· 快递论文 ·

新型含 2-喹诺酮基的氧杂蒽二酮衍生物的合成

王 璇1,张珍明1,2,王润南2,张丹丹2,李树安2

(1. 中国矿业大学 化工学院, 江苏 徐州 221116; 2. 淮海工学院 化工学院, 江苏 连云港 222005)

摘要:以醋酸为催化剂,DMF 为溶剂,取代-2-氯喹啉-3-甲醛和 5,5-二甲基-1,3-环己二酮于 80 $^{\circ}$ ~ 100 $^{\circ}$ 反应 2.5 h ~ 4.0 h,合成了 5 个新型的含 2-喹诺酮基的氧杂蒽二酮衍生物,收率 78% ~ 90%,其结构经 ¹ H NMR,IR,HR-ESI-MS 和元素分析表征。3,3,6,6-四甲基-9-{3-[7-甲基喹啉基-2(1H)酮]}-2,4,5,7,9,10-六氢化氧杂蒽-1,8(2H,5H) 二酮(3b) 经 X-射线单晶衍射表征。3b(CCDC: 971 833) 属单斜晶系,空间群 C12/C1,晶胞参数 a=1.411 90(16) nm,b=2.231 4(2) nm,c=1.618 28(18) nm, $\beta=106.904$ °,V=4.878 1(9) nm³,Dc=1.175 g · cm $^{-3}$, Z=1 , Z=1

关 键 词: 氧杂蒽二酮; 5,5-二甲基-1,3-环己二酮; 2-氯喹啉-3-甲醛; 合成; 晶体结构

中图分类号: 0625.15; 0626.3 文献标识码: A DOI: 10.15952/j. enki. ejsc. 1005 - 1511. 2015. 12. 1135

Synthesis of Novel Xanthene-dione Derivatives Containing 2-Quinolone Moiety

WANG Xuan¹, ZHANG Zhen-ming^{1,2}, WANG Run-nan², ZHANG Dan-dan², LI Shu-an²

- (1. School of Chemical Technology, China University of Mining and Technology, Xuzhou 221116, China;
 - 2. School of Chemical Technology, Huaihai Institute of Technology, Lianyungang 222005, China)

Abstract: Five novel xanthene-dione derivatives containing 2-quinolone moiety were synthesized in yields of 78% ~90% by reaction of substituted 2-chloroquinoline-3-carbaldehyde with 5,5-dimethyl-1, 3-cyclohexanedione, using acetic acid as catalyst and DMF as solvent at 80 °C ~100 °C for 2.5 h ~ 4.0 h. The structures were characterized by ¹H NMR, IR, HR-ESI-MS and elemental analysis. X-ray single crystal diffractometer of 3,3,6,6-tetramethyl-9- $\{3-[7-\text{methylquinolyl-2}(1H)-\text{one}]\}$ -2,4, 5,7,9,10-hexahydro-xantene-1,8(2H,5H)-dione(**3b**) tests indicated that **3b**(CCDC: 971 833) belongs to monoclinic crystal system, space group C12/C1 with a = 1.411 90(16) nm, b = 2.231 4 (2) nm, c = 1.618 28(18) nm, b = 106.904°, b = 1.618 28(18) nm, b =

Keywords: xanthene-dione; 5,5-dimethyl-1,3-cyclohexanedione; 2-chloroquinoline-3-carbaldehyde; synthesis; crystal structure

收稿日期: 2015-07-24

基金项目: 国家海洋公益性行业科研专项项目(201305007); 江苏省高校产业化推进项目(JHB2011-60); 江苏省六大人才高峰资助项目(2009年,2013年); 江苏省高校优势学科建设工程资助项目; 江苏省海洋资源开发研究院项目(JSIMR 201203); 连云港市科技项目工业攻关(CG1302)

作者简介:王璇(1991 -),男,汉族,安徽砀山人,硕士研究生,主要从事药物中间体的合成研究。E-mail: wangx_518@163.com

通信联系人: 李树安, 教授, E-mail: li_shuan@126.com

氧杂蒽含有吡喃环结构,是许多天然药物的重要结构单元,同时也是合成其他杂环化合物的重要中间体,具有广泛的生物活性及药理活性,如抗癌^[1]、抗过敏^[2]、抗菌^[3]、抗高血压^[4],治疗过敏性支气管炎^[5]、糖尿病^[6]和疟疾流行疾病^[7],同时还在染料^[8]、荧光材料^[9]和激光材料^[10]等方面也有很好的应用。

