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1 Introduction

Because of its theoretical and practical significance, the coloring problem of graph is
one of the primary fields studied by many scholars all over the world. The fundamental
coloring problem of graph is to determine the number of various kinds of colorings.

All of the graphs considered in this paper are simple, finite and undirected graphs. We
denote by V (G) and E(G) the set of vertices and edges of graph G, respectively.

After Burris and Schelp[1], Bazgan[2] and Balister et al.[3] discussed vertex-distin-
guishing proper edge-coloring, Zhang et al.[4] presented the concept of adjacent strong
edge coloring of graphs, i.e. adjacent-vertex-distinguishing proper edge-coloring of graphs,
and obtained some results, especially presented a meaningful conjecture. In this paper, a
new concept of adjacent-vertex-distinguishing total coloring of graphs is proposed.

Definition 1.1. Let G(V,E) be a connect graph with order at least 2, k is a positive
integer and f is a mapping from V (G) ∪ E(G) to {1, 2, · · · , k}. For all u ∈ V (G), the
set {f(u)} ∪ {f(uv)|uv ∈ E(G)} is denoted by C(u). If

1) for any uv, vw ∈ E(G), u 6= w , we have f(uv) 6= f(vw);
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2) for any uv ∈ E(G), u 6= v , we have f(u) 6= f(v), f(u) 6= f(uv), f(v) 6=

f(uv), then f is called a k-proper-total-coloring. If f is a k-proper-total-coloring, and

3) for any edge uv ∈ E(G), we have C(u) 6= C(v), then f is called a k-adjacent-
vertex-distinguishing total coloring of graph G(k-AVDTC of G in brief) and the number

χat(G) = min{k | G has a k-AVDTC}
is called the adjacent-vertex-distinguishing total chromatic number of G.

C(u) in Definition 1.1 is called the color set of vertex u and {1, 2, · · · , k} \ C(u) is
denoted by C(u).

Lemma 1.1. If graph G has two vertices of maximum degree which are adjacent,
then

χat(G) > ∆(G) + 2.

Proof. Suppose u, v are the two adjacent-vertices with maximum degree. Then for
any k-AVDTC of G, both C(u) and C(v) must have ∆(G) + 1 elements, but C(u) 6=

C(v). So it must be true that k > ∆(G) + 2 for any k-AVDTC f of graph G. So the
conclusion is followed.

The following lemma is obvious.

Lemma 1.2. If graph G has k components G1, G2, · · · , Gk , and |V (Gi)| > 2, i =

1, 2, · · · , k, then
χat(G) = max{χat(G1), χat(G2), · · · , χat(Gk)}.

Based on Lemma 1.2, we only discuss the connected graph with order at least 2.

In this paper, we will obtain the adjacent-vertex-distinguishing total chromatic number
of cycle, complete graph, complete bipartite graph, fan, wheel and tree and, according to
these results, give a conjecture. The other terminologies we refer to refs. [5—8].

2 Main results

Theorem 2.1. Let Cn be a cycle with order n, n > 4, then χat(Cn) = 4.

Proof. Suppose Cn = v1v2 · · · vn. From Lemma 1.1, we know that χat(Cn) > 4.
We now prove χat(Cn) 6 4, we need only prove that Cn has a 4-AVDTC. There are four
cases to be considered.

Case 1. n ≡ 0(mod4).

A mapping f from V (Cn) ∪ E(Cn) to {1, 2, 3, 0} is defined as follows:

f(vivi+1) ≡ i(mod4), f(vi) ≡ i + 1(mod4), i = 1, 2, · · · , n.

Obviously f is a 4-proper-total-coloring of Cn. And for 1 6 j 6 n, we have

C(vj) = {3, 0, 1} when j ≡ 0(mod4),

C(vj) = {0, 1, 2} when j ≡ 1(mod4),
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C(vj) = {1, 2, 3} when j ≡ 2(mod4),

C(vj) = {2, 3, 0} when j ≡ 3(mod4).

So f is a 4-AVDTC of Cn, and χat(Cn) = 4.

Case 2. n ≡ 1(mod4).

