香菇菌汤及酶解液中滋味成分及呈味 特性的对比分析

赵 静,丁 奇,孙 颖,张玉玉*,孙宝国,陈海涛 (北京工商大学食品营养与人类健康北京高精尖创新中心,北京市食品风味化学重点实验室, 食品质量与安全北京实验室,北京 100048)

摘 要:为对比分析香菇酶解液与香菇菌汤中滋味成分及呈味特性的变化,采用氨基酸自动分析仪和高效液相色谱 仪检测香菇酶解液、复水原液及菌汤中的游离氨基酸和5′-核苷酸等呈味物质的含量,利用经典公式计算等鲜浓度 (equivalent umami concentration, EUC)值,对其鲜味进行评价,并用电子舌对比分析其滋味轮廓。结果表明,酶解液中的游离氨基酸总量最高,为3 453.98 μg/g。三者呈味氨基酸占总游离氨基酸的比例相近且均含有较多的苦味 氨基酸。香菇菌汤中5′-鸟苷酸的含量最高,为967.84 μg/g,而酶解液和复水原液中5′-腺苷酸的含量最高。EUC值 结果表明,香菇酶解液EUC值最高,为30.54 g MSG/100 g,说明其呈鲜效果最明显。电子舌主成分分析结果显示,判别指数为94,香菇菌汤、酶解液及复水原液的整体滋味有显著差异。

关键词:香菇菌汤:酶解液:游离氨基酸:5'-核苷酸:等鲜浓度值;感官评价:电子舌

Comparison of Taste Compounds and Taste Characteristics of Shiitake Mushroom Soup and Enzymatic Hydrolysate

ZHAO Jing, DING Qi, SUN Ying, ZHANG Yuyu*, SUN Baoguo, CHEN Haitao

(Beijing Advanced Innovation Center For Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China)

Abstract: In order to comparatively analyze the taste compounds and taste characteristics in shiitake mushroom soup and enzymatic hydrolysate, free amino acids and MSG-like components (5'-nucleotides and free amino acids) of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid were analyzed by an automatic amino acid analyzer and high performance liquid chromatography (HPLC). The equivalent umami concentration (EUC) was calculated with the classical formula. The freshness was evaluated and taste profile was analyzed by electronic tongue. The results indicated that the total content of amino acids in the enzymatic hydrolysate was highest (3 453.98 μ g/g), and the ratio of flavor amino acids to total amino acids was similar among the three samples investigated with bitter amino acids being at higher levels. Shiitake mushroom soup contained the highest level of 5'-GMP (967.84 μ g/g) while the content of 5'-AMP was the highest in the enzymatic hydrolysate and the rehydration liquid. The EUC of the enzymatic hydrolysate was highest (30.54 g MSG/100 g), suggesting the strongest umami taste. Using electronic tongue and principal component analysis (PCA), the taste of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid were significantly different from each other with a discrimination index (DI) of 94.

Key words: shiitake mushroom soup; enzymatic hydrolysate; free amino acids; 5'-nucleotides; equivalent umami concentration; sensory evaluation; electronic tongue

DOI:10.7506/spkx1002-6630-201624015

中图分类号: TS207.3

文献标志码: A

文章编号: 1002-6630 (2016) 24-0099-06

引文格式:

赵静, 丁奇, 孙颖, 等. 香菇菌汤及酶解液中滋味成分及呈味特性的对比分析[J]. 食品科学, 2016, 37(24): 99-104. DOI:10.7506/spkx1002-6630-201624015. http://www.spkx.net.cn

ZHAO Jing, DING Qi, SUN Ying, et al. Comparison of taste compounds and taste characteristics of shiitake mushroom soup and enzymatic hydrolysate[J]. Food Science, 2016, 37(24): 99-104. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201624015. http://www.spkx.net.cn

收稿日期: 2016-04-19

基金项目: "十三五"国家重点研发计划项目(2016YFD0400705);国家自然科学基金青年科学基金项目(31401604); "十二五"国家科技支撑计划项目(2014BAD04B06)

作者简介:赵静(1991—),女,硕士研究生,研究方向为食用香料化学及其应用。E-mail: 595617484@qq.com *通信作者:张玉玉(1982—),女,副教授,博士,研究方向为食用香料化学及其应用。E-mail: zhangyy2@163.com

