群的 矛-次正规与矛-次反正规链 *

李世荣

(广西大学数学系, 南宁 530004)

摘要 给定一个子群闭的饱和群系系,定义群类、 \mathscr{F}_{pc} ,使得 $G \in \mathscr{R}_{o}$ 当且仅当对于每个子群 $X \leq G$,存在 G 的一个不次正规子群 S, $X \leq S$ 并且 X 在 S 中、Y 次反正规.借助、Y 分射子和、Y 覆盖子群,给出了、Y 念。一群的特征.

关键词 有限群 群系 矛次正规 矛投射子

本文考虑的群均为有限(不必可解).设 \mathscr{F} 是一个饱和群系,G是一个群.G的一个极大子群 M 称为 \mathscr{F} -正规的,如果 $G/\operatorname{Core}_G(M) \in \mathscr{F}$; 否则 M 称为 \mathscr{F} 次反正规的.G的一个子群 H 称为在 G 中 \mathscr{F} -次正规的,如果存在一个极大链: $H=U_0 < U_1 < \cdots < U_n = G$,使得 U_{i-1} \mathscr{F} -正规于 U_i , $i=1,2,\cdots,n$. H 称为 \mathscr{F} -次反正规的,如果 $H \leqslant X < {}^\circ Y \leqslant G$ 时,X \mathscr{F} -反 正规于 Y,这里 $X < {}^\circ Y$ 表示 X 是 Y 的极大子群.特别地,G 同时是 \mathscr{F} -次正规和 \mathscr{F} -次反正规的,并且 G-是唯一一个具有此性质的子群.

设 $H \le K \le G$. 如果 H 在 K 中 \mathscr{F} -次正规而 K 在 G 中 \mathscr{F} -次正规,则 H 在 G 中 \mathscr{F} -次正规,可以找到 G 的包含 X 的 \mathscr{F} -次正规子群 S,使得 S 中包含的 X 的真子群均非 \mathscr{F} -次正规于 S.

定义 0.1 群 G 的子群对 (X,S) 称为 G 的一个 \mathcal{T}_{∞} -链, 如果 $X\mathcal{F}$ -次反正规于 S 并且 $S\mathcal{F}$ 次正规于 G.

定义 0.2 群 G 称为 \mathcal{R}_c -群, 如果对于 G 的每一个子群 X 都有 G 的 \mathcal{R}_c -链(X, S). 用 \mathcal{R}_c 表示所有 \mathcal{R}_c -群作成的类.

考虑情形 $\mathscr{F}=\mathscr{N}($ 幂零群系).显然, \mathscr{N} 次正规子群一定次正规.但反之不真.例如, $\mathrm{SL}(2,5)$ 的中心次正规但非 \mathscr{N} 次正规.对于 \mathscr{N} -群, \mathscr{N} -次正规与次正规是一致的.事实上,这个结论对可解群类成立,而每一个 \mathscr{N} -群可解(见推论 2. 2).

以下是本文使用的一些记号. 除非特别说明, 文中的记号与术语均是标准的. \mathscr{E} : 所有有限群作成的类, \mathscr{A} : 所有有限 Abel 群作成的类, $\operatorname{Proj}_{\mathscr{F}}(G)$: G 的所有 \mathscr{F} -投射子作成的集合; $\operatorname{Cov}_{\mathscr{F}}(G)$: G 的所有 \mathscr{F} 覆盖子群作成的集合, $G^{\mathscr{F}}$: G 的 \mathscr{F} 剩余, $\mu(G)$: $G^{\mathscr{F}}$ 在 G 中所有极小补作成的集合; K[H]: 群 K 通过群 H 的可裂扩张; $M < {}^{\circ}G$: M 是 G 的极大子群.

文献[1] 中定义了群类 \mathscr{T}_{an} . $G \in \mathscr{T}_{an}$ 当且仅当 G 的每个子群 \mathscr{F} -次正规或 \mathscr{F} -次反正规. 用本文的术语, $G \in \mathscr{T}_{an}$ 当且仅当对于每一个 $X \leqslant G$,G 有 \mathscr{T}_{bc} -链 (X,X) 或 (X,G). 因此, \mathscr{T}_{an} -群是 \mathscr{T}_{ac} -群的平凡情形. \mathscr{T}_{an} -群已经被刻画.

¹⁹⁹⁸⁻⁰¹⁻¹² 收稿

^{*}国家自然科学基金(批准号: 19761001)和广西自然科学基金资助项目

定理 $A^{[]}$ 设 \mathscr{I} 是子群闭的饱和群系,则下列陈述等价.