We define a mapping f from V (Cn) ∪ E(Cn) to {1, 2, 3, 0} as follows:

f(vivi+1) ≡ i(mod4), f(vi) ≡ i + 1(mod4), i = 1, 2, · · · , n − 5;

f(vn−4vn−3) = 1, f(vn−3vn−2) = 2, f(vn−2vn−1) = 0, f(vn−1vn) = 3, f(vnv1) = 0,

f(vn−4) = 2, f(vn−3) = 3, f(vn−2) = 1, f(vn−1) = 2, f(vn) = 1.

Obviously f is a 4–proper-total-coloring of Cn. And for 1 6 j 6 n − 5, we have

C(vj) = {3, 0, 1} when j ≡ 0(mod4),

C(vj) = {0, 1, 2} when j ≡ 1(mod4),

C(vj) = {1, 2, 3} when j ≡ 2(mod4),

C(vj) = {2, 3, 0} when j ≡ 3(mod4),

whereas

C(vn−4) = {0, 1, 2}, C(vn−3) = {1, 2, 3}, C(vn−2) = {2, 0, 1},

C(vn−1) = {0, 3, 2}, C(vn) = {3, 0, 1}.

So f is a 4-AVDTC of Cn, and χat(Cn) = 4.

Case 3. n ≡ 2(mod4).

We define a mapping f from V (Cn) ∪ E(Cn) to {1, 2, 3, 0} as follows:

f(vivi+1) ≡ i(mod4), f(vi) ≡ i + 1(mod4), i = 1, 2, · · · , n − 6;

f(vn−5vn−4) = 1, f(vn−4vn−3) = 2, f(vn−3vn−2) = 3,

f(vn−2vn−1) = 0, f(vn−1vn) = 3, f(vnv1) = 0,

f(vn−5) = 2, f(vn−4) = 3, f(vn−3) = 0,

f(vn−2) = 1, f(vn−1) = 2, f(vn) = 1.

Obviously f is a 4-proper-total-coloring of Cn. And for 1 6 j 6 n − 6, we also have

C(vj) = {3, 0, 1} when j ≡ 0(mod 4),

C(vj) = {0, 1, 2} when j ≡ 1(mod 4),

C(vj) = {1, 2, 3} when j ≡ 2(mod 4),

C(vj) = {2, 3, 0} when j ≡ 3(mod 4),

whereas

C(vn−5) = {0, 1, 2}, C(vn−4) = {1, 2, 3}, C(vn−3) = {2, 3, 0},

C(vn−2) = {3, 0, 1}, C(vn−1) = {0, 3, 2}, C(vn) = {3, 0, 1}.

So f is a 4-AVDTC of Cn, and χat(Cn) = 4.

Case 4. n ≡ 3(mod 4).
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A mapping f from V (Cn) ∪ E(Cn) to {1, 2, 3, 0} is defined as follows:

f(vivi+1) ≡ i(mod4), f(vi) ≡ i + 1(mod4), i = 1, 2, · · · , n − 7;

f(vn−6vn−5) = 1, f(vn−5vn−4) = 2, f(vn−4vn−3) = 3, f(vn−3vn−2) = 1,

f(vn−2vn−1) = 0, f(vn−1vn) = 3, f(vnv1) = 0;

f(vn−6) = 2, f(vn−5) = 3, f(vn−4) = 0, f(vn−3) = 2,

f(vn−2) = 3, f(vn−1) = 2, f(vn) = 1.

Obviously f is a 4-proper-total-coloring of Cn. Similar to Case 2 and Case 3, we can
verify that f is a 4-AVDTC of Cn. So χat(Cn) = 4.

From all above, theorem 2.1 is true.

Theorem 2.2. Let Kn be a complete graph with order n, n > 3, then

χ(Kn) =







n + 1, n ≡ 0(mod 2),

n + 2, n ≡ 1(mod 2).

Proof. Suppose V (Kn) = {v1, v2, · · · , vn}. In order to describe conveniently, we
identify vl with vr when l ≡ r(mod n). From Lemma 1.1, we know that χat(Kn) >

n + 1. There are two cases to be considered.

Case 1. n ≡ 0(mod 2).