香菇又名香覃、香信、花菇、厚菇、冬菇^[1],属于真菌门,担子菌纲,伞菌目,侧耳科,香菇属^[2]。香菇的营养价值很高,有"山珍"、"菇中皇后"、"菇中之王"的美誉^[3]。香菇独特的口感以及均衡饮食的需求使香菇成为一种需求量较高的食物^[4]。较高的蛋白质含量和丰富多样的风味物质使食用菌形成独特的美味。菌汤营养丰富、风味独特、味道鲜美,在火锅、煲汤及菜肴制作中有着广泛应用。这主要是因为食用菌中的蛋白质发生降解,生成短肽和氨基酸^[5-6]。同时,5′-核苷酸、糖类及有机酸类小分子可溶性化合物对其滋味的形成有着重要作用。酶解可以使蛋白质充分降解,更大限度地释放活性肽和游离氨基酸、核苷酸等风味前体物质,增强香菇的风味,生产菌汤风味调料,提高产品利用率。

目前国内外关于菌类滋味成分的分析, 多是针对菌 类本身滋味成分的分析,Li Wen等[7]利用高效液相色谱等 方法检测了5种市售蘑菇中游离氨基酸、5'-核苷酸及有 机酸等呈味物质的含量,并利用经典计算公式得出了各 自的等鲜浓度 (equivalent umami concentration, EUC) 值,得出其中3种蘑菇具有较强的鲜味感受。陈万超等[8] 利用氨基酸分析仪和高效液相色谱法,对5个产地3种市 售干香菇滋味成分中的游离氨基酸和5'-核苷酸进行检测 分析,并利用滋味活性值和EUC值对其鲜味进行评价。 结果表明,不同产地的同种干香菇和同一产地的不同种 干香菇中呈鲜成分含量和呈鲜效果存在明显差异。Phat 等[9]进行了17种市售蘑菇滋味成分(氨基酸、核苷酸) 的分析,并计算EUC值和利用感官评价和电子舌进行鲜 度对比分析,结果发现其EUC值分析结果与感官评价和 电子舌分析结果具有一定的相关性。国内关于菌类酶解 的研究比较多,主要集中于工艺的研究,李琴等[10]发现 经过酶解预处理,蘑菇汤的固形物、蛋白质、游离氨基 酸等成分都显著增加;程玉[11]、高珊[12]等都利用了相应 的酶解技术制备了菌类调味料;吴关威等[13]发现纤维素 酶解法比热水浸提法更有利于香菇柄中的滋味成分释 放,通过前人的研究已经发现酶解时一种较好的滋味成 分释放的手段,但是,关于菌汤和酶解液中呈味物质的 呈味特性变化规律研究相对较少。

为进一步研究香菇在炖煮和酶解过程中呈味物质的变化情况,本实验通过氨基酸自动分析仪和高效液相色谱仪对香菇菌汤、酶解液、复水原液中的游离氨基酸、5′-核苷酸的含量进行对比分析,利用经典公式计算EUC值对其鲜味进行评价,并用电子舌对三者整体滋味轮廓进行对比验证,旨在为香菇酶解及其调味料制备工艺的优化提供理论依据。

1 材料与方法

1.1 材料与试剂

干香菇,产地福建宁德,购于北京永辉超市。

混合氨基酸标准溶液: 天冬氨酸、苏氨酸、丝氨酸、谷氨酸、脯氨酸、甘氨酸、丙氨酸、胱氨酸、缬氨酸、甲硫氨酸、异亮氨酸、亮氨酸、苯丙氨酸、酪氨酸、组氨酸、赖氨酸、精氨酸(质量浓度均为 $0.25~\mu mol/mL$) 百灵威科技有限公司; 5'-胞苷酸(cytidine 5'-monophosphate,5'-CMP)、5'-鸟苷酸(guanosine-5'-monophosphate,5'-IMP)、5'-肌苷酸(inosine 5'-monophosphate,5'-IMP)、5'-肌苷酸(adenosine-5'-monophosphate,5'-AMP)标准品 美国Sigma公司; 中性蛋白酶(食品级) 广西南宁庞博生物工程有限公司;甲醇 美国Fisher公司;其他试剂均购自国药集团化学试剂有限公司。

1.2 仪器与设备

30+氨基酸自动分析仪 英国Biochrom公司; U3000高效液相色谱仪 美国Thermo公司; Venusil 博纳艾杰尔科技有限公司; TGL16M台 XBP C₁₈柱 湖南湘仪实验室仪器开发有限 式高速冷冻离心机 公司; AG移液枪 德国Eppendorf公司; ALPHA 2-4 LSC冷冻干燥机 德国Marin Christ公司; Astree II 电 子舌 法国Alpha MOS公司; DGD40-40DWG微电脑隔 广东天际电器有限公司; BJ-200高速多功能 水电炖锅 粉碎机 德清拜杰电器有限公司。

