig. 1), then apparently

ZO(R — R)) =_I“E ds(R)
Xy dR
== Va—(R— R
Ty
7?(R — R,)) =0, when |R — R,| > a,

The theory of probability tells us that be-
tween the probability density function of the
difference AR of random variables and the R ds(Rr)
probability density function n(R—R;) of random
variable R, there exists a relation as follows!:

+oo Ry
WP = | PPz + )z, (6)
Substituting (6) into (5), and when

2a;=y>=0, we have
Fig. 1
2 (l—y/a \ 2|12
WP(y) ;(—2_1) a;j" ‘1 -ﬂW[l ~(u+1” du; (7a)
Y o § a:

when — 24, << y < 0,

W(y) = (-i:)a’ N Dty = [1—(u+ _7’)]” du;  (7b)
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when |y >2g
WiP(y) == 0, (7>

Combining (7a), (7b), and (7c¢) we get

{
WP(y) = WP (— y)*-f—j Kl [1— ]2 x
Td,
20

G

Wi(y) =0, |yl > 2a, (8b)

‘\-::

] < 2a, (8a)

By expanding the integrand into power series, the integral of (8a) is evaluated

as follows:

{W}nm—- o (1 2), 1yl <24 (92>
7!26; | a l
WiP(y) =0, |yl > 2a; (9b)
where PV ( —J-’\) represents the infinite series PYW ( H—D = Z €n il—}:-;”,
|a‘_,| a,! n=o | a
4 — 23
= ¢ =0, =5
LA 5 _5
3 3 6 H] 5 ,12’
1 1
Lg = — —, (g = —, Cp = +
6 8 7 60 ]

The characteristics of WV (y) is shown in Fig.2. In the following discus-
sion the infinite series will be substituted by the linear functions expressed by
the dotted line in the figure, namely,

1.7

{Wm(y) =1 %06 x (1 — .1_!..’“_ ) when [yl <17; (%)
W(y) =0, when |y|>17.  (9b)

It can be seen from the figure that the error introduced by such an approximation

is not great.

2. Spherical Groups

Let nf?(R — R,) represent the distribution function of the raindrop with
coordinate taking the value R, then evidently
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2P(R — R) = L. &V (R) _ -437, (4 — (R — R,

L dR
when 'R — R;| < a4
,;.??(R——ﬁ;)-_—o, when R — R;| > a,

By the same method as used above, W{?(y) can be obtained as follows:

(2) _(3V1 5 Y , 7.
{W, (»)=\=) =P = ), when |y| <2a; (102)
4 d a;:
W (y) =0, when |y| > 2a; (10b)
5
r 1” r 16 r r 4 ' 2 ’
hereP“)(l)ﬁ “,,_y_.,c=—~—,c==0,c=——,c=-—,c,-—0,
v al) =2l e a T3 0TS
Cy = — ,%)_ The characteristics of W{?(y) are shown in Fig. 3. In this case

W®(y) can be approximated by a linear function:
ﬂ'W(n(}')

aW () +

0.6\

0.5 1.0 1.5 2,0
Fig. 2

{W}”(y) = % X 0.675 (1 ~_1 } 2 D, when [y <1.5; (10a")
3

wP(y) =0, when |y > 15,  (10b")

Substituting respectively (9’) and (10") into (4), and then integrating and
substituting into (3), we obtain the expression for coherent scattering:
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7 "

<Z Z e—:‘:(x,—xp> = (m — Vi) = Z mny — Df(R), (11)

P
i=1 =1 i=1p=1 t=1
i

where

fO (h) = 0.706 X (1 — cos 1.7;;)";2_2,

b= 4n -‘f, HOh) = for cylindrical groups, (12)

f® (k) = 0.900 X (1 — cos 1.5%) _;;2,

for spherical groups.