Let n = 2t. We need only to prove that K2t has a (2t+1)-AVDTC. When t = 1, K2

has a 3-AVDTC obviously. When t > 2, construct a mapping f from V (K2t)
⋃

E(K2t)

to {1, 2, · · · , 2t + 1} as follows:

f(vi) = i, i = 1, 2, · · · , 2t; f(vjv2t+1−j) = 2t + 1, j = 1, 2, · · · , t;

f(vjv2t+3−j) = 1, j = 3, 4, · · · , t + 1;

f(v1v3) = f(vjv2t+5−j) = 2, j = 5, 6, · · · , t + 2;

f(v2v4) = f(v1v5) = f(vjv2t+7−j) = 3, j = 7, 8, · · · , t + 3;

f(v3v5) = f(v2v6) = f(v1v7) = f(vjv2t+9−j) = 4, j = 9, 10, · · · , t + 4;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

f(vt−2vt) = f(vt−3vt+1) = f(vt−4vt+2) = · · ·

= f(v1v2t−3) = f(v2t−1v2t) = t − 1;

f(vt−1vt+1) = f(vt−2vt+2) = f(vt−3vt+3) = · · · = f(v2v2t−2) = f(v1v2t−1) = t;

f(vtvt+2) = f(vt−1vt+3) = f(vt−2vt+4) = · · · = f(v3v2t−1) = f(v2v2t) = t + 1;

f(vt+1vt+3) = f(vtvt+4) = f(vt−1vt+5) = · · · = f(v4v2t) = f(v1v2) = t + 2;

f(vt+2vt+4) = f(vt+1vt+5) = f(vtvt+6) = · · · = f(v6v2t)

= f(v5−ivi) = t + 3, i = 1, 2;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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f(v2t−3v2t−1) = f(v2t−4v2t) = f(v2t−5−ivi) = 2t − 2, i = 1, 2, · · · , t − 3;

f(v2t−2v2t) = f(v2t−3−ivi) = 2t − 1, i = 1, 2, · · · , t − 2;

f(v2t−1−ivi) = 2t, i = 1, 2, · · · , t − 1.

It is clear that C(v2i) = {i}, i = 1, 2, · · · , t; C(v2i−1) = {t + i}, i = 1, 2, · · · , t. Thus
f is a (n + 1)-AVDTC of Kn. So χat(Kn) = n + 1.

Case 2. n ≡ 1(mod 2).

Firstly we are going to prove that Kn does not have (n + 1)-AVDTC, and then to
prove that Kn has a (n + 2)-AVDTC.

Suppose that Kn has a (n+1)-AVDTC f . Then f(v1), f(v2), · · · , f(vn) are distinct.
Without loss of generality, let f(vi) = i, i = 1, 2, · · · , n. We define a (n+1)×n matrix
C0 as follows:

C0 =

























1 2 3 · · · n − 1 n

2 3 4 · · · n n + 1

3 4 5 · · · n + 1 1

· · · · · · · · · · · · · · · · · ·

n n + 1 1 · · · n − 3 n − 2

n + 1 1 2 · · · n − 2 n − 1

























.

For every vi ∈ V (Kn), C(vi) is a set composed of all elements in some row of C0.
As C(v1), C(v2), · · · , C(vn) are distinct, therefore different vertices of Kn correspond
to different rows of C0. Thus there is exact one row which does not correspond to any
vertices of Kn. Now consider the problem for deleting this particular row.

If delete the first row, then a matrix with order n is obtained. For this matrix, the color
n + 1 appears n (n is an odd number) times. It is impossible, because the color n + 1 is
only used to color edges, but not to vertices.

If delete the ith row (i = 2, 3, · · · , n), then a matrix with order n again is obtained.
For this matrix, the color i appears n−1 (n−1 is an even number) times. It is impossible,
because the color i is only used once to color vertex, and the color i which colors vertex
appears only once in this matrix, but the color i which colors edges appears even times in
this matrix.

If delete the last row, then the color 1 appears n− 1 times (n− 1 is an even number),
it is impossible, too.

Now we need only to prove that Kn has a (n + 2)-AVDTC. Let n = 2t + 1. If
t = 1, 2, then we can get a (n + 2)-AVDTC of Kn easily. Assume that t > 3. Construct
a mapping f from V (Kn)

⋃

E(Kn) to {1, 2, · · · , n + 2} as follows:

f(vj) = f(vj+2vj+2t−1) = f(vj+3vj+2t−2) = · · ·

= f(vj+t−1vj+t+2) = f(vj+tvj+t+1) = j, j = 1, 2, · · · , 2t + 1.
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For j = 1, 2, · · · , 2t − 1, if j ≡ 1 or 2(mod 4), then let f(vjvj+2) = 2t + 2; if j ≡ 3

or 0(mod 4), then let f(vjvj+2) = 2t + 3. Let f(v2tv1) = 2k + 1, f(v2t+1v2) = 1.
Obviously f is a (n + 2)-proper-total-coloring of Kn. Whereas

C(vj) = {j − 1, j + 1}, 3 6 j 6 2t − 1;C(v1) = {2, 2t + 3}, C(v2) = {3, 2t + 3}.