- (i) $G \in \mathscr{F}_{an}$:
- (ii) Cov $\mathscr{I}(G) = \mu(G)$,且只要 $G^{\mathscr{I}} \leqslant H \leqslant G$,便有 $H \in \mathscr{F}$;
- (iii) $\operatorname{Proj}_{\mathscr{C}}(G) = \mu(G)$,且只要 $G^{\mathscr{T}} \leqslant H \leqslant G$,便有 $H \in \mathscr{F}$.

文献[$1 \sim 3$] 研究了一些特殊的 \mathcal{L}_n -群. 特别地,当 \mathcal{L}_p 是可解 p -幂零群类(p 为奇素数)时,给出了 \mathcal{L}_n -群的结构 [2] .

G 的子群 F 称为 G 的一个投射子,如果对于任意 $N \triangleleft G$, FN/N 在 G/N 中 \mathscr{F} -极大. 如果对于任意 $F \triangleleft H \triangleleft G$, F 都是 H 的 \mathscr{F} 投射子,则 F 称为 G 的 \mathscr{F} 覆盖子群. \mathscr{F} -投射子不一定是 \mathscr{F} -覆盖子群,且一般地 \mathscr{F} -覆盖子群不一定存在. 然而, \mathscr{F} -群确有 \mathscr{F} -覆盖子群,并且一致于 \mathscr{F} -投射子.

1 预备引理

引理 1.1 设 牙为子群闭群系,则

- (i) 如果 $H \in G$ 的 \mathcal{F} 次正规子群且 $H \leq K \leq G$,则 H 在 K 中 \mathcal{F} 次正规;
- (ii) 如果 H 在 G 中 \mathcal{F} 次正规且 $N \triangleleft G$,则 HN/N 在 G/N 中 \mathcal{F} 次正规;
- (iii) 如果 H 在 G 中 \mathcal{F} 次反正规且 $N \triangleleft G$,则 HN/N 在 G/N 中 \mathcal{F} 次反正规.

证 (i) 对 G 用归纳法. 情形 H = G 是平凡的. 假设 H < G. 由假设, H \mathscr{F} 次正规于 G,故存在 G 的 \mathscr{F} 正规极大子群 M, M 包含H 且 H 在 M 中 \mathscr{F} -次正规. 当然 $G^{\mathscr{F}} \subseteq M$. 因为 \mathscr{F} 子群闭,所以 $K^{\mathscr{F}} \subseteq G^{\mathscr{F}}$. 由此得 $\langle K^{\mathscr{F}}, H \rangle \subseteq M \cap K$,这样, $M \cap K$ 在 K 中 \mathscr{F} -次正规. 另一方面,归纳假设隐含 H \mathscr{F} -次正规于 $M \cap K$. 从而 H 在 K 中 \mathscr{F} 次正规.

(ii)和(iii)由定义可得.

引理 1. $2^{[3]}$ G 的 \mathcal{F} -次正规子群的交在 G 中 \mathcal{F} -次正规, 其中 \mathcal{F} 是子群闭群系.

引理 1.2 断言 G 的子群 H 的 \mathscr{F} -次正规闭包,即 G 的包含 H 的所有 \mathscr{F} 次正规子群的交,是 G 中包含 H 的唯一最小 \mathscr{F} 次正规子群.

- (i) 如果 $F \in \mu(G)$,则 $F \cap G^{\mathscr{I}} \leqslant \Phi(F)$ 且 $F \in \mathscr{F}$ 其中 $\Phi(F)$ 是 F 的 Frattini 子群;
- (ii) $\mathcal{F} \in Cov_{\mathcal{F}}(G)$ 当且仅当 $F \in \mathcal{F}$ 且 F 在 G 中 \mathcal{F} -次反正规.

如果 $F \in G$ 的 \mathcal{F} 投射子,则 $G = FG^{\mathcal{T}}$,故 $F \in G^{\mathcal{T}}$ 在 G 中的补. 对于 $G^{\mathcal{T}}$ 在 G 中的所有极小补都是 G 的 \mathcal{F} 投射子这种极端情形,有如下结论:

引理 1.4 设 \mathscr{F} 为饱和群系. 如果 $\mu(G) \subseteq \operatorname{Proj}_{\mathscr{A}}(G)$, 则

- (i) $\operatorname{Proj}_{\mathscr{A}}(G) = \mu(G),$
- $(ii) \operatorname{Proj}_{\mathscr{F}}(G) = \operatorname{Cov}_{\mathscr{F}}(G).$

证 (i) 对于任意 $F \in \operatorname{Proj}_{\mathscr{C}}(G)$, $G = FG^{\mathscr{T}}$,故 F 包含 $G^{\mathscr{T}}$ 在 G 中的一个极小补,设为 H. 由假设, $H \in \operatorname{Proj}_{\mathscr{C}}(G)$. 这样, $F = H \in \mu(G)$.