1.3 方法

1.3.1 样品前处理

1.3.1.1 香菇菌汤的制备

将干香菇放入65 ℃烘箱中烘干, 称取30 g干香菇, 按料液比(香菇-去离子水)1:15 (g/mL)加水, 在营养汤模式下加热5.5 h。

1.3.1.2 香菇酶解液的制备

采用同一批烘干的香菇,用万能粉碎机将其打碎,过60 目筛,称取30 g粉末,按适当料液比加水搅拌混合均匀,复水12 h,水浴加热到指定温度时,加酶进行酶解。酶解结束后,迅速升温至85 \mathbb{C} ,灭酶10 min,得香菇酶解液样品。经预实验,酶解条件确定为料液比1:15(g/mL)、加入质量分数0.25%(以香菇粉质量计)中性蛋白酶(20万 U/g)酶解5.5 h、酶解温度50 \mathbb{C} 。

1.3.1.3 香菇复水原液的制备

作为酶解液的空白对照,水浴加热到指定温度后不加入酶,其他条件均与酶解液的制备保持一致。

1.3.1.4 上样前处理

取适量香菇菌汤、酶解液及复水原液分别离心, 离心条件: 9600 r/min、10 min、4 \mathbb{C} 。离心结束后分 别取香菇菌汤、酶解液及复水原液上清液,一部分用于电子舌分析,另一部分置于培养皿中进行冷冻干燥。冻干后,取适量冻干粉加入一定量的氨基酸分析仪上样缓冲液,涡旋,用0.45 μm亲水滤膜过滤,待氨基酸分析仪分析;再取适量的冻干粉加入高纯水溶解,涡旋,用0.45 μm亲水滤膜过滤,待高效液相色谱仪分析。

1.3.2 游离氨基酸的检测

分别按标准品与氨基酸分析仪上样缓冲液制成 0.031、0.081、0.156、0.278、0.625 μ mol/mL 5 个浓度 梯度的标准液。将5 个不同浓度梯度氨基酸标准溶液在 相同条件下进样,绘制17 种氨基酸标准曲线,采用峰面积外标法进行定量分析。氨基酸分析仪参数设置: BiochromNa型阳离子交换树脂(4.6 μ m×200 mm);测定波长570、440 nm;缓冲液流速35 mL/h;柱温 $31\sim76$ \mathbb{C} ; 茚三酮溶液流速25 mL/h;进样量20 μ L。每个样品重复进样3 次。

1.3.3 5′-核苷酸的高效液相色谱检测条件检测[14-15]

色谱柱: Venusil XBP C_{18} 柱(250 mm×4.6 mm,5 μ m),流动相: 甲醇- KH_2 PO₄缓冲液(50 mmol/L)(5:95,V/V),254 nm紫外扫描检测,柱温25 $^{\circ}$ C,进样量10 μ L。通过标准品的出峰时间及峰面积建立标准曲线计算样品中相应物质的含量,每个样品做3 次重复实验。

1.3.4 EUC值计算

EUC值常用来表征食品的鲜味程度,具体指:在100g的食物中,以谷氨酸钠的量来表示呈鲜物质的总量。

EUC值计算公式如下[16]:

 $Y=\sum a_ib_i+1\ 218\ (\sum a_ib_i)\ (\sum a_ib_i)$

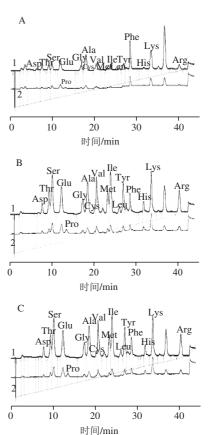
式中: Y为EUC值/(g MSG/100 g); a_i 为呈鲜氨基酸(天冬氨酸、谷氨酸)的含量/(mg/g); a_j 为呈鲜核苷酸(5′-IMP、5′-GMP、5′-XMP、5′-AMP)的含量/(mg/g); b_i 为呈鲜氨基酸相对MSG的鲜味程度值(b_i (Glu)=1, b_i (Asp)=0.077); b_j 为呈味核苷酸相对5′-IMP的值(b_j (5′-IMP)=1、 b_j (5′-GMP)=2.3、 b_j (5′-XMP) =0.61、 b_j (5′-AMP=0.18)); 1 218为协同作用常数。

1.3.5 鲜度感官评价分析

选取了具有相关知识背景和经验的10 名感官评价人员进行感官评价,其中男生4 名,女生6 名,20~30 岁8 名,30 岁以上2 名。然后采用不同质量浓度的谷氨酸钠溶液(0.03、0.09、0.15、0.21、0.27、0.30 g/100 mL)对评价员进行训练。评价采用11分制,1 分表示鲜味很弱,6 分中等,11 分具有很强的鲜度。实验重复3 次,并进行描述性评价。