Equation (11) can be rewritten as m-n,(n,—1) f(%;), where the line means
that the mean value is taken over the 7z groups. Considering m > 1, this mean
value can be replaced by the mathematical expectation of n(n—1)f(k), that is,

=T = |

min

r‘““ n(n— D ROW Ch, n)dndh=nCi=TCRY, (13)

where W (4, ») represents the joint probability density function of the number
of the particles in the groups 7 and the value 4 = —113 of the groups.

Finally, by substituting (11) and (12) into (2) we obtain a new radar equa-
tion which takes into account the effect of coherent scattering:

P,= co[N 4+ m-n(n— 1fk)]. (14)

In this new equation the first term in the square brackets represents inco-
herent scattering, while the second term, coherent scattering. It can be seen
from (13) that coherent scattering yields additional echoes back to the antenna
of the radar, the power of received waves P, being related not only to the total
number of scattering particles, but also to how the particles are clustered. A
discussion of this new equation is given below:

(1) The term expressing coherent scattering 1is proportional to
m-n(n—1) f(2) and the value of this term increases with the number of rain-
drops 7, in each group. When m;=1( =1, ---, m=N), that is, when each
group is made up of one particle only, this term disappears, and equation (14)
degenerates to (2), indicating that coherent scattering no longer exists. This
result is reasonable, because in the above discussion the groups are assumed to
be independent of each other, and therefore the fact that »,=1, (=1, ---,
m = N) naturally means the independence of the N particles of each other, which
is just the condition utilized in the derivation of the old radar equation. Under
this condition no coherent scattering exists and equation (14) naturally takes the
form of the old equation (2).
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(2) The magnitude and variation of the term of coherent scattering. The
magnitude of the effect of coherent scattering depends upon the total number
of groups m together with the characteristics of the groups | represented by the

joint probability density function W (n, —‘—‘lﬁ)) On account of the lack of de-

tailed observation data about W (n, -4:—) in the evaluation of the effect of

coherent scattering, we have, for the time being, to assume that all the groups
are of tl_le same radius ¢ and consist of the same number of raindrops », so
mon(n—1)f(k) = N(n—1)f(A). The values of the function f(%) calculated by

equation (12) are shown in Fig. 4 and the values of ﬁz%‘i corresponding to

wavelengths 4 and radius @ of the groups are given in the following table.

?mx A A(cm)
~—
f\ h 10 5 3 1
1 1.3 2.6 4.4 13
2 2.6 5.2 8.7 26
a 3 3.9 7.8 13.0 39
(cm)
5 6.5 13.0 21.7 65
10 13.0 26.0 43.3 130
)

0.8

0.7

0.6}

0.5
0.4 f2 (&) Spherical group
0.3} 1"CA) Cylindrical group
0.2
0.1

0.0

1 3 5 7 9 11 13 15
Fig. 4

It is seen from Fig. 4 that f(%) tends to increase when % decreases and that
the coherent scattering produced by spherical groups [f?(4)] is similar to that
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produced by cylindrical groups [fV(4)]. Let « represent the ratio between
coherent and incoherent scattering, then a= (n—1)f(h). When 2<7, =6, «
in general exceeds 25%, and when the groups are small, it can even exceed
100% (for instance, when n =6, a=10.75cm, 1=3.2, or, when n=6,
a=275cm, 1= 10, then « = 1). According to Dingle’s observations, » is less
than ten and « is in the order of centimetres, then in case of real rainy clouds
the term representing coherent scattering can be comparable with that of incoherent
scattering. When the group is large and the wavelength is short, 2 will be
large and then coherent scattering becomes insignificant. Thus it turns out cleat
that coherent scattering is produced exclusively by groups of the order of centi-
metres. Moreover, it can be seen from the figure that the value of the term
representing coherent scattering goes through a series of maxima and minima
and the amplitudes of the maxima and minima decrease as % increases, somewhat
like the small-hole diffraction pattern of light. This result is also reasonable,
because these two physical processes are essentially of the same nature, i.e., the
interference of waves. In real rainy clouds the radius of groups and the number
of particles have a distribution W(n, /), thercfore the maxima and minima will
be averaged out.