(ii) 由定义, $Cov_{\mathscr{I}}(G)\subseteq Proj_{\mathscr{I}}(G)$,故仅需证明 $Proj_{\mathscr{I}}(G)\subseteq Cov_{\mathscr{I}}(G)$,即对于任意 $F\in Proj_{\mathscr{I}}(G)$ 证明 $F\leqslant H\leqslant G$ 时, $H=FH^{\mathscr{I}}$.

首先,有 $G = FG^{\mathscr{T}} = HG^{\mathscr{T}}$,于是

$$H^{\mathscr{T}} \leqslant G^{\mathscr{T}} \cap H$$
.

设 K 是 $H^{\mathscr{T}}$ 在 H 中的极小补,此时由引理 1.3(i), $K \in \mathscr{F}$,且 $G = HG^{\mathscr{T}} = KH^{\mathscr{T}}G^{\mathscr{T}} = KG^{\mathscr{T}}$. 这样可以找到 $G^{\mathscr{T}}$ 在 G 中的一个极小补 $Y \leqslant K$. 由假设 $Y \in \operatorname{Proj}_{\mathscr{T}}(G)$. 特别地, $Y \in G$ 中 \mathscr{F} 极大,进而 $K = Y \in \operatorname{Proj}_{\mathscr{T}}(G)$. 由此得出

$$K \cap G^{\mathscr{T}} \subseteq \Phi(K)$$
.

断言 $\Phi(K)H^{\mathcal{F}}/H^{\mathcal{F}} \leqslant \Phi(H/H^{\mathcal{F}})$.

如果 $H = H^{\mathscr{T}}$,因为 K 是 $H^{\mathscr{T}}$ 在 H 中的极小补,故 K = 1,这是平凡情形.假设 $H^{\mathscr{T}} < H$.设 M 是 H 之包含 $H^{\mathscr{T}}$ 的任一极大子群并且令 $K_0 = K \cap M$,此时 $K_0 H^{\mathscr{T}} \leqslant M$.另一方面,因 为 $H = KH^{\mathscr{T}}$,故对于任意 $m \in M$ 有 m = kh,其中, $k \in K$, $h \in H^{\mathscr{T}}$.由此,通过 $H^{\mathscr{T}} \leqslant M$,有 $k = mh^{-1} \in M$,进而 $m \in K_0 H^{\mathscr{T}}$,这样, $M = K_0 H^{\mathscr{T}}$.假设 $K_0 < K_1 < K$,因为 K 是 $H^{\mathscr{T}}$ 在 H 中的一个极小补,所以 $K_1 H^{\mathscr{T}}$ 是 H 的含有 M 的真子群.由 M 的极大性,有 $M = K_1 H^{\mathscr{T}}$,进而 $K_0 = K_1$,矛盾.由此得出 K_0 是 K 的极大子群.于是对于 H 的包含 $H^{\mathscr{T}}$ 的极大子群 M,有 $\Phi(K) \leqslant K_0 \leqslant M$.这样,得出 $\Phi(K) H^{\mathscr{T}}/H^{\mathscr{T}}$ 含在 $H/H^{\mathscr{T}}$ 的每个极大子群 $M/H^{\mathscr{T}}$ 中,断言得证.此时

$$H \cap G^{\mathcal{T}}/H^{\mathcal{T}} = KH^{\mathcal{T}}\cap G^{\mathcal{T}}/H^{\mathcal{T}} = H^{\mathcal{T}}(K \cap G^{\mathcal{T}})/H^{\mathcal{T}} \leqslant \Phi(K)H^{\mathcal{T}}/H^{\mathcal{T}} \leqslant \Phi(H/H^{\mathcal{T}}),$$

且

$$\begin{split} H/H^{\mathcal{F}} &= FG^{\mathcal{F}} \cap \ H/H^{\mathcal{F}} = F(G^{\mathcal{F}} \cap \ H)/H^{\mathcal{F}} = \\ &FH^{\mathcal{F}}/H^{\mathcal{F}} \circ \ G^{\mathcal{F}} \cap \ H/H^{\mathcal{F}} \leqslant FH^{\mathcal{F}}/H^{\mathcal{F}} \circ \ \Phi(H/H^{\mathcal{F}}) = FH^{\mathcal{F}}/H^{\mathcal{F}}, \end{split}$$

得 $H = FH^{\mathcal{F}}$.