合成氧杂蒽衍生物的方法通常由芳香醛衍生物 $^{[11-12]}$ 、吡啶醛衍生物、呋喃醛衍生物和 5 5.5-二甲基-1,3-环己二酮 2)在相转移催化剂 $^{[13]}$ 、固体酸 $^{[14]}$ 、离子液体 $^{[15]}$ 、微波 $^{[16]}$ 、超声波 $^{[17-18]}$ 等催化下合成。本文以醋酸为催化剂,DMF为溶剂,取代-2-氯喹啉-3-甲醛 1 2 2 2 3 3 3 3 4

℃反应 2.5 h~4.0 h,合成了 5 个新型的含 2-喹诺酮基的氧杂蒽二酮衍生物——3,3,6,6-四甲基-9-{3-[喹啉基-2(1H)酮]}-2,4,5,7,9,10-六氢化氧杂蒽-1,8(2H,5H)二酮衍生物(3a~3e, Scheme 1),收率 78%~90%,其结构经 H NMR, IR, HR-ESI-MS 和元素分析表征。并对 3,3,6,6-四甲基-9-{3-[7-甲基喹啉基-2(1H)酮]}-2,4,5,7,9,10-六氢化氧杂蒽-1,8(2H,5H)二酮(3b)进行了 X-射线单晶衍射分析。

该方法具有合成条件温和,后处理方便,产率较高等优点。3a~3e结构中同时含有具有生物活性的喹诺酮和氧杂蒽结构,期望能有较好的应用前景,其抗菌等生物活性正在研究之中。

1 实验部分

1.1 仪器与试剂

SGWX-4 型熔点仪(温度未校正); Brucker ARX 400 MHz 型核磁共振仪(CDCl₃ 为溶剂,TMS 为内标); Brucker TENSOR 37 型傅里叶红外光谱仪(KBr 压片); Agilent Technologies 6230 TOF 型质谱仪(Dual AJSESI 检测器, EI 离子源); PE 2400-II 型元素分析仪; Brucker SMART 1000 型单晶衍射仪。

1a~1e 参考文献^[19]方法合成;其余所用试 剂均为化学纯或分析纯。

1.2 3a~3e的合成通法^[20-22]

在单口烧瓶中加入 11 mmol, 22 mmol, DMF 10 mL 和两滴醋酸,搅拌下于 $80 \text{ $\%$} \sim 100 \text{ $\%$}$ 反应 $2.5 \sim 4.0 \text{ h}$ 。倒入 50 mL 冰水中,静置析晶。过滤,滤饼真空干燥后用无水乙醇重结晶得淡黄色固体 $3a \sim 3e$ 。

在烧杯中加入3b,乙醇和水,加热使其溶解; 冷却至室温,用保鲜膜封口,并扎若干小孔,静置 数天析晶。过滤,滤饼干燥得黄色晶体 3b。

3a: 产率 88%; ¹H NMR δ: 8. 05 (s, 1H, NH), 7. 73 ~ 7. 71 (d, J = 8. 0 Hz, 1H, ArH), 7. 53 ~ 7. 49 (t, J = 8. 0 Hz, 8. 0 Hz, 1H, ArH), 7. 28 ~ 7. 26 (d, J = 8. 0 Hz, 1H, ArH), 7. 21 ~ 7. 17 (t, J = 8. 0 Hz, 8. 0 Hz, 1H, ArH), 4. 85 (s, 1H, 9-H), 2. 53 ~ 2. 42 (dd, J = 17. 6 Hz, 17. 6 Hz, 4H, 2,7-H), 2. 26 ~ 2. 15 (dd, J = 16. 0 Hz, 16. 0 Hz, 4H, 4,5-H), 1. 09 (s, 6H, 3,6-CH₃), 0. 98 (s, 6H, 3,6-CH₃); IR ν : 3 432 (NH), 2 919 (CH₃), 1 666 (C = O), 1 569 (Ph) cm⁻¹; HR-ESI-MS m/z: Calcd for C₂₆ H₂₇ NO₄ { [M + H] ⁺ } 418. 201 8, found 418. 202 0; Anal. calcd for C₂₆ H₂₇ NO₄: C 74. 80, H 6. 52, N 3. 35; found C 74. 87, H 6. 47, N 3. 45 $_{\circ}$