If t ≡ 1(mod 2), then C(v2t) = {2t − 1, 2t + 2}, C(v2t+1) = {2t, 2t + 3}; if
t ≡ 0(mod 2), then C(v2t) = {2t − 1, 2t + 3}, C(v2t+1) = {2t, 2t + 2}. Thus f is a
(n + 2)-AVDTC of Kn.

The proof of Theorem 2.2 is completed.

It is interesting that χat(K3 − e) = 3 for every e ∈ E(K3) and χat(K3) = 5. For
χat(K2n+1 − e), where e ∈ E(K2n+1), n > 2, we have

Theorem 2.3. For any e ∈ E(K2n+1)(n > 1), we have

χat(K2n+1 − e) =















3, n = 1;

2n + 2, n = 2, 3, 4;

2n + 3, n > 5.

Proof. Let V (K2n+1 − e) = {w1, w2, · · · , w2n−1, u, v} and W = {w1, w2, · · · ,

w2n−1}, e = uv. If n = 1, 2, then the conclusion is correct obviously. If n = 3, then
χat(K7 − e) > 8 by Lemma 1.1. In order to prove χat(K7 − e) = 8, we need only to
prove that K7−e has an 8-AVDTC. Construct a mapping f from V (K7−e)

⋃

E(K7−e)

to {1, 2, · · · , 8} as follows:

f(wj) = j, j = 1, 2, 3, 4, 5; f(u) = f(v) = 8,

f(w2w5) = f(w3w4) = 1, f(w1u) = f(w2w3) = 4,

f(w1w2) = f(w3v) = 5, f(w2w4) = f(w3w5) = 8,

f(w1w3) = f(uw5) = f(vw4) = 2,

f(w1w4) = f(w2u) = f(vw5) = 3, f(w1v) = f(w3u) = f(w4w5) = 6,

f(w1w5) = f(w2v) = f(uw4) = 7.

Obviously, f is an 8-AVDTC of K7 − e. So χat(K7 − e) = 8.

If n = 4, then χat(K9 − e) > 10 from Lemma 1.1. In order to prove χat(K9 −

e) = 10, we need only to give a 10-AVDTC of K9 − e. Construct a mapping f from
V (K9 − e) ∪ E(K9 − e) to {1, 2, . . . , 10} as follows:

f(wj) = j, j = 1, 2, 3, 4, 5, 6, 7; f(u) = f(v) = 10,

f(w2w5) = f(w3v) = f(w4w6) = f(w7u) = 1,

f(w1u) = f(w3w7) = f(w4v) = f(w5w6) = 2,

f(w1w4) = f(w2v) = f(w5w7) = f(w6u) = 3,

f(w1w7) = f(w3u) = f(w4w5) = f(w6v) = 8,

f(w1w2) = f(w4u) = f(w5v) = f(w6w7) = 9,
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f(w1v) = f(w2w7) = f(w3w6) = 4, f(w1w6) = f(w2w3) = f(w7v) = 5,

f(w1w3) = f(w2w4) = f(w5w8) = 6, f(w1w5) = f(w2w8) = f(w3w4) = 7,

f(w2w6) = f(w3w5) = f(w4w7) = 10.

Obviously, f is a 10-AVDTC. So χat(K9 − e) = 10.

If n > 5, then χat(K2n+1−e) > 2n+2 from Lemma 1.1. By Theorem 2.2, we know
that χat(K2n+1 −e) 6 2n+3. So we need only to prove that χat(K2n+1 −e) 6= 2n+2.
Use reduction to absurdity. Assume that K2n+1 − e has a (2n + 2)-AVDTC f . Let
C = {1, 2, · · · , 2n + 2} be the set of all (2n + 2) colors . Then we have

(i) n − 1 6 |Ei| 6 n , where Ei = {z ∈ E(K2n+1 − e)|f(z) = i} , i =

1, 2, . . . , 2n + 2;

(ii) there are exact n + 1 colors s.t. each such color just color n edges, and there are
exact n + 1 colors s.t. each such color just color n − 1 edges.