3. Since f(jﬁ) is related to wavclength, according to (14) we have
A
1 4xa 1
Pk _ CO) o, oCh) H(G )=

2

— Chy) X a(y) X _1j‘ a(dy) (15)
C(ig) 0'(‘13) 1 -+ a(_lz).

Comparing with the results obtained by the old radar equation (1), equation
14 a(i)
14 a(dy)’
the effect of coherent and incoherent scattering are comparable. If A,>41, then

(15) has in addition a factor This factor cannot be neglected when

a(ky) < 1, but 1+ alh) > 1. This just accounts for the above mentioned
a(a,;) 1+ a(h)

discrepency existing between the old equation and the observed facts. In ac-
cordance with Dingle’s observations, taking » =6, a =5, then when 1,=1.25 cm

and i, =9.2cm, Fl—j:-i(-)f*—) =1db. This shows that the theoretical wvalue
1 -+ U(]Q)

calculated by (15) completely agrees with that obtained from observations, and
the correctness of the newly derived equation with consideration of coherent
scattering is thus indirectly verified.
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III, Scartermc or Rapar Waves rroM Croup Drops

The model developed in the previous section for raindrops does not apply
to the case of cloud drops, because there are much more cloud droplets per unit
volume than raindrops which are divided into discrete groups. The reasonable
treatment is to take clouds as continuous media with a “blob” structure (here
the term “blob” is used in the sense of blobs in the statistic theory of turbulence).
In this way we shall discuss the problem of scattering of radar waves from cloud
drops. This treatment can be as well applied to the case when the raindrops
are rather dispersed and the group structure is not distinct. Thus the method
to be discussed in this section has a comparatively general meaning.

Let the space coordinate be represented by the vector R and the wave
vector of the transmitted waves by K, then the electric field at the receiving
antenna due to the waves scattered by all the particles in the irradiated volume

V should be

E—_1 [ﬁ E(R) g*i=KR g(R)dR, (16)

Vi) R

where £ represents the ability of the cloud particles in a unit volume to produce
the electric field of scattering waves. If the size-distribution function of the
cloud drops is expressed by the function #(r) and the total number of cloud drops

in a unit volume by n= r n(r)dr, then
a
8= " o(rn(rir = p(7m, a7

where F is the mean value of radius in a unit volume.

Because the blob structure of clouds, the number density 7, and the mean
radius 7 of the particles are subjected to fluctuations, 8 is a random variable in
time and space which fluctuates at random and thus may be expressed as follows:

B(R, 1) = + L8(R, 1), (18)

where AB(R, t) is also a random variable in time and space. On account of
the fact that the time and space involved in radar observation are rather limited,
it can be assumed that the field of random variable AS(R,?) is homogencous
and isotropic in space and stationary in time.

Substituting (18) into (16) to calculate the mean strength P, of the echo,
we fird

P, = %(E-Eﬂ =C { ‘E 'm ¢~ KR 4R |2 +

+ (s jﬁ (BF(R, )¢ KR aR) m kR g 4
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(1§ o, s ) o)

N
+ [m 4R m (AB(R, H)AB(R, t)>emx'-n'-x-mdn'] booa9

The first term of this equation has been calculated by A. J. F. Siegert and
H. Goldstein and demonstrated to be negligible?. Since (Ag (R, ¢)) =0,
the second and third terms are equal to 0. Thus only the last term remains.
In this term the covariance of AF(R, t) contained in the integration sign can
be expressed by the correlation function C(R — R’):

(88(R, )ag(R’, 1)) = ((Ap))C(R —R), (20)

Substituting (20) into (19), introducing the new variable p=R’— R and
considering that the correlation function becomes appreciably different from zero

only when pis very small, we can take the approximation K'=K,Sﬂ [--:1dp=
v
SSS [---)dp, and equation (19) is transformed into