1.3.6 电子舌滋味轮廓分析

利用电子舌对香菇菌汤、酶解液及复水原液的滋味


进行区分辨别,对三者的整体滋味轮廓进行对比,用电子舌自带的软件进行主成分分析(principal component analysis,PCA)。电子舌参数设置:采用交叉型传感器,在室温条件下测量,每个样品重复6~7次,以去离子水为清洗溶液清洗20 s^[17]。测量前对电子舌进行自检、活化、校准和诊断等步骤,以确保采集所得数据的可靠性和稳定性。

1.4 数据分析

所有数据均是基于样品通过3次重复实验所得。利用Excel和SPSS Statistics 20软件通过单因素方差分析进行显著性分析,分析方法为邓肯多重范围检验,显著性水平为P<0.05。

2 结果与分析

2.1 香菇菌汤、酶解液及复水原液中游离氨基酸种类及 含量分析

1. 在波长570 nm条件下测定; 2. 在波长440 nm条件下测定。

图 1 香菇菌汤(A)、酶解液(B)及复水原液(C)中游离氨 基酸分离谱图

Fig. 1 Chromatographic separation of free amino acids of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

香菇味道鲜美,主要是其中含有鲜甜味活性成分, 游离氨基酸就是一类重要的味觉活性物质。由图1可以看 出,各个氨基酸的分离效果较好,香菇菌汤、酶解液及复水原液样品中均检测出种类相同的17种游离氨基酸,但游离氨基酸含量相差比较大。这与王雨生等^[18]的研究一致,香菇经酶解后游离氨基酸总量和各种氨基酸的含量均明显提高。

表 1 香菇菌汤、酶解液及复水原液中17 种游离氨基酸含量 Table 1 The contents of 17 free amino acids in shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

□ n±	复甘酚	菌汤		酶解	液	复水原液		
呈味	氨基酸	含量/ (μg/g)	百分比/%	含量/ (µg/g)	百分比/%	含量/ (μg/g)	百分比/%	
鲜味	天冬氨酸Asp	17.42±0.47°	3.36	89.85±3.76°	2.60	82.29±2.69 ^b	2.80	
軒外	谷氨酸Glu	$36.77\!\pm\!1.60^{c}$	7.09	$248.33\!\pm\!6.91^a$	7.19	212.34 ± 7.44^{b}	7.23	
总计			10.45		9.79		10.03	
	苏氨酸Thr	21.61 ± 0.29^{c}	4.16	$200.08\!\pm\!5.90^a$	5.79	172.31±7.35 ^b	5.87	
	丝氨酸Ser	$28.09\!\pm\!1.86^{c}$	5.41	360.85 ± 7.61^a	10.45	323.25 ± 11.18^b	11.00	
甜味	甘氨酸Gly	25.69 ± 1.44^{c}	4.95	$171.24\!\pm\!1.86^a$	4.96	159.45±5.56 ^b	5.43	
	丙氨酸Ala	57.79 ± 2.59^c	11.14	$225.91\!\pm\!6.21^a$	6.54	210.72 ± 7.31^{b}	7.17	
	脯氨酸Pro	4.11 ± 0.25^c	0.79	88.33 ± 1.07^a	2.56	93.74 ± 1.81^{b}	3.19	
总计			26.45		30.30		32.66	
	缬氨酸Val	$26.23\!\pm\!1.00^{c}$	5.05	305.00 ± 8.49^a	8.83	$226.28\!\pm\!10.57^{b}$	7.70	
	甲硫氨酸Met	$7.52 \!\pm\! 0.37^c$	1.45	$179.48\!\pm\!4.00^a$	5.20	137.35 ± 7.05^{b}	4.68	
	异亮氨酸Ile	$35.27\!\pm\!2.19^{c}$	6.80	562.64 ± 10.20^a	16.29	435.02 ± 13.51^{b}	14.81	
	亮氨酸Leu	9.36 ± 0.68^{c}	1.80	52.34 ± 3.05^a	1.52	61.42 ± 1.54^{b}	2.09	
苦味[19]	酪氨酸Tyr	$19.07\!\pm\!0.49^{c}$	3.68	204.54 ± 4.24^a	5.92	167.17 ± 9.10^{b}	5.69	
	苯丙氨酸Phe	$108.81 \pm 6.54^{\circ}$	20.97	$124.94\!\pm\!0.58^a$	3.62	114.17 ± 6.88^{b}	3.89	
	组氨酸His	2.11 ± 0.10^{c}	0.41	66.24 ± 0.71^a	1.92	55.59 ± 0.59^b	1.89	
	赖氨酸Lys	$90.85 \pm 5.15^{\circ}$	17.51	314.64 ± 10.10^a	9.11	268.10 ± 14.13^{b}	9.13	
	精氨酸Arg	$24.54 \pm 0.84^{\circ}$	4.73	$249.31\!\pm\!4.75^a$	7.22	211.34±7.21 ^b	7.19	
总计			62.4		59.63		57.07	
不呈味	胱氨酸Cys-Cys	$3.68\!\pm\!0.19^{c}$	0.71	10.26 ± 0.50^a	0.30	7.14 ± 0.31^{b}	0.24	
	TFAA	518.90		3 453.98		2 937.69		
	DAA	515.22		3 443.72		2 930.55		
	EAA	292.12		1 559.64		1 277.30		
EAA/TFAA/%			56.30		45.15		43.48	
DAA/TFAA/%			99.29		99.70		99.76	