引理 1. 5 假设 $G \in \mathcal{R}$ 且 $N \triangleleft G$,其中 \mathcal{S} 为子群闭饱和群系. 如果 (X,S) 是 G 的 \mathcal{R} - 链, 则 (XN/N,SN/N) 是 G/N 的 \mathcal{R} - 链. 特别地, \mathcal{R} 是一个同态.

证 首先,因为 S 在 G 中 \mathscr{S} -次正规,所以由引理 1.1 得 SN/N 在 G/N 中 \mathscr{S} -次正规. 其次,有

 $SN/N \cong S/S \cap N$, $XN/N \cong X(S \cap N)/S \cap N$.

由引理 1. 1, 因为 X 在 S 中 \mathscr{F} -次反正规,故 $X(S \cap N)/S \cap N$ 在 $S/S \cap N$ 中 \mathscr{F} -次反正规。这样 XN/N 在 SN/N 中 \mathscr{F} -次反正规。由定义,(XN/N,SN/N) 是 G/N 的一个 \mathscr{F} 。-链,于 是 \mathscr{F} 。是一个同态.

2 %c-群的一个特征性质

本节证明定理 2. 2, 它是文献[1] 中定理 1.6 的推广.

定义 2.1 (i) 称群 G 具有性质(P), 如果 $Proj \nearrow G$) = $\mu(G)$;

(ii) 称群 G 具有性质(C), 如果 $Cov_{\mathscr{I}}(G) = \mu(G)$.

由引理 1.4 知 G 具有性质(P)当且仅当它具有性质(C).

定理 2.1 设 \mathscr{S} 为子群闭饱和群系, $G \in \mathscr{T}_{\infty}$. 对于每个 $X \leqslant G$,设 (X,S) 是 G 的 \mathscr{T}_{∞} - 链,则 S 是 X 在 G 中的 \mathscr{F} 次正规闭包.

证 设 $H \in G$ 的包含X 的 \mathscr{F} 次正规子群. 由引理 1.2, $Y = S \cap H$ 在 G 中 \mathscr{F} 次正规,

进而由引理 1.1, Y 也 \mathscr{F} -次正规于 S. 但 $X \leq Y \leq S$ 且由定义X \mathscr{F} -次反正规于 S. 由此得出 Y = S. 于是 S 是 X 的 \mathscr{F} -次正规闭包.

定理 2.2 设 罗为子群闭饱和群系,则下列陈述等价:

- (i) $G \in \mathscr{T}_{\infty}$:
- (ii) G 的每个 \mathcal{F} -次正规子群具有性质 (P);
- (iii) G 的每个 \mathcal{F} 次正规子群具有性质 (C).

证 (i) \Rightarrow (ii): 首先证明 G 具有性质(P). 由引理 1.3 (i), 对于任意 $F \in \mu(G)$ 有 $F \in \mathscr{F}$ 且 $G = FG^{\mathscr{T}}$. 假设有子群 K 和 H,使得 $F \leqslant K < {}^{\circ}H \leqslant G$ 且 K 在 H 中 \mathscr{F} 正规. 设(K , S) 是 G 的一个 \mathscr{K} -链. 由定义 K 在 S 中 \mathscr{F} 次反正规而 S 在 G 中 \mathscr{F} 次正规. 这样由于 K 并非 \mathscr{F} 次反正规于 G,故 S < G,所以 G 中存在包含 S 的极大子群 M,使得 M 是 \mathscr{F} 正规的,即 $G/\operatorname{Core}_G(M) \in \mathscr{F}$ 这样, $G^{\mathscr{F}} \leqslant \operatorname{Core}_G(M) \leqslant M$,所以 $G = FG^{\mathscr{F}} \leqslant M \leqslant G$,这是一个矛盾. 上述证明得出 F 必定 \mathscr{F} 次反正规于 G. 现在由引理 1.3 (ii) 知, F 是 G 的 \mathscr{F} 覆盖子群. 特别 地, F 是 G 的 \mathscr{F} -投射子,即 $F \in \operatorname{Proj}_{\mathscr{F}}(G)$. 由 F 的任意性得 $\mu(G) \subseteq \operatorname{Proj}_{\mathscr{F}}(G)$. 于是由引理 1.4 得到 $\operatorname{Proj}_{\mathscr{F}}(G) = \mu(G)$,即 G 具有性质 (P).