3b: 产率 90%; ¹H NMR δ: 8. 10 (s, 1H, NH), 7. 56 ~7. 54 (d, J = 8.0 Hz, 1H, ArH), 7. 26 (s, 1H, ArH), 7. 12 (s, 1H, ArH), 7. 04 ~7. 02 (d, J = 8.0 Hz, 1H, ArH), 4. 80 (s, 1H, 9-H), 2. 48 ~2. 46 (d, J = 7.2 Hz, 7H, 2,7-H, 7'-CH₃), 2. 25 ~2. 13 (dd, J = 16.4 Hz, 16. 4 Hz, 4H, 4,5-

H), 1.06 (s, 6H, 3,6- CH_3), 0.92 (s, 6H, 3,6- CH_3); IR ν : 3 312 (NH), 2 956, 2 938 (CH₃), 1.666(C = O), 1.566(Ph), 1.222(C - O) cm⁻¹; HR-ESI-MS m/z: Calcd for $C_{27}H_{29}NO_4\{[M+H]^+\}$ 432. 217 5, found 432. 221 3; Anal. calcd for C₂₇H₂₉ NO₄: C 75. 15, H 6. 77, N 3. 25; found C 75. 25, H 6.65, N 3.18_o

3c: 产率 85%; ¹H NMR δ: 8. 11 (s, 1H, NH), $7.70 \sim 7.68$ (d, J = 8.8 Hz, 1H, ArH), 7. 42(s, 1H, ArH), 7. $42 \sim 7.40(d, J = 8.8 Hz$, 1H, ArH), 4.81(s, 1H, 9-H), $2.44 \sim 2.32(dd, 9-H)$ J = 16.0 Hz, 16.0 Hz, 4H, 2,7-H, 2.29 (s,3H, 6'-CH₃), 2. 14 ~ 2. 02 (dd, J = 16.0 Hz, 16.0 Hz, 4H, 4,5-H), 1.01(s, 6H, 3,6-CH₃), 0.97 (s, 6H, 3, 6-CH₃); IR ν : 3 427 (NH), $2960, 2939(CH_3), 1663(C=0), 1599(Ph),$ 1 223 (C – O) cm⁻¹; HR-ESI-MS m/z: Calcd for C_{27} $H_{29}NO_4 \{ [M + H]^+ \} 432.2175, \text{ found } 432.2213;$ Anal. calcd for C₂₇ H₂₉ NO₄: C 75. 15, H 6. 77, N 3.25; found C 75.23, H 6.63, N 3.29

3d: 产率 78%; ¹H NMR δ: 8. 25 (s, 1H, NH), $7.73 \sim 7.71$ (d, J = 8.0 Hz, 1H, ArH), $7.53 \sim 7.49$ (t, J = 8.0 Hz, 8.0 Hz, 1H, ArH), $7.28 \sim 7.26$ (d, J = 8.0 Hz, 1H, ArH), 4.85 (s, 1H, 9-H), 2.53 ~ 2.42 (dd, J = 17.6 Hz, 17.6 Hz, 4H, 2,7-H), $2.26 \sim 2.15 \text{ (dd}$, J = 16.0 Hz, $16.0 \text{ Hz}, 4H, 4,5-H), 1.09(s, 6H, 3,6-CH_3),$ 0.98 (s, 6H, 3, 6-CH₃); IR ν : 3 426 (NH), 2.955, 2.924(CH₃), 1.660(C = O), 1.563(Ph), 1 216 (C - O) cm⁻¹; HR-ESI-MS m/z: Calcd for $C_{26} H_{26} NO_4 Cl \{ [M + H]^+ \} 452. 162 9, found$ 452. 164 6; Anal. calcd for C₂₆ H₂₆ NO₄Cl: C 69. 10, H 5.80, N 3.10; found C 69.07, H 5.91, N 3.17_o