注: $a \sim c$.香菇菌汤、酶解液和复水原液中每种氨基酸含量差异显著 (n=3, P < 0.05) ,表2同;TFAA.总游离氨基酸;DAA.呈味氨基酸;EAA.必需氨基酸。

由表1可知,香菇菌汤中总游离氨基酸含量为518.90 µg/g;酶解液中含量最高为3 453.98 µg/g,约为香菇菌汤中含量的7倍;复水原液中总游离氨基酸的含量为2 937.69 µg/g,约为菌汤中含量的6倍,这可能是由于粉碎更有利于滋味物质的释放。其中酶解液中的总游离氨基酸的含量比王雨生等[18]测得的含量高,一部分是因为所采用的酶解方式不同,另一部分可能是因为香菇种类不同、产地不同、生长环境不同造成的[20]。从呈味氨基酸来看,香菇菌汤、酶解液和复水原液中呈味氨基酸含量占总游离氨基酸含量的比例相近,分别为99.29%、99.70%、99.76%,这说明3 种样品中呈味氨基酸的含量极其丰富。从必需氨基酸来看,香菇酶解液的含量比菌汤和复水原液都要高。在香菇菌汤中,游离氨基酸含量最高的是苯丙氨酸(108.81 µg/g),其次是赖氨酸和丙

氨酸;而在酶解液和复水原液中,异亮氨酸的含量最高,其次是丝氨酸和赖氨酸。酶解液相对于复水原液来说,各个游离氨基酸的含量都要比复水原液要高,说明酶解是一种释放游离氨基酸的有效方式。

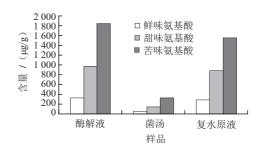


图 2 香菇菌汤、酶解液及复水原液中游离氨基酸的呈味特性 Fig. 2 Taste and flavor characteristics of free amino acids in shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

滋味有酸、甜、苦、咸和鲜5种感受,呈味氨基酸的含量对香菇菌汤的口感有非常重要的作用。根据呈味氨基酸的呈味特性,将氨基酸分为鲜味、甜味、苦味及无味4种类型^[21]。由图2可以看出,香菇菌汤、酶解液、复水原液中苦味氨基酸的含量都占优势。酶解液中鲜味氨基酸的含量要比菌汤和复水原液的含量都要高,Yamaguchi等^[22]发现谷氨酸和天冬氨酸是类似于味精的鲜味物质,表现出最典型的蘑菇风味即鲜美可口的味道。而且谷氨酸盐与呈味核苷酸共同作用能够使食用菌产生独特的滋味。酶解液当中的甜味氨基酸含量也是最高的,其中甘氨酸除了本身提供的清香甜味以外,还能减少苦味,从食物中除去不愉快的口味^[23]。但酶解液中苦味氨基酸的含量也是最高的,Lioe等^[24]研究发现苦味氨基酸如苯丙氨酸、酪氨酸,其含量低于呈味阈值时,并可增强其他氨基酸的鲜味和甜味。

2.2 香菇菌汤、酶解液及复水原液中核苷酸含量分析

表 2 香菇菌汤、酶解液及复水原液中4 种5'-核苷酸含量
Table 2 The contents of four 5'-nucleotides in shiitake mushroom soup,
enzymatic hydrolysate and rehydration liquid