P, = cccap (|| ar {[[ execiorda. (21)

In accordance with the statistical theory of turbulance, the inverse Fourier
transform of the correlation function is the spectrum function ¢(k)!”],

O(k) = m ¢%C( p)dp, (22)

and therefore equation (21) changes into

P.C— <<Aﬁ>=>.jﬁdk-@(2k> —cv-(apmem| . @

A

This is the radar equation for the clouds {or rain) with blob structure. In
(23) it can be seen directly that

Poc{(Ap)?) = {(np'(F)AT + p(7)An)?),

that is, the greater the values and fluctuations of 7 and 7, the stronger the received
waves. Besides,

P ocd(k) |
0k |, .

This means that the mean power of the received waves is proportional to the
spectrum function of the blob having a wave number 4x/i and size 7/2. Such
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results are in like manner analogous to the small-hole diffraction in optics. Aside
from the blobs whose size approximates to half a wavelength, all the other blobs
do not contribute to P,.

In the following let us have a more thorough discussion of equation (23).

(1) Assuming, as in the derivation of the old radar equation (1), that
the particles are independent of each other and have the same radius, we find
that the correlation function is just the & function, C(p) = 6(p), and, from
(22) #(k) =1; on the other hand®, ((Ag)?) = ((An)?) - [p|* = n|p|?,
equation (23) reduces to (2), and it becomes clear that (23) is more general
than (2).

(2) 1In deriving (23) no specifications were made in relation to the form
of the correlation function C(p) as well as of the spectrum function ¢(k),
so the equation is valid for random turbulence fields. In this paper it is shown
that P, is proportional to ¢(4=/1), but up to date, it seems that the best form
with which to express the turbulence function ¢(&) of clouds has not yet been
investigated. For free atmosphere the following four forms have been used®.

Title Bessel Exponential Gaussian Couchy
- 0 o - - g 1
C(p LK (£ e~P/Py e~{P/Py) —
@ £5(2) [T+ Golo)T
3/t 3

2.3 Bxlo3 Ea 2.3
o) | | T | TEg LN
’ [1+ k2l 1°/2 [1+ &0} 12 e 10 ekPo

The p, in each term corresponds ta the average size of the blob (or the scale

length).

Whether any of the above mentioned forms can be applied to the
turbulence of clouds is still open to question.

3. Equation (23) shows that the wavelength factor is contained not only

in C, pi(7), but also in ¢(4=/A).

Owing to this result, it might be possible

to conduct simultaneous measurements with radars of different wavelengths in
the investigation of the state of turbulence in clouds.

ConNCLUSIONS

1. When cloud or raindrops are clustered into rather small groups or

blobs, the effect of coherent scattering is not negligible.

equation should take the following form:

In this case the radar

2 . . . :
for rain P,= Mo'ﬂ [1 + 2 n(n — l)f(i’rf)J, (24)
721*R? N A
where # is the mean number of raindrops, the other symbols are as above;
for cloud
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_P.A6-®-Tec e
P, = BLE2TC . apyye (%), 25)

The equation in the form of (25) is in principle also applicable for the
tase of rain. In comparison with (24), equation (25) might be more accurate
but less convenient.

If the attenuation experienced by radar waves during their passage through
the atmosphere, can not be neglected, (24) and (25) should be multiplied by a
factor F(1,R)<1.

2. To raise the accuracy of radar measurement, it is necessary to have a
further understanding of the microstructures of clouds and rain, such as the
characteristics of groups and blobs, etc.

The author wishes to take this opportunity to express his deep gratitude to
Professors Jaw Jeou-jan, Hsieh Yi-pin, and Koo Chen-chao for their kind en-
couragement and guidance in preparing this paper. He is also indebted to Mr.
Chao Ber-lin for his valuable suggestions and help.
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