3e: 产率 80%; ¹H NMR δ: 8. 08 (s, 1H, NH), $7.55 \sim 7.53$ (d, J = 8.0 Hz, 1H, ArH), 7.26(s, 1H, ArH), $7.03 \sim 7.01$ (d, J = 8.0 Hz, 1H,ArH), 4.79 (s, 1H, 9-H), $2.51 \sim 2.46$ (dd, J =10.8 Hz, 10.8 Hz, 4H, 2,7-H), $2.25 \sim 2.13 \text{ (dd,}$ J = 16.0 Hz, 16.0 Hz, 4H, 4,5-H), 1.06(s, 6H, $3,6-CH_3$), 0.91 (s, 6H, $3,6-CH_3$); IR ν : 3 425 (NH), 2 960, 2 939 (CH_3) , 1 663 (C = O), 1 599 (Ph), 1221(C-O) cm⁻¹; HR-ESI-MS m/z: Calcd for C_{26} H_{26} NO_4 Cl { [M + H] $^+$ } 452. 162 9, found 452. 163 3; Anal. calcd for C₂₆ H₂₆ NO₄Cl: C 69. 10, H 5.80, N 3.10; found C 69.17, H 5.91, N 3.01_o

1.3 晶体结构测定

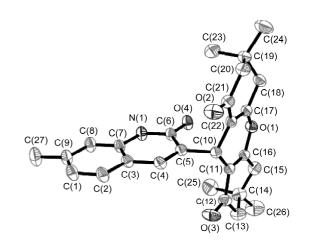
将 3b(0.12 mm × 0.15 mm × 0.20 mm) 置衍 射仪上,采用石墨单色化的 Mo K α 射线(λ = (0.71073 Å),于 (296)0.71073 Å),于 (296)0.71073 Å) 1.09° ≤ θ ≤25.25°内收集 12 755 个强反射数据, 其中独立衍射点 4 520 个 $[R_{(int)}] = 0.027 7$ 。 收 集的数据经 APEX2 软件还原和晶胞参数修正,用 SADAB 作吸收校正,采用 SHELXL-97 程序完成 结构分析和计算[23],所得数据经 Lp 因子和经验 吸收校正。

结果与讨论

2.1 表征

由于 **3a~3e** 的熔点都大于 300 ℃, 且熔点仪 并未校正,所以本文并未列出其熔点。以3b 为例 分析进行分析。 1 H NMR 分析表明: δ 0.92 和 δ1.06处出现了两个单峰,归属氧杂蒽环上的4 个甲基上的 H,由于空间位阻的原因导致碳原子 上连接的两个甲基的化学位移不相同;δ 2.1 ~ 2.4间有多重峰出现,为4个亚甲基上的 H; δ 4.79左右处出现的单峰,归属氧杂蒽环 9-位上 的 H; δ 7.0 ~ 8.1 间出现的化学位移为喹诺酮环 上氢的化学位移。IR 分析表明:3 312 cm⁻¹处有 较强的 N-H 对称伸缩振动吸收峰,1666 cm⁻¹处 有强的羰基的伸缩振动吸收峰。MS 分析表明: m/z = 432.22,因为采用阳离子的轰击模式,所以 物质的分子量比分子离子峰少1,为431.21,与 3b 构式的分子量相吻合。

2.2 晶体结构


3b(CCDC: 971 833)的晶体学数据见表 1,部 分键长和键角数据见表2,晶体结构见图1。从图1 可见, α 3b 的晶体结构有 4 个平面 α 平面 1 α (11), C(12), C(15), C(16)],平面2[C(17), C (18), C(21), C(22), 平面 3, C(11), C(16), C(11)(17), C(22)]和平面4(喹诺酮环) }。平面3与平 面 1 和平面 2 之间的二面角为 7.4°和 6.5°;平面 3 与喹诺酮环之间的二面角为92.5°。从键长「C $(21) - O(2)(0.122\ 2\ nm), C(12) - O(3)(0.121\ 7$ nm)和C(6)-O(4)(0.124 64 nm)]可以看出,C (21) - O(2), C(12) - O(3)和 C(6) - O(4)均为双 键。C(6)-O(4)键长为0.12464 nm,在C-O键 范围内,而不是 C - Cl (0.176 nm)键。从 C(3) - C(4)(0.1427 nm) $\pi C(5) - C(6)(0.1460)$ nm)的键长可以看出,C(3)-C(4)和C(5)-C(6) 均为单键。C(4) - C(5)(0.134 7 nm)的键长在 C = C键范围内; C(3) - C(7)(0.1404 nm)的键长 介于 C-C 和 C=C 的键长间,可以看出其并不是 单纯的碳碳单键或者双键,即为苯环中的碳碳键。 C(6) - N(1)和 C(7) - N(1)的键长由于受到羰基 和苯环的作用比一般的 C-N 单键键长要短,证明 3b 中含有喹诺酮结构单元,而不是喹啉结构单元。 这与3b的元素分析中C含量(75.25%), H含量 (6.65%)和N含量(3.18%)相吻合。如果是 C-Cl键,按C₂₇ H₂₈ NO₃Cl 理论计算C含量是 72.07%, H的含量为6.27%, N的含量为3.11%, 与实际测量值相差太大。