- (ii)⇒(iii): 由引理 1.4立得.
- (iii) \Rightarrow (i): 对「G | 用归纳法. 设 $X \leqslant G$. 往证 G 有 \mathcal{R} -链(X, S). 首先, 设 $G = G^T X$. 此时 X 包含 G^T 在 G 中的一个极小补,设为 F. 由假设, $F \in Cov_{\mathscr{C}}(G)$. 于是由引理 1.3 知 F,并且因此 X, \mathscr{F} 次反正规于 G. 由此推出 (X,G)是 G 的 \mathscr{R} -链. 现在设 $G^T X < G$. 记 $M = G^T X$. 因为 \mathscr{F} 是子群闭,故 M \mathscr{F} 次正规于 G^{S} 1. 于是由假设,M 具有性质 (C)1. 由归纳假设可以看出 M 有一个 \mathscr{R} -链(X, S). 由定义,S \mathscr{F} 次正规于 M,进而 S \mathscr{F} 次正规于 G. 故 (X,S)是 G 的 \mathscr{R} -链.

因为对于任意有限群 G, $\mu(G)$ 非空, 定理 2.2 说明对于 \mathcal{R} 中的群必存在 \mathcal{L} 覆盖子群并 且一致于 \mathcal{L} 投射子.

推论 2.1 设 \mathcal{F} 为子群闭饱和群系且 $G \in \mathcal{T}_{\infty}$, 那么,

- (i) 假设 $H \in G$ 的 \mathcal{F} 次正规子群, 则存在 G 的 \mathcal{F} -子群F, 使得(F, H) 是 G 的 \mathcal{S}_c -链;
- (ii) 设 $F \leq G$ 且 $F \in \mathcal{F}$ 则 F 是 F 在 G 中的 \mathcal{F} 次正规闭包的 \mathcal{F} 覆盖子群;
- (iii) 设 \mathscr{P} 的特征为 $\chi(\mathscr{P})$,则 $\{1\}$ 在G中的 \mathscr{P} 次正规闭包是G的唯一极大 $\mathscr{B}(\mathscr{A})$ -子群.
- 证 (i) 由定理 2. 2, $Cov_{\mathscr{S}}(H) = \mu(H) \neq \emptyset$, 故可以找到 H 的一个 \mathscr{F} 覆盖子群 F. 由引理 1. 3, F 在 H 中 \mathscr{F} 次反正规. 这样, 由定义, (F, H)是 G 的 \mathscr{K} -链.
- (ii) 设 $S \in F$ 在 G 中 的 \mathscr{F} -次正规闭包,则由定理 2.1,(F, S)是 G 的 $\mathscr{T}_{\mathbb{R}}$ -链. 由定义, F 在 S 中 \mathscr{F} 次反正规. 由引理 1.3(ii) 得 $F \in \operatorname{Proj}_{\mathbb{Z}}(S)$.
- (iii) 设 V 是 G 的极大 $\mathcal{S}_{(\mathscr{T})}$ -子群而(V, S) 是 G 的 \mathscr{F}_{\circ} -链. 由定理 2.1, S 是 V 在 G 中的 \mathscr{F} 次正规闭包.

断言 $S \in \mathcal{S}(\mathcal{A})$.

否则, 存在整除 |S| 的素数 p, 使得 $p \in \chi(\mathcal{P})$, 故 \mathcal{P} 含有 p 阶循环群. 现在设 P 是 S 的

p 阶循环子群,则 $P \in \mathscr{I}$,而子群 $\{1\}$ 在 P 中 \mathscr{I} -正规. 另一方面,由定理 2.2, $S \in \mathscr{I}$ 。这样,S 有 $\mathscr{I}_{\mathbb{C}}$ -链($\{1\}$, S_0). 自然, $P \nsubseteq S_0$,所以 $S_0 < S$,于是 $S^{\mathbb{Z}} < S$. 因为 \mathscr{I} 子群闭,子群 $VS^{\mathbb{Z}}$ 在 S 中 \mathscr{I} 次正规. 但 V 在 S 中 \mathscr{I} 次反正规,故得 $S = VS^{\mathbb{Z}}$. 这样 V 包含 $S^{\mathbb{Z}}$ 在 S 中的一个极小补 F > 1. 由引理 1.3(i), $F \in \mathscr{I}$ 这与 $V \in \mathscr{I}$ 0、分 的假设矛盾. 因此有 $S \in \mathscr{I}$ 0、从而由 V 的极大性推出 S = V. 因为 $\{1\}$ 是 V 中唯一的 \mathscr{I} -子群,故由 (i),V 是 $\{1\}$ 的 \mathscr{I} -次正规闭包.