Obviously, |Ei| 6 n, i = 1, 2, · · · , 2n + 2. Suppose n − 1 6 |Ei| does not hold for
some i ∈ {1, 2, · · · , 2n + 2}. Then there are at most 2(n − 2) vertices which are in W

and are incident to some edge colored with i. So there are at least 3 vertices which are in
W and are not incident to any edges colored with i. Thus there are at least two vertices
which have the same color set. A contradiction. So (i) holds.

For (ii), suppose there are exact x colors s.t. each such color just color n edges, and
there are exact y colors s.t. each such color just color n − 1 edges. Then







nx + (n − 1)y = 2n2 + n − 1,

x + y = 2n + 2.

Thus x = y = n + 1, i.e. (ii) holds.

As |C(u)| = |C(v)| = 2, therefore there are at least n − 3 colors in B, which are
both in the color set of u’s and v’s, where

B = {c ∈ C||Ec| = n − 1}.

Suppose c, c′ ∈ B, s.t. c, c′ ∈ C(u) ∩ C(v) , c 6= c′.

1) f(u) 6= c, f(v) 6= c.

In this time, there are 3 vertices in W which are not incident to any edge with color c.
This implies that there are two vertices in W which have the same color set. A contradic-
tion.

2) f(u) = c or f(v) = c , f(u) 6= f(v).

In this time, there exist wi, wj ∈ W, i 6= j, s.t. c /∈ C(wi) ∪ C(wj). So C(wi) =

C(wj). A contradiction.

3) f(u) = f(v) = c.

In this time, we consider the color c′. There exist wi, wj , wk ∈ W, s.t. c′ does not
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color any edge which is incident to wi, wj or wk. So the two of C(wi), C(wj), C(wk)

are the same. A contradiction.

The proof of this theorem is completed.

Theorem 2.4. Let Fn be a fan with order n + 1, n > 3, then

χat(F3) = 5, χat(Fn) = n + 1(n > 4).

Proof. When n = 3, we have χat(F3) > 5 by Lemma 1.1. It is easy to give a
5-AVDTC of F3. So χat(F3) = 5.

When n > 4, let V (Fn) = {v0, v1, v2, · · · , vn}, E(Fn) = {v0vi|i = 1, 2, · · · , n}
⋃

{vivi+1|i = 1, 2, · · · , n − 1}. Obviously χat(Fn) > n + 1 by Lemma 1.1. Construct
a mapping f from V (Fn)

⋃

E(Fn) to {1, 2, · · · , n + 1} as follows:

f(v0) = n + 1, f(vn) = 1, f(vi) = i + 1(i = 1, 2, · · · , n − 1),

f(v0vi) = i(i = 1, 2, · · · , n), f(v1v2) = n, f(vivi+1) = i − 1(i = 2, 3, · · · , n − 1).

f is a (n + 1)-AVDTC of Fn. Thus χat(Fn) = n + 1.

Suppose Wn is the wheel with n + 1 vertices. When n = 3, from Theorem 2.2 we
know that χat(Wn) = χat(K4) = 5.

Theorem 2.5. When n > 4, χat(Wn) = n + 1.

Proof. Because the center vertex of the wheel Wn is the only vertex with maximum
degree, χat(Wn) > n + 1. Based on the proof of Theorem 2.4, let f(vnv1) = n − 1.

Then f is a (n + 1)-AVDTC of Wn. So χat(Wn) = n + 1.

Theorem 2.6. For complete bipartite graph Km,n, if m > n > 1, then

χat(Km,n) =















m + 1, m > n + 1,

3, m = n = 1,

n + 2, m = n > 2.

Proof. When m = n = 1, we have χat(Km,n) = 3. This is obvious.

When m > n + 1, a proper total coloring of Km,n is also the AVDTC of Km,n.
Because the total chromatic number of Km,n is m + 1, χat(Km,n) = m + 1.

When m = n = 2, as Km,n is C4, from Theorem 2.1, χat(K2,2) = 4.