1的晶体学数据* 表1

Table 1 Crystal data and refinement details of 1

Table 1 Crystar data ar	Table 1 Crystal data and refinement details of 1		
Comp	3b		
Empirical formula	$\mathrm{C}_{27}\mathrm{H}_{29}\mathrm{NO}_4$		
Formula weight	431.51		
Crystal system	Monoclinic		
Space group	C12/C1		
$Dc/g \cdot cm^{-3}$	1.175		
a/nm	1.411 90(16)		
b/nm	2.231 4(2)		
c/nm	1.618 28(18)		
β/(°)	106.904(2)		
V/nm ³	4.878 1(9)		
Z	1		
θ range/(°)	1.76 ~25.50		
μ /mm ⁻¹	0.078		
F(000)	1 840		
Goodness of fit	1.019		
Obsd. Refl ns[$I > 2\sigma(I)$]	292 5		
Parameters refined	294		
R_1 , $wR_2[I>2\sigma(I)]$	0.044 4, 0.123 8		
R_1 , wR_2 (all reflections)	0.074 6, 0.141 1		

 $w = 1/[\sigma^2(Fo^2) + (0.1000P)^2 + 1.0193P]$,其中 $P = (Fo^2 + 2Fc^2)/3$

Vol. 23, 2015

图 1 1 的晶体结构 Figure 1 The crystal structure of 1

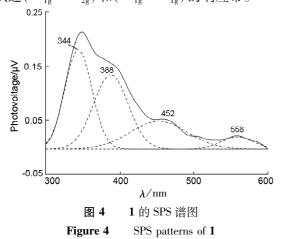
表 2 1的选择性键长和键角

Table 2	Selected bond distances and bond angles of ${\bf 1}$		
Bond	Length/nm	Bond	Angle/(°)
C(5) - C(10)	1.516(2)	C(6) - C(5) - C(10)	117.76(12)
C(6) - O(4)	1.246 4(17)	O(4) - C(6) - N(1)	120.39(14)
C(6) - N(1)	1.353 9(19)	O(4) - C(6) - C(5)	123. 15(14)
C(7) - N(1)	1.378 5(18)	N(1) - C(6) - C(5)	116.46(13)
C(9) - C(27)	1.517(2)	N(1) - C(7) - C(8)	120.73(14)
C(12) - O(3)	1.217(2)	N(1) - C(7) - C(3)	118. 18(14)
C(16) - O(1)	1.378(2)	O(3) - C(12) - C(11)	120.73(17)
C(17) - O(1)	1.377(2)	O(3) - C(12) - C(13)	122.05(17)
C(21) - O(2)	1.222(2)	C(11) - C(16) - O(1)	122.79(15)
		O(1) - C(16) - C(15)	111.38(14)
		C(22) - C(17) - O(1)	123.13(15)
		O(1) - C(17) - C(18)	111.36(14)
		O(2) - C(21) - C(22)	120.52(16)
		O(2) - C(21) - C(20)	121.60(17)
		C(6) - N(1) - C(7)	125.71(13)
		C(17) - O(1) - C(16)	117.73(12)

2.3 反应机理

1和2在醋酸的催化下并没有得到预期的3, 3.6.6-四甲基-9-[3-(2-氯喹啉基)]-2.4.5.7.9. 10-六氢化氧杂蒽-1,8-(2H,5H)二酮及其衍生物, 而是得到了 3,3,6,6-四甲基-9-{3-「喹啉基-2 (1H)酮]-2,4,5,7,9,10-六氢化氧杂蒽-1,8-(2H)5H)二酮及其衍生物。可能反应机理是在醋酸的 条件下,氢离子优先和喹啉环中的 N 结合,使其季铵化,另外 3-位上连接吸电子基团的醛基,因此 2-位 C-Cl(本身电负性大的 Cl 的-I 效应)上的碳原子电子云密度进一步降低,有利于亲核试剂 H₂O 对 2-位碳原子的进攻,发生水解反应,形成 C - OH后,异构化成 2-喹啉酮。

参考文献


- [1] Tchamo D N, Silvere N, Etienne T. Xanthones as therapeutic agents: Chemistry and pharmacology [J].