推论 2.2 %。中的每个群可解.

证 对 G 的阶用归纳法. 设 $P \neq G$ 的 p 阶子群, 其中 p 为素数. 此时 $\{1\}$ 在 P 中 \mathcal{N} -次正规. 设 $\{1, S\}$)是 \mathcal{N}_G -链,这样, $P \neq S$. 因此 G 有包含 S 的极大子群 M,使得 M 在 G 中 \mathcal{N} -正规, 即 $M \triangleleft G$. 由定理 2.2, $M \in \mathcal{N}_G$. 于是由归纳,M 可解,得 G 可解.

3 情形 第二 88

这一节假设 $\mathscr{F}=\mathscr{E}\mathscr{E}$ 。即 p-幂零群类,其中 p 为素数. 显然, \mathscr{F} 为子群闭饱和群系. 定理 3.1 给出了 $\mathscr{F}=\mathscr{E}\mathscr{E}$ 时 \mathscr{F}_{0} -群的结构.

引理 3.1 设 $G \in \mathcal{T}_{\infty}$ 且 $G \notin \mathcal{T}$ 则 $O_p(G) > 1$.

证 由定理 2.2, $G^{\mathscr{T}} \in \mathscr{R}$ 。 因为 $G \notin \mathscr{R}$ 故 $G ext{ if } p$ -幂零,特别 p ert ert G ert. 于是可以找到 G 的一个 p 阶子群 P,且显然单位元群 $\{1\}$ 在 P 中 \mathscr{F} -次正规。设 $(\{1\},S)$ 是 G 的 \mathscr{R} 。-链,则 $P \not\subseteq S$,进而 S < G。故存在 G 的包含 S 的极大子群 L,使得 L 在 G 中 \mathscr{F} - 正规,从而 $G^{\mathscr{T}} \leqslant L < G$.如果 $G^{\mathscr{T}} \notin \mathscr{R}$ 由归纳可得 $O_p(G^{\mathscr{T}}) > 1$,进而 $O_p(G) \geqslant O_p(G^{\mathscr{T}}) > 1$ 为所求。由此可假设 $G^{\mathscr{T}} \in \mathscr{R}$ 也就是说, $G^{\mathscr{T}}$ 为 p -幂零。

如果 $p^{-||}G/G^{\mathscr{F}}$,因为 $G/G^{\mathscr{F}}$ 为 p-幂零,故 G包含指数为p 的正规子群 K. 因假设 G 不是 p-幂零,推出 K 也不是 p-幂零.显然,K 在 G 中 \mathscr{F} 正规.由定理 2.2, $K \in \mathscr{K}$,归纳得 $O_p(K) > 1$,这样, $O_p(G) \geqslant O_p(K) > 1$ 为所求.于是可以假设 $G/G^{\mathscr{F}}$ 是 p'-群.

设 P 为 G 的 Sylow p -子群. 因为 $G^{\mathbb{Z}}$ 为 p -幂零, 由上面讨论可知, $1 < P \leqslant G^{\mathbb{Z}}$ 且 $G^{\mathbb{Z}} = P[H]$,其中 H 是 $G^{\mathbb{Z}}$ 的正规 p -补,并且 $H^{\mathbb{Z}}$ G. 另一方面,由 Frattini 论断知, $G = N_G(P)G^{\mathbb{Z}} = N_G(P)H$,又由 Schur-Zassenhaus 定理 $H^{\mathbb{Z}}$ 知, $H^{\mathbb{Z}}$ 为 $H^{\mathbb{Z}}$ 有一个 $H^{\mathbb{Z}}$,使得 $H^{\mathbb{Z}}$ 的以 $H^{\mathbb{Z}}$,所以 $H^{\mathbb{Z}}$,所以 $H^{\mathbb{Z}}$,所以 $H^{\mathbb{Z}}$,是这一个 $H^{\mathbb{Z}}$,是这一个 $H^{\mathbb{Z}}$,是这一个 $H^{\mathbb{Z}}$,我这样,可以假设 $H^{\mathbb{Z}}$,是这一个 $H^{\mathbb{Z}}$,我这样,可以假设 $H^{\mathbb{Z}}$,是这一个 $H^{\mathbb{Z}}$,我这样,可以假设 $H^{\mathbb{Z}}$,是 $H^{\mathbb{Z}}$,我这样,我就是 $H^{\mathbb{Z}}$,我这样,我就是 $H^{\mathbb{Z}}$,我就是 $H^{\mathbb{Z}}$,我就是

下面的定理是本节的主要结果,它推广了文献[2]中的定理 A.