			μg/g
核苷酸	菌汤	酶解液	复水原液
5'-CMP	$452.98 \pm 19.38^{\circ}$	463.28 ± 22.25°	432.26±23.11°
5'-GMP	967.84 ± 58.88^{b}	$383.29 \pm 22.91^{\circ}$	$307.96 \pm 8.26^{\circ}$
5'-AMP	$69.24 \pm 0.06^{\circ}$	551.20 ± 8.39^{b}	532.09 ± 23.72^{b}
5′-IMP	15.19 ± 0.86^{b}	2.12 ± 0.20^{c}	1.34±0.09°

香菇中除呈味氨基酸外,还含有大量的呈味核苷酸。不同的氨基酸类鲜味物质与核苷酸类鲜味物质之间也存在相互作用。由表2可知,香菇菌汤、酶解液及复水原液中5′-CMP的含量相差不大;在香菇菌汤中5′-GMP的含量最高,可能是因为在煮制香菇菌汤时温度很高,高温更有利于5′-GMP的释放。Dermiki等^[25]发现在70 ℃

条件下提取的5′-GMP含量要比20 ℃条件下提取的含量要多,因为RNA在高温下更容易被破坏。Li Qin等^[26]也发现在蘑菇的煮制过程中,5′-GMP的含量有明显增加。5′-AMP是食用菌中的主要呈味氨基酸之一,有很强的助鲜作用,其在酶解液中的含量最高为551.20 μg/g,其次是复水原液和菌汤。5′-IMP在食用菌中的含量相对于其他核苷酸来说比较少,它一般存在于动物体内,而且极其不稳定,在预处理的过程中极易损失。酶解液中4 种核苷酸的含量均高于复水原液,说明生物酶破坏菌体细胞,使呈味核苷酸更容易溶出^[27]。

2.3 EUC值计算

表 3 香菇菌汤、酶解液及复水原液的EUC值
Table 3 Equivalent umami concentration (EUC) values of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

					_
样品		菌汤	酶解液	复水原液	_
EUC值/(g	MSG/100 g)	11.87	30.54	21.33	_

呈味核苷酸与MSG按一定比例混合使用,不但可以显著提高鲜味效果,而且具有协同增鲜效果^[28]。氨基酸类鲜味成分在阈值以下并不表现出鲜味,当添加少量的5′-核苷酸,可以提高到其阈值以上从而发挥作用^[29]。Mau等^[30]为了更直观地评价食品的呈鲜活性,将EUC值分为4个水平:第1水平为EUC>10.00gMSG/100g,第2水平为1.00gMSG/100g<EUC<10.00gMSG/100g,第3水平为0.10~1.00gMSG/100g,第4水平为EUC<0.10gMSG/100g,4个水平鲜味特征依次减弱。由表3可知,香菇菌汤、酶解液及复水原液的EUC均大于10gMSG/100g,属于第1水平,说明三者的鲜味强度都很强,但酶解液的EUC值最大为30.54gMSG/100g,说明酶解液较菌汤和复水原液的鲜度都要高,可见香菇酶解液是一种鲜味极强的调味基料。

2.4 鲜度感官评价分析

表 4 香菇菌汤、复水原液和酶解液鲜度感官评价
Table 4 Umami taste intensity and sensory evaluation of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

		• •		_			•		
样品	鲜度评分				描述性	 上分析			
菌汤	6.0		强度一	般,	不够浓	郁,鲜质	モー彤	と,苦	
复水原液	7.5	强	度较高,	涩,	鲜度较	读高,不	够柔	和,较苦	
酶解液	9.0		强度很	高,	滋味浓	郁,鲜度	ŧ高,	微苦	

由表4可知,酶解液鲜度评分最高为9.0 分,香菇菌汤鲜度最弱,且强度不高。酶解液表现出很强的滋味强度,香菇特征风味明显,而且滋味浓郁、鲜度高。结合前面EUC值的分析,酶解液都表现出很强的鲜味特征。说明感官评价与EUC值分析具有一定的关联性,这与Phat等^[9]的研究一致。

2.5 香菇菌汤、酶解液及复水原液电子舌轮廓分析 电子舌检测得到的结果是由7个传感器检测出样 品酸、甜、苦、咸、鲜的综合口感,电子舌在检测的过程中,将实验的重复次数维持在6或7次,以减少检测误差^[31]。根据样品的雷达图,每个样品选出相差不大的3个重复,图中每个样品的3个记号代表3次重复。由图3得知,7个传感器PC1和PC2的累积方差贡献率为98.05%大于85%,这说明PC1和PC2包含样品大量信息,可以反映3种样品的整体信息。经PCA后得到的判别指数是判断电子舌是否能区分样品的重要指标,一般当判别指数值大于80时,认为对样品具有良好的区分度^[32]。Phat等^[9]研究表明电子舌对于判定蘑菇中鲜味成分是一种有效的方法。三者的判别指数达到94,说明三者可以很好地区分开来,且各自落在各自的区域中,互不重叠。从图中看酶解液与复水原液离得比较近,说明二者更类似,这与感官评价得分以及EUC值的分析是一致的。