 Advances in Phytomedicine, 2006, 2:273 298.
- [2] Chand N, Diamantis W, Sofia R D. Modulation of in vitro anaphylaxis of guinea-pig isolated tracheal segments by azelastine, inhibitors of arachidonic acid metabolism and selected antiallergic drugs[J]. British Journal of Pharmacology, 1986, 87(2):443-448.
- [3] Jenekhe S A, Lu L, Alam M M. New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothia-zine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer [J]. Macromolecules, 2001, 34(21):7315-7324.
- [4] Greenblatt M S, Bennett W P, Hollstein M, et al. Mutations in the p53 tumor suppressor gene; Clues to cancer etiology and molecular pathogenesis [J]. Cancer Research, 1994, 54 (18); 4855 - 4878.
- [5] Limsuwan S, Trip E N, Kouwen T R H M, et al. Rhodomyrtone: A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa [J]. Phytomedicine, 2009, 16(6):645-651.
- [6] Itoh T, Ohguchi K, Iinuma M, et al. Inhibitory effect of xanthones isolated from the pericarp of Garcinia mangostana L. on rat basophilic leukemia RBL-2H3 cell degranulation[J]. Bioorganic & Medicinal Chemistry, 2008, 16(8):4500-4508.
- [7] Niederman M S. Principles of appropriate antibiotic use[J]. Int J Antimicrob Agents 26 Suppl, 2005, 3: S170 - S175.
- [8] Alizadeh N, Babaei M, Aghamohammadi M, et al. Electrosynthesis of dixanthylene photochromic dye, characterization and ab initio calculations [J]. Dyes and Pigments, 2008, 76(3):596-603.
- [9] Musiol R, Jampilek J, Buchta V, et al. Antifungal properties of new series of quinoline derivatives [J]. Bioorganic & Medicinal Chemistry, 2006, 14 (10): 3592-3598.

- [10] Ahmad M, King T A, Ko D K, et al. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases [J]. Journal of Physics D: Applied Physics, 2002, 35(13):1473.
- [11] Nagarajan K, Shenoy S J. Chemistry of dimedone: Structures of aldehyde-dimedone adducts [J]. Indian Journal of Chemistry, 1992, 31B:73 87.
- [12] Shi D Q, Mu L L, Lu Z S, et al. Synthesis and crystal structure of 3, 3, 6, 6-tetramethyl-9-orthochlorophenyl-1, 8-dioxo-3, 4, 5, 6, 7, 9-hexahydroxanthene
 [J]. Chinese Journal of Structural Chemistry, 1997,
 (6):484-487.
- [13] 史达清,庄启亚,陈景,等. 水溶剂中芳醛与 5,5-二甲基-1,3-环己二酮的反应[J]. 有机化学,2003, **23**(7);694-696.
- [14] Jin T S, Zhang J S, Wang A Q, et al. Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature [J]. Synthetic Communications, 2005, 35 (17):2339 –2345.
- [15] Cao S T, Fang D, Gong K, et al. Reaction of aromatic aldehydes with 5,5-dimethyl-1,3-cyclohexandione in water catalyzed by functionalized ionic liquid
 [J]. Chinese Journal of Applied Chemistry, 2009, 26
 (9):1123-1125.
- [16] 唐然肖,何红岩,杨旭哲,等. 微波辐射下酸性离子液体促进氧杂蒽二酮类衍生物的合成[J]. 化学试剂,2007,**29**(3):173-174.
- [17] Jin T S, Zhang J S, Wang A Q, et al. Ultrasoundassisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media [J]. Ultrason. Sonochem, 2006, 13:220 - 224.
- [18] Venkatesan K, Pujari S S, Lahoti R J, et al. An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation [J]. Ultrason Sonochem, 2008, 15:548 553.
- [19] Meth-Cohn O, Taylor D L. The reverse vilsmeier approach to the synthesis of quinolines, quinolinium salts and quinolones [J]. Tetrahedron, 1995, 51 (47): 12869 12882.
- [20] 冯友健,章晓镜,缪春宝,等. 对苯二甲醛或间苯二甲醛与5,5-二甲基-1,3-环己二酮的反应:含有双4(*H*)-吡喃,1,4-二氢吡啶结构单元的杂环化合物的合成[J]. 有机化学,2004,**24**(8):950-952. (下转第1146页)