When m = n > 3, from Lemma 1.1, we know that χat(Km,n) > n + 2. Now we
prove χat(Km,n) 6 n + 2. We need only to prove that Km,n has a (n + 2)-AVDTC.
Suppose that V (Km,n) = V1∪V2, where V1 ∩V2 = φ, V1 and V2 are independent sets of
Km,n, and both have n vertices in Km,n, and each vertex in V1 is adjacent to each vertex
in V2. Let V1 = {u1, u2, · · · , un}, V2 = {v1, v2, · · · , vn}. Construct a mapping f from
V (Km,n) ∪ E(Km,n) to {1, 2, · · · , n + 2} as follows:

f(ui) = n + 2, i = 1, 2, · · · , n; f(vj) = j, j = 1, 2, · · · , n;

f(uivj) ∈ {1, 2, · · · , n + 1} and f(uivj) ≡ i + j(mod n + 1).
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Obviously f is a (n + 2)-proper-total-coloring of Kn,n, and C(ui) = {i}, C(vi) =

{n+2}, i ∈ {1, 2, · · · , n}. So f is a (n+2)-AVDTC of Kn,n, and χat(Km,n) = n+2.

In order to discuss the adjacent-vertex-distinguishing total coloring of tree, we give
the following two lemmas firstly.

Lemma 2.1. Let Pn be a path with order n, n > 2. Then

χ(Pn) =







3, n = 2, 3;

4, n > 4.

Proof. Suppose that Pn = v1v2 · · · vn. It is clear that χat(Pn) = 3 when n = 2, 3.

When n > 4, from Lemma 1.1, we have χat(Pn) > 4. We need only to prove
χat(Pn) 6 4. Construct a mapping f from V (Pn)

⋃

E(Pn) to {1, 2, 3, 4} as follows:

f(vivi+1) ∈ {1, 2, 3, 4} and f(vivi+1) ≡ i(mod4), i = 1, 2, · · · , n − 1;

f(vj) ∈ {1, 2, 3, 4} and f(vj) ≡ j + 1(mod4), j = 1, 2, · · · , n.

Obviously f is a 4-proper-total-coloring. And we also have

C(vj) = {3, 4, 1} when 2 6 j 6 n − 1 and j ≡ 0(mod4),

C(vj) = {4, 1, 2} when 2 6 j 6 n − 1 and j ≡ 1(mod4),

C(vj) = {1, 2, 3} when 2 6 j 6 n − 1 and j ≡ 2(mod4),

C(vj) = {2, 3, 4} when 2 6 j 6 n − 1 and j ≡ 3(mod4).

Both C(v1) and C(vn) are two-elements sets. Then C(vi) 6= C(vi+1) for all i ∈

{1, 2, · · · , n − 1}. So f is a 4-AVDTC of Pn, therefore χat(Pn) = 4.

The following lemma is obvious.

Lemma 2.2. Let Sn be a star with order n + 1, n > 3. Then

χat(Sn) = n + 1.

Theorem 2.7. Let Tn be a tree with order n(n > 2). If there are no two adjacent
vertices of maximum degree, then χat(Tn) = ∆(Tn)+1; if there are two adjacent vertices
of maximum degree, then χat(Tn) = ∆(Tn) + 2.

Proof. Let S = {x ∈ V (T )|d(x) > 2, there are at least d(x) − 1 vertices of
degree 1 which adjacent to x}. For n > 3, obviously |S| > 1. When |S| = 1, Tn is a
star. By Lemma 2.2, conclusion of Theorem 2.7 is valid. In the following we assume that
|S| > 2 .

We prove the result of Theorem 2.7 by induction on the order n of tree Tn.

If n = 4, then T4 = P4, the conclusion of Theorem 2.7 is valid from Lemma 2.1.
Assume that for a tree of order n, the conclusion of Theorem 2.7 is valid. Now we prove
that for a tree Tn+1 of order n + 1, the conclusion of Theorem 2.7 is also valid.

If Tn+1 is a path, then the conclusion of Theorem 2.7 holds by Lemma 2.1. Suppose
∆(Tn) > 3. Let u ∈ S, and d(u) =min{d(x)|x∈ S}. Let wu ∈ E(Tn+1), d(w) > 2.
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Let uv ∈ E(Tn+1), and d(v) = 1. Let T ′ = Tn+1 − v. Then V (T ′) = n. By induction
hypothesis, for T ′, the conclusion of Theorem 2.7 is valid.