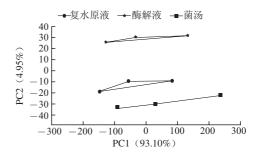


图 3 香菇菌汤、酶解液及复水原液电子舌检测的PCA图 Fig. 3 PCA diagram of shiitake mushroom soup, enzymatic hydrolysate and rehydration liquid

3 结论

采用氨基酸自动分析仪对香菇菌汤、酶解液及复水原液中的游离氨基酸进行对比分析,结果发现酶解液中总游离氨基酸含量最高为3 453.98 μg/g,约为菌汤中含量的7倍;复水原液中总游离氨基酸的含量为2 937.69 μg/g,超过香菇菌汤中含量的6倍,三者呈味氨基酸含量占氨基酸总量的比例相近。酶解液中每种氨基酸的含量均比香菇菌汤和复水原液中高,而且酶解液中呈鲜、甜、苦味的氨基酸含量也是三者中最高的。

利用高效液相色谱仪对3种样品中的5′-核苷酸的含量进行对比分析,结果表明香菇菌汤、酶解液及复水原液中5′-CMP的含量相差不大;在香菇菌汤中5′-GMP的含量最高,酶解液中5′-AMP的含量最高。香菇菌汤、酶解液及复水原液的EUC值均大于10.00gMSG/100g,属于第1水平,说明三者的鲜味强度都很强,其中酶解液的EUC值最大,为30.54gMSG/100g。感官评价结果显示酶解液具有较强的鲜度,与EUC值分析结果一致。电子舌PCA图表明三者滋味存在显著差异,且EUC值与感官评价结果以及电子舌分析结果存在一定的相关性与一

致性。研究表明,酶解可以有效促进香菇滋味成分的释放,增强其呈味特性,香菇酶解液可以作为一种营养、健康、美味的调味基料。

参考文献:

- [1] 糜志远, 张迎庆. 香菇深加工产品开发进展[J]. 食品工程, 2007(4): 15-18. DOI:10.3969/j.issn.1673-6044.2007.04.005.
- [2] 何永. 香菇营养成分研究进展[J]. 农产品加工(综合刊), 2011(4): 10-11. DOI:10.3969/j.issn.1671-9646-C.2011.04.006.
- [3] 钟桂兴. 两种香菇干燥方法的比较分析[J]. 清远职业技术学院学报, 2010, 3(6): 29-30. DOI:10.3969/j.issn.1674-4896.2010.06.009.
- [4] RANOGAJEC A. Analysis of nucleosides and monophosphate nucleotides from mushrooms with reversed-phase HPLC[J]. Journal of Separation Science, 2010, 33(8): 1024-1033. DOI:10.1002/ jssc.200900516.
- [5] CHO I H, CHOI H K, KIM Y S. Comparison of umami-taste active components in the pileus and stipe of pine-mushrooms (*Tricholoma matsutake* Sing.) of different grades[J]. Food Chemistry, 2010, 118(3): 804-807. DOI:10.1016/j.foodchem.2009.05.084.
- [6] ZHANG Y, VENKITASAMY C, PAN Z, et al. Recent developments on umami ingredients of edible mushroom-a review[J]. Trends in Food Science and Technology, 2013, 33(2): 78-92. DOI:10.1016/ j.tifs.2013.08.002.
- [7] LI Wen, GU Zhen, YANG Yan, et al. Non-volatile taste components of several cultivated mushrooms[J]. Food Chemistry, 2014, 143(1): 427-431. DOI:10.1016/j.foodchem.2013.08.006.
- [8] 陈万超, 杨焱, 冯杰, 等. 不同产地商业品种香菇的滋味成分分析及评价[J]. 食品工业与科技, 2015, 36(8): 152-157. DOI:10.13386/j.issn1002-0306.2015.08.022.
- [9] PHAT C, MOON B K, CHAN L. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system[J]. Food Chemistry, 2016, 192: 1068-1077. DOI:10.1016/j.foodchem.2015.07.113.
- [10] 李琴, 朱科学, 周惠明. 酶解预处理对蘑菇汤营养成分及挥发性 风味物质的影响[J]. 食品与生物技术学报, 2012, 31(8): 836-842. DOI:10.3969/j.issn.1673-1689.2012.08.008.
- [11] 程玉. 酶解法制备海鲜菇调味料的研究[D]. 杭州: 浙江大学, 2013.
- [12] 高珊. 茶树菇味复合发酵调味品的研究[D]. 无锡: 江南大学, 2008.
- [13] 吴关威. 香菇柄中滋味成分释放研究及香菇精的研制[D]. 武汉: 华中农业大学, 2010.
- [14] FEI P, YING S, GAO X, et al. Changes in non-volatile taste components of button mushroom (*Agaricus bisporus*) during different stages of freeze drying and freeze drying combined with microwave vacuum drying[J]. Food Chemistry, 2014, 165(3): 547-554. DOI:10.1016/j.foodchem.2014.05.130.
- [15] 李晓贝, 杨焱, 周峰, 等. 杏鲍菇子实体及其下脚料的营养成分和呈味物质研究[J]. 现代食品科技, 2015, 31(6): 272-277.