2.3 表面光电性能

图 4 为 1 的 SPS 谱图。由图 4 可见,300 nm ~ 600 nm 存在较强的宽光伏响应带,说明 1 具有一定的光电转换性能。经 Origin 7.0 处理后可得 4 个不同强度的光伏响应带:344 nm 和 388 nm 处谱带分别归属于由 O→Co 和 N→Co 的 LMCT 所致带 - 带(或亚带隙)跃迁响应带;452 nm 和 558 nm 处谱带分别归属于 $Co(II)(d^7)$ 的d→d* 跃迁($^4T_{1g}$) $^4A_{2g}$)和($^4T_{1g}$)一的响应带。

3 结论

采用溶剂蒸发法合成了一种新型一维链状钴配合物{ $[Co(4,4'-bipy)_3(OH)_2]_n(1)$ }。1的中心离子Co(II)与4个氮原子和2个氧原子配位,形成畸变的八面体几何构型。未参与桥联的4,4'-bipy 形成分子间氢键(O-H-N)和 $\pi\cdots\pi$ 堆积,进一步将一维链结构扩展为二维(4,4)-连接 $(4^4\cdot6^2)$ 拓扑的超分子网状结构。SPS 测定结果表明:1在300 nm~600 nm 内有正光伏响应,具有一定的光电转换性能。

参考文献

- [1] 吴晓红,李晨,刘曙. 链状 4,4'-联吡啶桥联钴配位 聚合物的晶体结构与量子化学计算[J]. 计算机与 应用化学,2013,30(12):1493-1495.
- [2] 冯超,葛成敏,王寅光,等. 新型一维配位聚合物 {[Cu(4,4'-bipy) Cl], } 的溶剂热合成及其晶体结构[J]. 合成化学,2010,18(4);476-479.
- [3] 夏金虹,刘峥,金黎霞,等. 4,4'-联吡啶钴(Ⅱ)、铜(Ⅱ)配合物的合成及其晶体结构[J].人工晶体学报,2008,37(2):441-445.
- [4] Luachan S, Pakawatchai C, Rujiwatra A. Hydrothermal crystal growth, structures and thermal properties of Co(II) 4,4'-bipyridine-based coordination polymeric materials [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17(3):561-568.
- [5] Felloni M, Blake A J, Champness N R, et al. Supramolecular interactions in 4,4'-bipyridine cobalt (II) nitrate networks[J]. Journal of Supramolecular Chemistry,2002,2:163-174.
- [6] 金晶,牛淑云,杨忠志,等. 配位聚合物 { [Co(μ4, 4'-bpy)(4,4'-bpy)2 · (H₂O)₂] · (4,4'-bipy) · (H₂O)4 · (OH)₃ · (Me)₄N }_n 的晶体结构及性质 [J]. 高等学校化学学报,2004,**25**(3):418 420.
- [7] Jin J, Niu S Y, Yang G D, et al. Hydrothermal synthesis, structural characterization, magnetic and photoelectric properties of two cobalt (II) coordination polymers [J]. Z Anorg Allg Chem, 2006, 632 (9 10): 2350 2354.
- [8] 王莹,白玄玄,关磊,等. 新型单核 Zn(Ⅱ)配合物 [Zn(H₂O)₆·(pbsa)₂·2H₂O]的合成、晶体结构及 其光学性质[J]. 合成化学,2014,**22**(5):592 595.
- [9] 吴小说,王亮,汪鹏飞. 基于苯甲酸衍生物和含氮配体的新型配合物的合成及其晶体结构[J]. 合成化学,2015,**23**(6);471-475.

(上接第1139页)

- [21] 王甦惠, 史达清, 屠树江, 等. 无外加催化剂条件下 邻取代芳香醛与 5,5-二甲基-1,3-环己二酮的反应 研究[J]. 有机化学, 1999, 19:483-488.
- [22] Krishnakumar V, Mandal B K, Khan F R N, et al. Water mediated catalyst-free efficient domino synthesis of 9-(quinolin-2 (1H)-one)-xanthene-1, 8(5H, 1H)
- 9H)-diones using parallel synthesizer[J]. Tetrahedron Letters, 2014, 55(27):3717-3720.
- [23] Sheldrick G. M. SHELX-97, Program for the solution and refinement of crystal structures [K]. University of Göttingen, Germany, 1997.