定理 3.1 设 $G \in \mathcal{S}_{\infty}$,则 G 是半直积

$$G = [G^{\mathscr{T}}]F$$

其中 (i) $G^{\mathscr{F}}$ 是 p-群,且 (ii) $F \in \operatorname{Proj}_{\mathscr{K}}(G) = \operatorname{Cov}_{\mathscr{K}}(G) = \mu(G)$.

证 情形 $G \in \mathcal{F}$ 是平凡的. 假设 $G \notin \mathcal{F}$ 由引理 3. 1, $O_p(G) > 1$ 且由引理 1. 5,

 $G/O_p(G) \in \mathcal{R}$ c. 因为 $O_p(G/O_p(G)) = 1$, 再次应用引理 3.1 得 $G/O_p(G) \in \mathcal{F}$. 于是 $G^{\mathcal{F}} \subseteq O_p(G)$, (i)得证.

用 $H/G^{\mathscr{T}}$ 记 $G/G^{\mathscr{T}}$ 的正规 p -补. 此时 $G^{\mathscr{T}}$ 是 H 的 Sylow p -子群. 由 Schur-Zassenhaus 定理 $G^{\mathfrak{T}}$ 0, $H=[G^{\mathfrak{T}}]$ 1, 其中 $G^{\mathfrak{T}}$ 2, 其中 $G^{\mathfrak{T}}$ 3, 是 $G^{\mathfrak{T}}$ 4, 其中 $G^{\mathfrak{T}}$ 5, 下面证明

$$N_G(K) \cap G^{\mathscr{F}} = 1.$$

假设 $D=N_G(K)\cap G^{\mathbb{Z}}>1$. 显然,子群 $KD=K\times D\in \mathcal{F}$ 且 K<KD. 设 $H=KG^{\mathbb{Z}}$,则 H 在 G 中 \mathcal{F} -次正规,进而由定理 2.2, $H\in \mathcal{F}_{\mathbb{R}}$. 现设(K,S)是 H 的 $\mathcal{F}_{\mathbb{R}}$ -链. 由定义,K 在 S 中 \mathcal{F} -次反正规,而且显然 K \mathcal{F} -次正规于 KD,D $\subseteq S$,故 S<H,H 有包含 S 的极大子群 M,使得 M 在 H 中 \mathcal{F} -正规,于是 $H^{\mathbb{Z}}\subseteq M$. 由此得 $H^{\mathbb{Z}}K\leq M<H=[G^{\mathbb{Z}}]K$. 于是由 $H^{\mathbb{Z}}\subseteq G^{\mathbb{Z}}$ (因为 \mathcal{F} -子群闭)得 $H^{\mathbb{Z}}<G^{\mathbb{Z}}$. 另一方面,因为 K 是 G 的 p -补且 $G/G^{\mathbb{Z}}$ 为 p -幂零,故 $H=KG^{\mathbb{Z}}$ 正规于 G 且 G/H 是 p -群. 注意到 $H/H^{\mathbb{Z}}$ 是 p -幂零群,知 $G/H^{\mathbb{Z}}$ 必为 p -幂零,由此推出 $G^{\mathbb{Z}}\subseteq H^{\mathbb{Z}}$,矛盾.

现在可断言 $G = [G^{\mathscr{T}}] N_G(K)$ 是半直积. 特别地, $N_G(K)$ 是 $G^{\mathscr{T}}$ 在 G 中的极小补. 由定理 2. 2,有 $N_G(K)$ $\in \operatorname{Proj}_{\mathscr{T}}(G) = \operatorname{Cov}_{\mathscr{T}}(G) = \mu(G)$.

推论 3.1 *承*牙三牙_{pc} 三号牙.

证 由定理 3. 1 得 \mathcal{F}_c 二 \mathcal{E}_c 假设 $G \in \mathcal{A}_c$ 即 $G^{\mathcal{F}}$ 是 Abelp-群. 需证明: 对于任意 $X \leqslant G$, G 有 \mathcal{F}_c -链(X, S).