- [16] YAMAGUCHI S, YOSHIKAWA T, IKEDA S, et al. Measurement of the relative taste intensity of some 1-α-amino acids and 5'-nucleptides[J]. Journal of Food Science, 1971, 36(6): 846-849. DOI:10.1111/j.1365-2621.1971.tb15541.x.
- [17] 张璟琳, 黄明泉, 孙宝国, 等. 电子舌技术在食醋口感评价中的应用[J]. 食品与发酵工业, 2013, 39(11): 220-221. DOI:10.13995/j.cnki,11-1802/ts.2013.11.049.
- [18] 王雨生, 陈海华, 王莹, 等. 超声波协同酶法制备香菇酶解液及其鲜味物质研究[J]. 中国食品学报, 2015, 15(9): 139-141.
- [19] 张宇. 猪骨素固态发酵产水解酶及降解产物呈味特性的研究[D]. 雅安: 四川农业大学, 2013.
- [20] TABATA T, TOMIOKA K, IWASAKA Y, et al. Comparison of chemical compositions of shiitake (*Lentinus edodes* (Berk.) Sing) cultivated on logs and sawdust substrate[J]. Food Science and Technology Research, 2006, 12(4): 252-255. DOI:10.3136/fstr.12.252.
- [21] ARDÖ Y. Flavour formation by amino acid catabolism[J]. Biotechnology Advances, 2006, 24(2): 238-242. DOI:10.1016/ j.biotechadv.2005.11.005.
- [22] YAMAGUCHI S, YOSHIKAWA T, IKEDA S, et al. Measurement of the relative taste intensity of some 1-α-amino acids and 5'-nucleptides[J]. Journal of Food Science, 2006, 36(6): 846-849. DOI:10.1111/j.1365-2621.1971.tb15541.x.
- [23] 陈敏. 氨基酸的风味与功能[M]. 北京: 中国林业出版社, 2008: 134-136.
- [24] LIOE H N, APRIYANTONO A, TAKARA K, et al. Umami taste enhancement of MSG/NaCl mixtures by subthreshold *L-α*-aromatic amino acids[J]. Journal of Food Science, 2005, 70(7): 401-405. DOI:10.1111/j.1365-2621.2005.tb11483.x.
- [25] DERMIKI M, PHANPHENSOPHON N, MOTTRAM D S, et al. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat[J]. Food Chemistry, 2013, 141(1): 77-83. DOI:10.1016/ j.foodchem.2013.03.018.
- [26] LI Qin, ZHANG Hahihua, CLAVER I P, et al. Effect of different cooking methods on the flavour constituents of mushroom (*Agaricus bisporus* (Lange) Sing) soup[J]. International Journal of Food Science and Technology, 2011, 46(5): 1100-1108. DOI:10.1111/j.1365-2621.2011.02592 x
- [27] 谷镇. 食用菌呈香呈味物质分析及制备工艺研究[D]. 上海: 上海师范大学, 2012.
- [28] KOMATAY. Umami taste of sea foods[J]. Food Reviews International, 1990, 6(4): 457-487. DOI:10.1080/87559129009540887.
- [29] 吴娜,顾赛麒,陶宁萍,等.鲜味物质间的相互作用研究进展[J].食品工业科技,2014,35(10):389-391.DOI:10.13386/j.issn1002-0306.2014.10.077.
- [30] MAU J L. The umami taste of edible and medicinal mushrooms[J]. International Journal of Medicinal Mushrooms, 2005, 7(1): 119-126. DOI:10.1615/IntJMedMushr.v7.i12.120.
- [31] 张玉玉. 中国传统面酱挥发性成分分析[D]. 北京: 北京工商大学, 2010.
- [32] 王璐, 黄明泉, 孙宝国, 等. 电子舌技术在甜面酱口感评价中的应用[J]. 食品科学, 2012, 33(20): 349-350.