Case 1. There are no two adjacent vertices of maximum degree in Tn+1.

Case 1.1. dT ′(w) 6 dT ′(u).

In this moment, ∆(T ′) = ∆(Tn+1)(Because if Tn+1 has only one vertex of maximum
degree, then from the selection of u, u is not the vertex of maximum degree). Obviously,
we can obtain a (∆(Tn+1)+1)-AVDTC of Tn+1 from the (∆(Tn+1)+1)-AVDTC of T ′.

Case 1.2. In dT ′(w) > dT ′(u).

Case 1.2.1. dT ′(w) = dT ′(u) + 1.

Since there are no two adjacent vertices of maximum degree, in Tn+1, dTn+1
(u) <

∆(Tn+1) (Otherwise, in Tn+1, w and u are two vertices of maximum degree which are
adjacent. This is a contradiction). Let g be a (∆(Tn+1) + 1)-AVDTC of T ′. We have
C(w) 6= φ (in the meaning of g). If C(u) ⊆ C(w), let g(v) = g(uw), g(uv) ∈

{1, 2, · · · ,∆(Tn+1) + 1} − C(w); if C(u) 6⊆ C(w), then let g(v), g(uv) ∈ {1, 2, · · · ,

∆(Tn+1) + 1} − C(u), s.t. g(v) 6= g(uv), where C(u) = {g(u)} ∪ {g(ux)|x ∈

V (T ′), ux ∈ E(T ′)}, similar for C(w). So g is a (∆(Tn+1) + 1)-AVDTC of Tn+1.

Case 1.2.2. dT ′(w) > dT ′(u) + 2.

In this subcase, we can easily obtain a (∆(Tn+1)+1)-AVDTC of Tn+1 from (∆(Tn+1)

+1)-AVDTC of T ′.

Case 2. There are two adjacent vertices of maximum degree in Tn+1.

Case 2.1. dT ′(u) + 1 = dT ′(w).

In this moment, dT ′(w) 6 ∆(T ′) = ∆(Tn+1). By induction hypothesis, there exists
a (∆(Tn+1) + 2)-AVDTC f of T ′ (Note that if there are no two adjacent vertices of
maximum degree, then T ′ has (∆(Tn+1)+1)-AVDTC. And the (∆(Tn+1)+1)-AVDTC
of T ′ is also a (∆(Tn+1) + 2)-AVDTC of T ′). Let C(u) = {f(u)} ∪ {f(ux)|x ∈

V (T ′), ux ∈ E(T ′)}, C(w) = {f(w)} ∪ {f(wy)|y ∈ V (T ′), wy ∈ E(T ′)}. If
C(u) ⊆ C(w), then let f(uv) ∈ {1, 2, · · · ,∆(Tn+1) + 2} − C(w), f(v) = f(uw). If
C(u) 6⊆ C(w), then let f(v), f(uv) ∈ {1, 2, · · · ,∆(Tn+1) + 2} − C(u) s.t. f(v) 6=

f(uv). In this way, we obtain a (∆(Tn+1) + 2)-AVDTC of Tn+1.

Case 2.2. dT ′(u) + 1 6= dT ′(w).

In this moment, by induction hypothesis, there is a (∆(Tn+1) + 2)-AVDTC f of T ′.
For this f , |C(u)| 6 ∆(Tn+1). Let f(v), f(uv) ∈ {1, 2, · · · ,∆(Tn+1) + 2} − C(u),
s.t. f(v) 6= f(uv). Then f becomes a (∆(Tn+1) + 2)-AVDTC of Tn+1.

From the discussion above, the proof of Theorem 2.7 is completed.
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3 Conjecture and unsolved problem

From Theorem 2.1 to Theorem 2.7, we give the following conjecture.

Conjecture 3.1. For connected simple graph G with order at least 2, we have

χat(G) 6 ∆(G) + 3.

Let G be an order 4 graph obtained by joining K3 and K2 at one vertex. Then 4 =

χat(G) < χat(K3) = 5. So we propose the following unsolved problem.

Open Problem 3.1. If H is a subgraph of G, when do we have χat(H) 6 χat(G)?
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