首先设 $G=XG^{\overline{J}}$. 仅需证明 X \mathcal{F} 次反正规于 G,因为它保证(X, G)是 G 的 \mathcal{R} -链. 设此结论不成立. 由定义,G 有两个子群 Y 和 U,使得 $X \leqslant Y < {}^{\circ}U \leqslant G$ 且 Y \mathcal{F} 正规于 U, $G=XG^{\overline{J}}=YG^{\overline{J}}$,又因为 $G^{\overline{J}}$ 是 p-群,故 G:Y 为 p 的幂. 特别地,G:Y 是 p 的幂. 现在 G:Y 的 G:Y 是 G:Y 的 G:Y 的 G:Y 是 G:Y 的 G:Y 的

$$C_G^{\mathscr{F}}(H) = N_G(H) \cap G^{\mathscr{F}} > 1.$$

事实上,由 $G = YG^{\mathcal{T}} = UG^{\mathcal{T}}$ 及 Y < U,有 $Y/Y \cap G^{\mathcal{T}} \cong U/U \cap G^{\mathcal{T}}$,进而 $Y \cap G^{\mathcal{T}} < U \cap G^{\mathcal{T}}$ 。记 $P = U \cap G^{\mathcal{T}}$,V = [P] H. 因为 $H \leq Y$,所以 $Y \cap V = Y \cap U \cap G^{\mathcal{T}}$ 。V = [P] H $Y \cap U \cap G^{\mathcal{T}}$ 。 $Y \cap U \cap G^{\mathcal{T}}$ $Y \cap U \cap G^{\mathcal{T}}$ $Y \cap U \cap G^{\mathcal{T}}$ $Y \cap G^{\mathcal{$

另一方面,由假设, $G^{\mathscr{T}}$ 是 Abel 群,因此 $G^{\mathscr{T}}=C_{G^{\mathscr{T}}}(H)\times [G^{\mathscr{T}},H]^{[6]}$. 设 $W=[G^{\mathscr{T}}]H$,可知 $W/G^{\mathscr{T}}$ 是 $G/G^{\mathscr{T}}$ 的正规 p -补且

$$W/[G^{\mathscr{T}},H] \cong C_{G^{\mathscr{T}}}(H) \times H \in \mathscr{F},$$

故得 $W^{\mathcal{F}} \subseteq [G^{\mathcal{F}}, H]$. 此外,容易看出 $G/W \not\in p$ -群,而 $W/W^{\mathcal{F}} \not\in p$ -幂零群,所以 $G/W^{\mathcal{F}}$ 必为 p-幂零,进而 $G^{\mathcal{F}} \leqslant W^{\mathcal{F}} \leqslant [G^{\mathcal{F}}, H] \leqslant G^{\mathcal{F}}$,得出 $[G^{\mathcal{F}}, H] = G^{\mathcal{F}}$,于是 $C_{G^{\mathcal{F}}}(H) = 1$,矛盾.由 此得 $X \in G$ 中 \mathcal{F} 次反正规.

对于情形 $G \geqslant XG^{\mathcal{T}}$,因为 \mathcal{F} 为子群闭,由引理 1.2,X 在 G 中的 \mathcal{F} 次正规闭包存在,记为 S,那么 $XS^{\mathcal{T}}$ 在 S 中进而在 G 中 \mathcal{F} 次正规,从而 $S = XS^{\mathcal{T}}$. 由于 \mathcal{F} 子群闭,有 $S^{\mathcal{T}} \leqslant G^{\mathcal{T}}$,于是 由 $G \in \mathcal{A}$ 乎推出 $S \in \mathcal{A}$ 死 现在,对 $S = XS^{\mathcal{T}}$ 应用前段的结果可以看出,X 在 S 中 \mathcal{F} 次反正规。所以(X, S)是 G 的 \mathcal{K} -链.

参 考 文 献

- 1 Forster P. Finite groups all of whose subgroups are Fsubnormal or Fsubabnormal. J Algebra 1986, 103, 285 ~ 293
- 2 Bauman S, Ebter G. A note on subnormal and abnormal chains. J Algebra, 1975, 36: 287~297
- 3 Semenchuk V N. The structure of finite groups with Fabnormal or Fsubnormal subgroups. Problems in Algebra Minsk Universitet-skoe 1986, 2; 50~55
- 4 Shemetkov L A. Formations of Finite Groups. Moscow: Nauka, 1978
- 5 郭文彬. 群类论. 北京. 科学出版社, 1997
- 6 Doerk K, Hawkes T. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992